CN114267571A - 半导体制造装置 - Google Patents

半导体制造装置 Download PDF

Info

Publication number
CN114267571A
CN114267571A CN202110776703.3A CN202110776703A CN114267571A CN 114267571 A CN114267571 A CN 114267571A CN 202110776703 A CN202110776703 A CN 202110776703A CN 114267571 A CN114267571 A CN 114267571A
Authority
CN
China
Prior art keywords
gas
coil
manufacturing apparatus
semiconductor manufacturing
tubular portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110776703.3A
Other languages
English (en)
Other versions
CN114267571B (zh
Inventor
藤井干
西田大介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Publication of CN114267571A publication Critical patent/CN114267571A/zh
Application granted granted Critical
Publication of CN114267571B publication Critical patent/CN114267571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3387Nitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate

Abstract

实施方式提供一种能够使自由基生成的控制性提高的半导体制造装置。实施方式所涉及的半导体制造装置具备容纳半导体基板的腔室和设置于腔室的侧面的多个线圈。腔室具有:在半导体基板的上方被作为多个线圈之一的第1线圈包围的第1空间区域、与第1空间区域连通的第1气体导入口、被多个线圈中的与第1线圈不同的第2线圈包围的第2空间区域和与第2空间区域连通的第2气体导入口。

Description

半导体制造装置
本申请享受以日本专利申请2020-155722号(申请日:2020年9月16日)为基础申请的优先权。本申请通过参照该基础申请而包含基础申请的全部内容。
技术领域
本发明的实施方式涉及半导体制造装置。
背景技术
作为半导体制造装置之一有等离子体处理装置。在该等离子体处理装置中,在通过包围腔室的线圈导入气体时,在腔室内产生等离子体。通过该等离子体,生成自由基。通过该自由基,对形成于半导体基板的膜进行例如氧化或氮化这样的处理。
发明内容
上述自由基的生成量有时受到距线圈的距离的影响。另外,在将多种气体同时导入腔室的情况下,电子的离解特性根据气体种类而不同,所以难以按每种气体控制自由基的生成。
本发明的实施方式提供一种能够使自由基生成的控制性提高的半导体制造装置。
实施方式所涉及的半导体制造装置具备容纳半导体基板的腔室和设置于腔室的侧面的多个线圈。腔室具有:在半导体基板的上方被作为多个线圈之一的第1线圈包围的第1空间区域、与第1空间区域连通的第1气体导入口、被多个线圈中的与第1线圈不同的第2线圈包围的第2空间区域、和与第2空间区域连通的第2气体导入口。
附图说明
图1是概略表示第1实施方式所涉及的半导体制造装置的构成的示意图。
图2是表示比较例所涉及的半导体制造装置的概略构造的剖视图。
图3是表示第1变形例所涉及的半导体制造装置的要部的构造的剖视图。
图4是表示第2变形例所涉及的半导体制造装置的概略构造的剖视图。
图5是表示第2实施方式所涉及的半导体制造装置的概略构造的剖视图。
图6是表示第3变形例所涉及的半导体制造装置的概略构造的剖视图。
附图标记说明
1、1b、2:半导体制造装置,20:第1石英管,21:第1空间区域,22:第1气体导入口,30:第2石英管,30a:第1管状部,30b:第2管状部,31:第2空间区域,32:第2气体导入口,40:第1线圈,50:第2线圈,70:磁性体,101:半导体基板,201:第1气体,202:第2气体。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。本发明并不限定于本实施方式。
(第1实施方式)
图1是表示第1实施方式所涉及的半导体制造装置的概略构造的剖视图。图1所示的半导体制造装置1具备载置台10、第1石英管20、第2石英管30、第1线圈40、第2线圈50和喷淋板(Spray plate)60。本实施方式所涉及的半导体制造装置1为对形成于半导体基板101的上表面的膜102进行氧化或氮化等处理的等离子体处理装置。
