CN114286486A - Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method - Google Patents
Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method Download PDFInfo
- Publication number
- CN114286486A CN114286486A CN202111665970.XA CN202111665970A CN114286486A CN 114286486 A CN114286486 A CN 114286486A CN 202111665970 A CN202111665970 A CN 202111665970A CN 114286486 A CN114286486 A CN 114286486A
- Authority
- CN
- China
- Prior art keywords
- air
- dielectric barrier
- barrier discharge
- vacuum
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 103
- 238000005259 measurement Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 19
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 16
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000000903 blocking effect Effects 0.000 claims description 21
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 16
- 239000013543 active substance Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 6
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 claims 4
- 230000000694 effects Effects 0.000 claims 3
- 229960001730 nitrous oxide Drugs 0.000 claims 2
- 235000013842 nitrous oxide Nutrition 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000004949 mass spectrometry Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000001272 nitrous oxide Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Landscapes
- Plasma Technology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于等离子体诊断技术领域,提供了大气压条件下介质阻挡放电等离子体多种活性产物的实时在线同步测量装置和方法。The invention belongs to the technical field of plasma diagnosis, and provides a real-time online synchronous measurement device and method for various active products of dielectric barrier discharge plasma under atmospheric pressure.
背景技术Background technique
介质阻挡放电可在大气压条件下产生等离子体,放电系统无需抽真空,同时获得极高的电子平均能量、电子浓度和电离度,具有重要应用前景,因而大气压条件下的介质阻挡放电等离子体备受关注,等离子体活性产物的测量是等离子体技术发展的关键环节,是等离子体诊断的核心内容,可为等离子体诊断和放电参数优化提供基本的实验数据。The dielectric barrier discharge can generate plasma under atmospheric pressure, and the discharge system does not need to be evacuated, and at the same time obtains extremely high electron average energy, electron concentration and ionization degree, which has important application prospects. Therefore, the dielectric barrier discharge plasma under atmospheric pressure is widely used. Attention, the measurement of plasma active products is a key link in the development of plasma technology and the core content of plasma diagnosis, which can provide basic experimental data for plasma diagnosis and discharge parameter optimization.
影响等离子体活性产物种类和浓度的因素多而复杂,主要包括放电形式、电极构型、电源参数、放电区域气体流量等,多参数可独立调节且对活性产物种类和浓度进行高精度测量的技术是对以上诸多参数优化匹配的基础性工作。测量方面,目前最常用的等离子体诊断技术是光谱技术,包括发射光谱、吸收光谱和激光诱导荧光光谱三大类,质谱技术则被认为是主要针对低气压放电等离子体的测量诊断(叶超.低温等离子体诊断原理与技术.科学出版社,2021,P216),在公开报道的文献中也很难找到利用质谱技术测量大气压条件下等离子体活性产物的结果。质谱技术是一种测量离子质量-电荷比的分析方法,在一次分析中可提供丰富的结构信息,既具备了高的特异性,又具有极高灵敏度,是一种广泛应用的普适性方法。限制质谱法应用于大气压等离子体的主要原因是常见的质谱仪工作气压极低,比大气压低6个数量级以上,难以直接应用。There are many and complex factors affecting the type and concentration of plasma active products, mainly including discharge form, electrode configuration, power supply parameters, gas flow in the discharge area, etc. Multiple parameters can be independently adjusted and the technology of high-precision measurement of active product types and concentrations It is the basic work for the optimization and matching of many of the above parameters. In terms of measurement, the most commonly used plasma diagnosis technology is spectroscopy, including emission spectroscopy, absorption spectroscopy and laser-induced fluorescence spectroscopy. Principles and Technology of Low-Temperature Plasma Diagnosis. Science Press, 2021, P216), it is also difficult to find the results of using mass spectrometry to measure plasma active products under atmospheric pressure conditions in the published literature. Mass spectrometry is an analytical method for measuring the mass-to-charge ratio of ions. It can provide rich structural information in one analysis. It has both high specificity and extremely high sensitivity. It is a universal method that is widely used. . The main reason for limiting the application of mass spectrometry to atmospheric pressure plasma is that the working pressure of common mass spectrometers is extremely low, which is more than 6 orders of magnitude lower than atmospheric pressure, making it difficult to directly apply.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的是提供一种应用于大气压条件下介质阻挡放电等离子体活性产物测量的装置,既可以控制放电区域的空气流量,又可以控制电源参数,还可以应用于多种不同的放电形式,并解决了质谱方法难以直接应用于大气压条件下测量的问题。In view of this, the purpose of the present invention is to provide a device for measuring the active product of dielectric barrier discharge plasma under atmospheric pressure, which can not only control the air flow in the discharge area, but also control the power parameters, and can also be applied to a variety of different It solves the problem that mass spectrometry methods are difficult to be directly applied to measurement under atmospheric pressure conditions.
为实现上述目的,本发明提供了一种大气压介质阻挡放电等离子体活性产物测量装置,其特征在于,包括介质阻挡放电装置、高压放电电源、针阀、真空计、真空泵和质谱仪:In order to achieve the above object, the present invention provides an atmospheric pressure dielectric barrier discharge plasma active product measuring device, which is characterized in that it includes a dielectric barrier discharge device, a high-voltage discharge power supply, a needle valve, a vacuum gauge, a vacuum pump and a mass spectrometer:
所述高压放电电源,用于给所述介质阻挡放电装置提供放电的能量;The high-voltage discharge power supply is used to provide discharge energy to the dielectric barrier discharge device;
所述介质阻挡放电装置包括高压电极、阻挡介质、低压电极、进气口和出气口,所述高压放电电源连接所述高压电极和所述低压电极,所述阻挡介质置于所述高压电极和所述低压电极之间,阻挡介质与高压电极和/或低压电极之间留有空隙,所述空隙作为放电腔体,接通所述高压放电电源后在所述放电腔体中放电后,空气从所述进气口进入所述放电腔体,在所述放电腔体中电离空气产生等离子体,等离子体经所述出气口排出所述介质阻挡放电装置;The dielectric barrier discharge device includes a high voltage electrode, a barrier medium, a low voltage electrode, an air inlet and an air outlet, the high voltage discharge power source is connected to the high voltage electrode and the low voltage electrode, and the barrier medium is placed between the high voltage electrode and the low voltage electrode. Between the low-voltage electrodes, there is a gap between the blocking medium and the high-voltage electrode and/or the low-voltage electrode, and the gap serves as a discharge cavity. After the high-voltage discharge power supply is turned on and discharged in the discharge cavity, the air Entering the discharge chamber from the air inlet, ionizing air in the discharge chamber to generate plasma, and the plasma is discharged from the dielectric barrier discharge device through the air outlet;
所述真空泵、真空计和质谱仪的入口分别连接真空管路;所述真空管路通过所述针阀和第一三通连接所述介质阻挡放电装置的出气口;所述第一三通的第一端口连接所述介质阻挡放电装置的出气口,第二端口连接排气管,第三端口连接所述针阀的一端,所述针阀的另一端连接真空管路。The inlets of the vacuum pump, the vacuum gauge and the mass spectrometer are respectively connected to a vacuum pipeline; the vacuum pipeline is connected to the air outlet of the dielectric barrier discharge device through the needle valve and the first three-way; the first three-way of the first three-way The port is connected to the gas outlet of the dielectric barrier discharge device, the second port is connected to the exhaust pipe, the third port is connected to one end of the needle valve, and the other end of the needle valve is connected to the vacuum pipeline.
进一步的,所述介质阻挡放电装置的结构是同轴圆柱形结构、或者平板形结构、或者针板形结构、或者线筒形结构。Further, the structure of the dielectric barrier discharge device is a coaxial cylindrical structure, or a plate-shaped structure, or a pin-plate-shaped structure, or a bobbin-shaped structure.
进一步的,所述介质阻挡放电装置是同轴圆柱形结构,包括上堵头、下堵头、高压电极、阻挡介质、低压电极,所述高压电极设置在所述介质阻挡放电装置的中央,外面包裹由绝缘物质制成的所述阻挡介质,其上端穿过所述上堵头连接所述高压放电电源;所述低压电极由金属制成,环绕在所述阻挡介质周围并且接地,所述阻挡介质和所述低压电极之间留有空隙作为放电腔体;所述上堵头设置有所述介质阻挡放电装置的进气口,所述下堵头设置有所述介质阻挡放电装置的出气口,所述介质阻挡放电装置的进气口和出气口与所述放电腔体连通;所述上堵头和所述下堵头封闭放电腔体。Further, the dielectric barrier discharge device is a coaxial cylindrical structure, including an upper plug, a lower plug, a high-voltage electrode, a blocking medium, and a low-voltage electrode, the high-voltage electrode is arranged in the center of the dielectric barrier discharge device, and the outer The blocking medium made of insulating material is wrapped, and its upper end is connected to the high-voltage discharge power supply through the upper plug; the low-voltage electrode is made of metal, surrounds the blocking medium and is grounded, and the blocking A gap is left between the medium and the low-voltage electrode as a discharge cavity; the upper plug is provided with an air inlet of the dielectric barrier discharge device, and the lower plug is provided with an air outlet of the dielectric barrier discharge device , the air inlet and the air outlet of the dielectric barrier discharge device are communicated with the discharge cavity; the upper plug and the lower plug close the discharge cavity.