在载置台10,载置有半导体基板101。形成于半导体基板101的上表面的膜102为例如包含钨(W)的金属膜。
第1石英管20及第2石英管30构成腔室,为被配置成同心状的多重管构造。此外,该多重管构造也包括3重以上的被配置成同心的石英管。
首先对第1石英管20进行说明。第1石英管20容纳半导体基板101,具有第1空间区域21及第1气体导入口22。第1空间区域21是在半导体基板101的上方被第1线圈40包围的第1石英管20的内部空间。
第1气体导入口22形成于第1石英管20的上表面,与第1空间区域21连通。向第1气体导入口22导入第1气体201。第1气体201例如为氧气(O2)、氮气(N2)、或氢气(H2)或将各气体混合而成的气体。
接下来,对第2石英管30进行说明。第2石英管30在第1石英管20内配置于半导体基板101(膜102)的中央部的上方,具有第1管状部30a及第2管状部30b。第1管状部30a具有第2空间区域31及第2气体导入口32。第2空间区域31为在第1空间区域21的上方被第2线圈50包围的第1管状部30a的内部空间。
第2气体导入口32形成于第1管状部30a的上表面,与第2空间区域31连通。向第2气体导入口32,与第1气体201同时地导入第2气体202。第2气体202为与第1气体201相同种类的气体。
第2管状部30b从第1管状部30a的底部朝向第1空间区域21突出。通过第2管状部30b,将第2气体202的流路与第1气体201的流路(第1空间区域21)区划开。因此,第1气体201与第2气体202变得难以混合。为了避免第1气体201及第2气体202的混合,第2管状部30b优选延伸到与第1线圈40的下端部相同的位置。换而言之,第2管状部30b的底部与第1线圈40的下端部优选距离半导体基板101的高度相同。
在本实施方式的第2石英管30中,第2管状部30b的开口直径与第1管状部30a的开口直径相等,所以在第1管状部30a中生成的自由基的流动不会被第2管状部30b阻碍。另外,如果第2管状部30b的厚度t2大,则第1线圈40进行的自由基生成会受到阻碍。为了抑制对该自由基生成的阻碍,第2管状部30b的厚度t2优选比第1管状部30a的厚度t1薄。
第1线圈40设置于第1石英管20的侧面。在电流在第1线圈40中流动并使第1气体201从第1气体导入口22导入时,在第1空间区域21产生等离子体。通过该等离子体,生成第1气体201所含的分子的自由基。通过该自由基,膜102的外周部被氧化或氮化。此外,在图1中,第1线圈40设置于第1石英管20的侧面的外侧,但也可以设置于侧面的内侧。
第2线圈50设置于第1管状部30a的侧面。在电流在第2线圈50中流动时,在第2空间区域31产生等离子体。通过该等离子体,生成第2气体202所含的分子的自由基。通过该自由基,膜102的中央部被氧化或氮化。在本实施方式中,以使得在第2空间区域31中生成的自由基的密度与在第1空间区域21中生成的自由基的密度相等的方式,设定第2线圈50。例如,关于第2线圈50,线圈长、匝数及电流设定为与第1线圈40相同的值。
喷淋板60设置于第1石英管20及第2石英管30的上表面。喷淋板60将第1气体201向第1气体导入口22引导,并且将第2气体202向第2气体导入口32引导。
以下,参照图2,对比较例所涉及的半导体制造装置进行说明。图2是表示比较例所涉及的半导体制造装置的概略构造的剖视图。对于与图1所示的半导体制造装置1同样的构成要素,赋予相同附图标记,将详细的说明省略。
在图2所示的半导体制造装置100中,第1线圈40设置于石英腔室120的侧面,而第2石英管30及第2线圈50未设置于石英腔室120内。因此,第1空间区域21中的自由基密度容易相应于与第1线圈40的距离而变得不均匀。具体而言,在远离第1线圈40的第1空间区域21的中央,自由基密度变低。
因此,例如在将氢气及氧气作为第1气体201而从第1气体导入口22导入到第1空间区域21的情况下,有时作为还原剂的氢自由基失去活性(失活)。在该情况下,可能在膜102的中央部产生钨的异常氧化。
另一方面,在本实施方式中,在第1石英管20内,设有第2石英管30及第2线圈50。另外,在从第1气体导入口22向第1石英管20导入第1气体201的同时,从第2气体导入口32向第2石英管30导入第2气体202。即,本实施方式所涉及的半导体制造装置1中,在腔室的内部区域与外部区域分别从不同的气体导入口供给气体,通过独立的线圈生成自由基。因此,能够在内部区域与外部区域控制自由基量、自由基比率。
因此,根据本实施方式,能够使自由基生成的控制性提高。
(第1变形例)
图3是表示第1变形例所涉及的半导体制造装置的要部的构造的剖视图。对与上述的第1实施方式所涉及的半导体制造装置1同样的构成要素,赋予相同附图标记,将详细的说明省略。
在本变形例所涉及的半导体制造装置中,如图3所示,磁性体70在第2石英管30的第1管状部30a内包围第2线圈50。第2线圈50的磁性有时给第1空间区域21中的等离子体的产生带来影响。在该情况下,设想会妨碍第1空间区域21中的自由基生成的控制。