进一步的,所述真空管路包括第二三通、第三三通和用于连接的真空管;所述第二三通的第一端口通过真空管连接所述真空计,第二端口通过真空管连接所述针阀,第三端口通过真空管连接所述第三三通的第一端口;所述第三三通的第二端口通过真空管连接真空泵,所述第三三通的第三端口通过真空管连接质谱仪。Further, the vacuum pipeline includes a second tee, a third tee and a vacuum tube for connection; the first port of the second tee is connected to the vacuum gauge through a vacuum tube, and the second port is connected to the vacuum tube through a vacuum tube. Needle valve, the third port is connected to the first port of the third tee through a vacuum tube; the second port of the third tee is connected to a vacuum pump through a vacuum tube, and the third port of the third tee is connected to the mass spectrometer through a vacuum tube .
进一步的,所述大气压介质阻挡放电等离子体活性产物测量装置还包括大气空气泵和流量计,所述大气压空气泵通过管路连接所述流量计的入口,所述流量计的出口通过管路连接所述介质阻挡放电装置的进气口。Further, the atmospheric pressure dielectric barrier discharge plasma active product measuring device also includes an atmospheric air pump and a flowmeter, the atmospheric pressure air pump is connected to the inlet of the flowmeter through a pipeline, and the outlet of the flowmeter is connected through a pipeline. The air inlet of the dielectric barrier discharge device.
本发明还提供了一种大气压介质阻挡放电等离子体活性产物测量方法,包括:The present invention also provides an atmospheric pressure dielectric barrier discharge plasma active product measurement method, comprising:
步骤S1:大气压空气流流入所述介质阻挡放电装置的放电腔体中,高压放电电源为所述介质阻挡放电装置提供能量,在放电腔体中进行高压放电电离空气产生等离子体;Step S1: the atmospheric pressure air flow flows into the discharge chamber of the dielectric barrier discharge device, the high-voltage discharge power supply provides energy for the dielectric barrier discharge device, and the high-voltage discharge is performed in the discharge chamber to ionize the air to generate plasma;
步骤S2:等离子体中的活性产物随空气流出放电腔体,注入真空管路;Step S2: the active product in the plasma flows out of the discharge chamber with the air and is injected into the vacuum pipeline;
步骤S3:利用针阀和真空泵调节真空管路中的气压,利用真空计监测气压,使真空管路中的气压处于质谱仪工作的气压范围内;Step S3: using a needle valve and a vacuum pump to adjust the air pressure in the vacuum pipeline, and using a vacuum gauge to monitor the air pressure, so that the air pressure in the vacuum pipeline is within the working pressure range of the mass spectrometer;
步骤S4:真空管内的活性物质扩散进入质谱仪,利用质谱仪对活性产物的种类和组分浓度进行测量。Step S4: The active substance in the vacuum tube diffuses into the mass spectrometer, and the mass spectrometer is used to measure the type and component concentration of the active product.
本发明还提供了一种大气压介质阻挡放电等离子体活性产物测量方法,包括:The present invention also provides an atmospheric pressure dielectric barrier discharge plasma active product measurement method, comprising:
步骤S1:利用所述大气压空气泵产生大气压空气流,同时利用所述流量计监测和控制空气流量;Step S1: use the atmospheric pressure air pump to generate the atmospheric pressure air flow, and use the flowmeter to monitor and control the air flow;
步骤S2:将所述大气压空气流注入所述介质阻挡放电装置的放电腔体中,高压放电电源为所述介质阻挡放电装置提供能量,在放电腔体中进行高压放电电离空气产生等离子体;Step S2: injecting the atmospheric pressure air flow into the discharge chamber of the dielectric barrier discharge device, a high-voltage discharge power supply provides energy for the dielectric barrier discharge device, and performing high-voltage discharge in the discharge chamber to ionize the air to generate plasma;
步骤S3:等离子体中的活性产物随空气流出放电腔体,注入真空管路;Step S3: the active product in the plasma flows out of the discharge chamber with the air, and is injected into the vacuum pipeline;
步骤S4:利用针阀和真空泵调节真空管路中的气压,利用真空计监测气压,使真空管路中的气压处于质谱仪工作的气压范围内;Step S4: using a needle valve and a vacuum pump to adjust the air pressure in the vacuum pipeline, and using a vacuum gauge to monitor the air pressure, so that the air pressure in the vacuum pipeline is within the working pressure range of the mass spectrometer;
步骤S5:真空管内的活性物质扩散进入质谱仪,利用质谱仪对活性产物的种类和组分浓度进行测量。Step S5: The active substance in the vacuum tube diffuses into the mass spectrometer, and the mass spectrometer is used to measure the type and component concentration of the active product.
进一步的,所述等离子体中的活性产物包括臭氧、氧原子、氮原子、一氧化氮、二氧化氮、三氧化二氮或一氧化二氮。Further, the active products in the plasma include ozone, oxygen atoms, nitrogen atoms, nitric oxide, nitrogen dioxide, nitrous oxide or nitrous oxide.
有益效果beneficial effect
本发明实现大气压介质阻挡放电空气流的流量可控,适于研究空气流量对等离子体活性产物的影响。本发明还实现了介质阻挡放电结构和高压放电电源参数可控,适于研究放电结构和高压放电电源参数对等离子体活性产物的影响。本发明能够实时在线同步测量大气压条件下介质阻挡放电等离子体中的多种活性产物浓度。本发明解决了质谱仪难以应用于大气压条件下等离子体活性产物的测量问题,极大拓展了质谱法的应用范围。The invention realizes the controllable flow rate of the atmospheric pressure dielectric barrier discharge air flow, and is suitable for studying the influence of the air flow rate on the plasma active product. The invention also realizes that the dielectric barrier discharge structure and the parameters of the high-voltage discharge power supply are controllable, and is suitable for studying the influence of the discharge structure and the parameters of the high-voltage discharge power supply on the plasma active products. The invention can simultaneously measure the concentration of various active products in the dielectric barrier discharge plasma under atmospheric pressure condition in real time and online. The invention solves the problem that the mass spectrometer is difficult to be applied to the measurement of plasma active products under atmospheric pressure, and greatly expands the application range of the mass spectrometry.
附图说明Description of drawings
图1为本发明中的大气压空气泵和流量计的连接示意图。FIG. 1 is a schematic diagram of the connection between the atmospheric pressure air pump and the flow meter in the present invention.
图2为本发明中的介质阻挡放电装置的组成原理图。FIG. 2 is a schematic diagram of the composition of the dielectric barrier discharge device in the present invention.
图3为本发明中的真空调压装置组成原理图。FIG. 3 is a schematic diagram of the composition of the vacuum compressor in the present invention.
图4为本发明中的质谱仪测量装置的连接原理图。FIG. 4 is a schematic diagram of the connection of the mass spectrometer measuring device in the present invention.
图5为实施例1的大气压介质阻挡放电等离子体活性产物测量装置的组成原理图。FIG. 5 is a schematic diagram of the composition of the device for measuring the active products of the atmospheric pressure dielectric barrier discharge plasma in Example 1. FIG.
图6为实施例2大气压介质阻挡放电等离子体活性产物测量装置的组成原理图。FIG. 6 is a schematic diagram of the composition of the device for measuring the plasma active products of atmospheric pressure dielectric barrier discharge in Example 2. FIG.
附图标记:大气压空气泵1;空气管路2;流量计3;进气孔4;放电腔体5;出气孔6;高压放电电源7;高压电缆8;高压电极9;上堵头10;阻挡介质11;低压电极12;接地13;下堵头14;真空抽气管15;针阀16;排气管17;真空计18;三通19;真空管20;真空泵21;质谱仪22。Reference signs: atmospheric
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式进行详细的说明。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
本发明提供了一种可以在大气压条件下测量介质阻挡放电等离子体活性产物的新型装置。大气压条件下的介质阻挡放电等离子体用途广泛、备受关注,放电产生等离子体中的活性产物的测量方法是普遍关注的关键问题之一。The present invention provides a novel device capable of measuring dielectric barrier discharge plasma active products under atmospheric pressure. The dielectric barrier discharge plasma under atmospheric pressure is widely used and has attracted much attention. The measurement method of the active products in the plasma generated by the discharge is one of the key issues of general concern.
本发明利用大气压空气泵将空气注入介质阻挡放电腔体中,空气在放电腔体中被电离产生等离子体,而后等离子体中的活性产物随空气流出腔体,注入真空管路,最后利用针阀和真空泵调节真空管路气压,利用连接在真空管路上的质谱仪完成测量。该装置解决了大气压条件下介质阻挡放电等离子体活性产物的实时在线测量问题,能够高精度测量等离子体中的臭氧和氮氧化物等活性产物的浓度。In the invention, the atmospheric pressure air pump is used to inject air into the dielectric barrier discharge cavity, the air is ionized in the discharge cavity to generate plasma, and then the active products in the plasma flow out of the cavity with the air and are injected into the vacuum pipeline, and finally the needle valve and the The vacuum pump adjusts the air pressure of the vacuum line, and the mass spectrometer connected to the vacuum line is used to complete the measurement. The device solves the problem of real-time online measurement of active products of dielectric barrier discharge plasma under atmospheric pressure, and can measure the concentration of active products such as ozone and nitrogen oxides in plasma with high precision.
实施例1Example 1
参见图1至图5,本实施例的大气压条件下介质阻挡放电等离子体活性产物测量装置,综合运用了大气压空气泵1、流量计3、介质阻挡放电装置、高压放电电源7、针阀16、真空计18、真空泵21和质谱仪22。Referring to FIGS. 1 to 5 , the device for measuring the active product of dielectric barrier discharge plasma under atmospheric pressure in this embodiment comprehensively uses an atmospheric
所述大气压空气泵1通过空气管路2连接所述流量计3的入口,所述流量计3的出口通过空气管路2连接所述介质阻挡放电装置的进气口。The atmospheric
所述介质阻挡放电装置的高压电极、阻挡介质和低压电极之间的结构可以是同轴圆柱形结构、平板形结构、针板形结构、或线筒形结构,通过改变高压电极、阻挡介质、低压电极、气隙等的结构和尺寸,可以得到用于不同测量用途的介质阻挡放电装置,不同的介质阻挡放电装置在本发明大气压条件下介质阻挡放电等离子体活性产物测量装置中可以替换。同轴圆柱形结构中,高压电极为棒状置于中央,阻挡介质环绕在高压电极周围,环绕阻挡介质设置圆柱形板作为低压电极,阻挡介质与高压电极和低压电极二者之一留有空隙或者都留有空隙,阻挡介质与高压电极和/或低压电极之间的空隙形成放电腔体。平板形结构中,高压电极和低压电极为平板并且对置放置,阻挡介质置于高压电极和低压电极之间,阻挡介质与高压电极和/或低压电极之间的空隙形成放电腔体。针板形结构中,包括一个或多个针形的高压电极和平板形的低压电极,或者一个或多个针形的低压电极和平板形的高压电极,阻挡介质与高压电极和/或低压电极之间的空隙形成放电腔体。线筒形结构中,高压电极为棒状置于中央,阻挡介质环绕在高压电极周围,环绕阻挡介质设置低压电极的支撑体,例如玻璃支撑体,由导线缠绕低压电极的支撑体形成低压电极,阻挡介质与高压电极和/或低压电极之间的空隙形成放电腔体。The structure between the high-voltage electrode, the blocking medium and the low-voltage electrode of the dielectric barrier discharge device can be a coaxial cylindrical structure, a flat-plate-shaped structure, a needle-plate-shaped structure, or a wire-barrel structure. By changing the high-voltage electrode, blocking medium, The structure and size of low-voltage electrodes, air gaps, etc., can obtain dielectric barrier discharge devices for different measurement purposes, and different dielectric barrier discharge devices can be replaced in the dielectric barrier discharge plasma active product measurement device under atmospheric pressure conditions of the present invention. In the coaxial cylindrical structure, the high-voltage electrode is placed in the center in the shape of a rod, the blocking medium surrounds the high-voltage electrode, and a cylindrical plate is arranged around the blocking medium as the low-voltage electrode, and the blocking medium and either the high-voltage electrode or the low-voltage electrode leave a gap or All have gaps, and the gaps between the blocking medium and the high-voltage electrode and/or the low-voltage electrode form a discharge cavity. In the flat-plate structure, the high-voltage electrode and the low-voltage electrode are flat plates and are placed opposite to each other, the blocking medium is placed between the high-voltage electrode and the low-voltage electrode, and the gap between the blocking medium and the high-voltage electrode and/or the low-voltage electrode forms a discharge cavity. In the needle-plate-shaped structure, it includes one or more needle-shaped high-voltage electrodes and plate-shaped low-voltage electrodes, or one or more needle-shaped low-voltage electrodes and plate-shaped high-voltage electrodes, the blocking medium and the high-voltage electrode and/or the low-voltage electrode The space between them forms the discharge cavity. In the bobbin-shaped structure, the high-voltage electrode is placed in the center in the shape of a rod, the blocking medium surrounds the high-voltage electrode, and a support for the low-voltage electrode, such as a glass support, is arranged around the blocking medium. The gap between the medium and the high voltage electrode and/or the low voltage electrode forms the discharge cavity.
本实施例中所述介质阻挡放电装置采用同轴圆柱形结构,包括上堵头10、下堵头14、高压电极9、阻挡介质11、低压电极12,所述高压电极9设置在所述介质阻挡放电装置的中央,外面包裹由绝缘物质制成的所述阻挡介质11,其上端穿过所述上堵头10连接所述高压放电电源7;所述低压电极12由金属制成,环绕在所述阻挡介质11周围并且接地,所述阻挡介质和所述低压电极之间留有空隙作为放电腔体5;所述上堵头设置有所述介质阻挡放电装置的进气口,所述下堵头14设置有所述介质阻挡放电装置的出气口,所述介质阻挡放电装置的进气口和出气口与所述放电腔体5连通;所述上堵头10和所述下堵头14封闭放电腔体5。In this embodiment, the dielectric barrier discharge device adopts a coaxial cylindrical structure, including an
所述真空泵21、真空计18和质谱仪22的入口分别连接真空管路;所述真空管路通过所述针阀16和三通19连接所述介质阻挡放电装置的出气口,该三通的第一端口通过真空抽气管15连接所述介质阻挡放电装置的出气口,第二端口连接排气管17,第三端口连接所述针阀16的一端,所述针阀16的另一端连接真空管路。所述真空管路包括两个三通19和用于连接的真空管20;其中一个三通19的第一端口通过真空管20连接所述真空计,第二端口通过真空管20连接所述针阀16,第三端口通过真空管20连接第二个三通09的第一端口;第二个三通19的第二端口通过真空管20连接真空泵21,第二个三通的第三端口通过真空管20连接质谱仪22。The inlets of the
采用本发明的装置实现大气压条件下介质阻挡放电等离子体活性产物测量的实施过程主要包括空气注入、介质阻挡放电产生等离子体、真空调压、质谱测量。The implementation process of using the device of the invention to realize the measurement of the active product of the dielectric barrier discharge plasma under atmospheric pressure mainly includes air injection, plasma generation by the dielectric barrier discharge, vacuum pressure, and mass spectrometry measurement.
空气注入过程:利用大气压空气泵1产生大气压空气流,将大气压空气流通过空气管路2经流量计3流出,通过进气孔4注入介质阻挡放电装置,利用所述流量计监测和控制空气流量。Air injection process: use the atmospheric
介质阻挡放电产生等离子体过程:将所述大气压空气流注入所述介质阻挡放电装置的放电腔体5中,高压放电电源7为所述介质阻挡放电装置提供能量,在放电腔体5中进行高压放电电离空气产生等离子体,等离子体中的活性产物随空气流出放电腔体5,注入真空管路。The process of generating plasma by dielectric barrier discharge: the atmospheric pressure air flow is injected into the
真空调压过程:真空抽气管15的作用是将等离子体中的活性物质引入真空管20,其一端与介质阻挡放电装置的出气孔6相连,另一端与第一三通19相连,第一三通19上连接排气管17,用于排出多余气体,第一三通19的另一端连接针阀16,用于控制等离子体活性物质进入真空管20的总量,针阀16连接第二三通19,第二三通19一端连接真空计18,另一端连接真空管20,真空计18的作用是实时显示真空管20内的气压,为调节针阀16提供数据,真空泵21通过第三三通19与真空管20相连接,真空泵21的作用是抽真空,配合针阀16和真空计18,调节真空管20中的气压,使真空管20中的气压比大气压低6个数量级以上,处于质谱仪22工作的气压范围内。Vacuum compression process: the function of the
质谱测量过程:真空管内的活性物质扩散进入质谱仪22,利用质谱仪22完成活性产物的种类和组分浓度的测量。本发明能够测量的等离子体活性产物包括但不限于:臭氧、氧原子、氮原子、一氧化氮、二氧化氮、三氧化二氮、一氧化二氮。本发明实现了大气压条件下介质阻挡放电等离子体多种活性产物的实时在线同步测量。Mass spectrometry measurement process: the active substance in the vacuum tube diffuses into the
实施例2Example 2
参见图2、图3、图4和图6,本实施例的大气压条件下介质阻挡放电等离子体活性产物测量装置,除特别说明外,均与实施1相同。Referring to FIG. 2, FIG. 3, FIG. 4 and FIG. 6, the device for measuring the active product of dielectric barrier discharge plasma under atmospheric pressure conditions in this embodiment is the same as that in Example 1 unless otherwise specified.
本实施例的大气压条件下介质阻挡放电等离子体活性产物测量装置,大气压空气泵和流量计,空气通过所述介质阻挡放电装置的进气口自由扩散进入放电腔体。In the device for measuring active products of dielectric barrier discharge plasma under atmospheric pressure, the atmospheric pressure air pump and the flowmeter of this embodiment allow air to freely diffuse into the discharge cavity through the air inlet of the dielectric barrier discharge device.
采用本发明的装置实现大气压条件下介质阻挡放电等离子体活性产物测量的实施过程主要包括空气注入、介质阻挡放电产生等离子体、真空调压、质谱测量。The implementation process of using the device of the invention to realize the measurement of the active product of the dielectric barrier discharge plasma under atmospheric pressure mainly includes air injection, plasma generation by the dielectric barrier discharge, vacuum pressure, and mass spectrometry measurement.
空气流入过程:大气压空气通过进气孔4注入介质阻挡放电装置;Air inflow process: atmospheric pressure air is injected into the dielectric barrier discharge device through the
介质阻挡放电产生等离子体过程:将所述大气压空气自由扩散进入所述介质阻挡放电装置的放电腔体5中,高压放电电源7为所述介质阻挡放电装置提供能量,在放电腔体5中进行高压放电电离空气产生等离子体,等离子体中的活性产物随空气流出放电腔体5,注入真空管路。The process of generating plasma by dielectric barrier discharge: the atmospheric pressure air is freely diffused into the
真空调压过程:真空抽气管15的作用是将等离子体中的活性物质引入真空管20,其一端与介质阻挡放电装置的出气孔6相连,另一端与第一三通19相连,第一三通19上连接排气管17,用于排出多余气体,第一三通19的另一端连接针阀16,用于控制等离子体活性物质进入真空管20的总量,针阀16连接第二三通19,第二三通19一端连接真空计18,另一端连接真空管20,真空计18的作用是实时显示真空管20内的气压,为调节针阀16提供数据,真空泵21通过第三三通19与真空管20相连接,真空泵21的作用是抽真空,配合针阀16和真空计18,调节真空管20中的气压,使真空管20中的气压比大气压低6个数量级以上,处于质谱仪22工作的气压范围内。Vacuum compression process: the function of the
质谱测量过程:真空管内的活性物质扩散进入质谱仪22,利用质谱仪22完成活性产物的种类和组分浓度的测量。本发明能够测量的等离子体活性产物包括但不限于:臭氧、氧原子、氮原子、一氧化氮、二氧化氮、三氧化二氮、一氧化二氮。本发明实现了大气压条件下介质阻挡放电等离子体多种活性产物的实时在线同步测量。Mass spectrometry measurement process: the active substance in the vacuum tube diffuses into the
以上仅为发明的优选实施例而已,并不用以限制本发明,凡在本发明的思想原则内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the principles of the present invention should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111665970.XA CN114286486A (en) | 2021-12-31 | 2021-12-31 | Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111665970.XA CN114286486A (en) | 2021-12-31 | 2021-12-31 | Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114286486A true CN114286486A (en) | 2022-04-05 |
Family
ID=80879305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111665970.XA Pending CN114286486A (en) | 2021-12-31 | 2021-12-31 | Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114286486A (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048074A1 (en) * | 2000-06-06 | 2001-12-06 | Anelva Corporation | Method and apparatus for ion attachment mass spectrometry |
CN101330794A (en) * | 2008-05-09 | 2008-12-24 | 西安交通大学 | A Jet Device for Generating Low Temperature Plasma by Atmospheric Pressure Dielectric Barrier Discharge |
KR20110096328A (en) * | 2010-02-22 | 2011-08-30 | 서울대학교산학협력단 | Injection-type atmospheric low temperature plasma generator for surface treatment with electrode cooling device |
US20110253889A1 (en) * | 2010-04-19 | 2011-10-20 | Hitachi High-Technologies Corporation | Analyzer, ionization apparatus and analyzing method |
CN102725818A (en) * | 2010-01-25 | 2012-10-10 | 株式会社日立高新技术 | Mass spectrometry device |
CN102792416A (en) * | 2010-02-12 | 2012-11-21 | 国立大学法人山梨大学 | Ionization device and ionization analysis device |
US20130032711A1 (en) * | 2011-08-04 | 2013-02-07 | Hitachi High-Technologies Corporation | Mass Spectrometer |
CN103177928A (en) * | 2011-12-26 | 2013-06-26 | 株式会社日立高新技术 | Mass spectrometer and mass spectrometry |
CN105101603A (en) * | 2015-08-04 | 2015-11-25 | 昆山禾信质谱技术有限公司 | A dielectric barrier discharge plasma jet device |
CN107750086A (en) * | 2017-09-28 | 2018-03-02 | 华南理工大学 | A kind of implementation method of gear-like aura spot figure electric discharge |
CN108701578A (en) * | 2015-12-17 | 2018-10-23 | 普拉斯米昂有限责任公司 | The purposes of ionization device, the method for device and the gaseous material for ionization and the device and method for analyzing the gaseous material being ionized |
CN109243964A (en) * | 2018-10-18 | 2019-01-18 | 株式会社岛津制作所 | Dielectric barrier discharge ion source, analysis instrument and ionization method |
CN109831867A (en) * | 2019-01-31 | 2019-05-31 | 中国农业科学院农业质量标准与检测技术研究所 | A kind of dielectric barrier discharge device and its mercury analysis method |
-
2021
- 2021-12-31 CN CN202111665970.XA patent/CN114286486A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048074A1 (en) * | 2000-06-06 | 2001-12-06 | Anelva Corporation | Method and apparatus for ion attachment mass spectrometry |
CN101330794A (en) * | 2008-05-09 | 2008-12-24 | 西安交通大学 | A Jet Device for Generating Low Temperature Plasma by Atmospheric Pressure Dielectric Barrier Discharge |
CN102725818A (en) * | 2010-01-25 | 2012-10-10 | 株式会社日立高新技术 | Mass spectrometry device |
CN102792416A (en) * | 2010-02-12 | 2012-11-21 | 国立大学法人山梨大学 | Ionization device and ionization analysis device |
KR20110096328A (en) * | 2010-02-22 | 2011-08-30 | 서울대학교산학협력단 | Injection-type atmospheric low temperature plasma generator for surface treatment with electrode cooling device |
US20110253889A1 (en) * | 2010-04-19 | 2011-10-20 | Hitachi High-Technologies Corporation | Analyzer, ionization apparatus and analyzing method |
US20130032711A1 (en) * | 2011-08-04 | 2013-02-07 | Hitachi High-Technologies Corporation | Mass Spectrometer |
CN103177928A (en) * | 2011-12-26 | 2013-06-26 | 株式会社日立高新技术 | Mass spectrometer and mass spectrometry |
CN105101603A (en) * | 2015-08-04 | 2015-11-25 | 昆山禾信质谱技术有限公司 | A dielectric barrier discharge plasma jet device |
CN108701578A (en) * | 2015-12-17 | 2018-10-23 | 普拉斯米昂有限责任公司 | The purposes of ionization device, the method for device and the gaseous material for ionization and the device and method for analyzing the gaseous material being ionized |
CN107750086A (en) * | 2017-09-28 | 2018-03-02 | 华南理工大学 | A kind of implementation method of gear-like aura spot figure electric discharge |
CN109243964A (en) * | 2018-10-18 | 2019-01-18 | 株式会社岛津制作所 | Dielectric barrier discharge ion source, analysis instrument and ionization method |
CN109831867A (en) * | 2019-01-31 | 2019-05-31 | 中国农业科学院农业质量标准与检测技术研究所 | A kind of dielectric barrier discharge device and its mercury analysis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103245655B (en) | A kind of experimental provision obtaining Large-Area-Uniform discharge plasma | |
CN102129950B (en) | Microwave Plasma Atmospheric Pressure Desorption Ionization Source and Its Application in Mass Spectrometry | |
CN106601584B (en) | Atmospheric pressure magnetic enhancement and magnetic confinement direct current glow discharge ion source | |
CN102103970B (en) | Microwave plasma generator and proton transfer mass spectrometer | |
CN105698850A (en) | Experimental system and experimental method for studying dielectric barrier discharge treatment of SF6 gas | |
CN104241077B (en) | Normal pressure micro-glow discharge maldi mass spectrometer ion gun of magnetically confined and mass spectrometer | |
CN105806689B (en) | A kind of atomic fluorescence method surveys the device and method of arsenic | |
CN110376272A (en) | The on-line measurement device and its On-line Measuring Method of partial pressure | |
CN103545165B (en) | A kind of mass ions method based on cold-plasma jet and ion source device | |
CN103776818A (en) | Glow discharge-based plasma generator and spectrum detection system formed by same | |
CN206432236U (en) | Atmospheric pressure magnetic enhancement and magnetic confinement direct current glow discharge ion source | |
CN203658269U (en) | Plasma exciting spectrum detection system based on glow discharge | |
CN109884002A (en) | A device and method for measuring atmospheric OH and HO2 radicals by chemical ionization mass spectrometry | |
Zhu et al. | Development and application of a miniature mass spectrometer with continuous sub-atmospheric pressure interface and integrated ionization source | |
CN114286486A (en) | Atmospheric pressure dielectric barrier discharge plasma active product measurement device and method | |
CN205826395U (en) | A kind of dielectric barrier discharge preenrichment device surveying arsenic for atomic fluorescence method | |
CN210293526U (en) | On-line measuring device for gas partial pressure | |
CN109559971B (en) | Ionization device and application thereof | |
CN108428613B (en) | Open ion source and method | |
CN107104031B (en) | Excitation state methylene bromide protonates reinforcing agent | |
CN109860015A (en) | A composite ionization source device | |
Shi et al. | Pulsed capillary introduction applied to a miniature mass spectrometer for efficient liquid analysis | |
CN109860016B (en) | Ionization source device | |
CN106093179B (en) | A kind of real-time Mass Spectrometer Method device and method for the constituent analysis of gas anion and its with compound interaction | |
CN110482505B (en) | Method for preparing hydroxylamine by using nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220405 |
|
RJ01 | Rejection of invention patent application after publication |