因此,在本变形例中,磁性体70通过包围第2线圈50整体,而作为隔绝第2线圈50的磁力的屏蔽件发挥功能。通过该功能,能够使第1空间区域21中的自由基生成的控制性进一步提高。
(第2变形例)
图4是表示第2变形例所涉及的半导体制造装置的概略构造的剖视图。对于与上述的第1实施方式所涉及的半导体制造装置1同样的构成要素,赋予相同附图标记,将详细的说明省略。
在本变形例所涉及的半导体制造装置1b中,如图4所示,第2石英管30的构造与第1实施方式不同。在第1实施方式中,第1管状部30a配置于第2管状部30b的上侧。
另一方面,在本变形例中,第1管状部30a及第2管状部30b的上下位置关系与第1实施方式相反。即,第1管状部30a配置于第2管状部30b的下侧。
另外,在第1实施方式中,第1线圈40配置于第2线圈50的下侧,与此相对,在本变形例中,两线圈的位置关系与第1实施方式相反。即,第1线圈40配置于第2线圈50的上侧。
在上述那样的配置构成中,也能够向第1空间区域21及第2空间区域31分别独立地导入气体,通过各线圈控制自由基的生成。
因此,在本变形例中,也能够使自由基生成的控制性提高。
(第2实施方式)
图5是表示第2实施方式所涉及的半导体制造装置的概略构造的剖视图。对于与上述的第1实施方式所涉及的半导体制造装置1同样的构成要素,赋予相同附图标记,将详细的说明省略。
在本实施方式所涉及的半导体制造装置2中,第1线圈40包围石英腔室121的侧面。另外,第2线圈50在第1线圈40的下方包围石英腔室121的侧面。进而,第2气体导入口32设置于第1线圈40与第2线圈50之间。
向第2气体导入口32,导入比第1气体201容易自由基化的第2气体202。例如,在第1气体201为氦气(He)的情况下,第2气体202为氧气。
在本实施方式中,为了在第1空间区域21及第2空间区域31中分别调整自由基生成量,第1线圈40的功率比第2线圈50的功率大。具体而言,在第1线圈40中流动的电流比在第2线圈50中流动的电流大。或者第1线圈40的线圈长比第2线圈50的线圈长要长。或者第1线圈40的线圈直径比第2线圈50的线圈直径大。或者第1线圈40配置于石英腔室121的侧面的内侧,第2线圈50配置于石英腔室121的侧面的外侧。
以下,对本实施方式所涉及的半导体制造装置1与图2所示的比较例所涉及的半导体制造装置100的比较进行说明。
在比较例所涉及的半导体制造装置100中,在向第1线圈40通电了的状态下将氧气与氦气混合而成的第1气体201从第1气体导入口22向石英腔室120导入时,在第1空间区域21生成氧气及氦气各自的自由基。在相同的等离子体条件下,氦气比氧气难自由基化。因此,在氦气与氧气之间产生自由基的生成量差,该生成量差有时影响膜102的氧化处理。
另一方面,在本实施方式中,在将第1气体201从第1气体导入口22向石英腔室121导入的同时,将与第1气体201不同种类的第2气体202从第2气体导入口32向石英腔室121导入。在石英腔室121中,通过调整第1线圈40及第2线圈50的功率,能够分别控制第1气体201的自由基生成量及第2气体202的自由基生成量。
因此,根据本实施方式,在将不同种类的气体同时导入的情况下,也能够使自由基生成的控制性提高。
(第3变形例)
图6是表示第3变形例所涉及的半导体制造装置的概略构造的剖视图。对于与上述的第2实施方式所涉及的半导体制造装置2同样的构成要素,赋予相同附图标记,将详细的说明省略。
在本变形例所涉及的半导体制造装置2中,从第1线圈40的中心到石英腔室121的侧面的距离D1比从第2线圈50的中心到石英腔室121的侧面的距离D2小。到石英腔室121的距离越小,则等离子体强度越高。
因此,在本变形例中,通过将第1线圈40配置在比第2线圈50更接近石英腔室121的位置,而将第1空间区域21的等离子体强度设定得比第2空间区域31的等离子体强度高。由此,与第2实施方式同样,可促进第1气体201的自由基生成。
根据以上说明的本变形,与第2实施方式同样,在同时导入不同种类的气体的情况下,也能够使自由基生成的控制性提高。
虽然说明了本发明的几个实施方式,但这些实施方式只是作为示例而提出的,并非旨在限定发明的范围。这些实施方式能够以其他各种方式进行实施,能够在不脱离发明的宗旨的范围内进行各种省略、替换、变更。这些实施方式及其变形被包括在发明的范围和宗旨中,同样地被包括在权利要求书所记载的发明及其均等的范围内。

Claims (15)

1.一种半导体制造装置,具备:
容纳半导体基板的腔室;和
设置于所述腔室的侧面的多个线圈,
所述腔室具有:在所述半导体基板的上方被作为所述多个线圈之一的第1线圈包围的第1空间区域、与所述第1空间区域连通的第1气体导入口、被所述多个线圈中的与所述第1线圈不同的第2线圈包围的第2空间区域以及与所述第2空间区域连通的第2气体导入口。
2.根据权利要求1所述的半导体制造装置,
所述腔室具有:具有所述第1空间区域及所述第1气体导入口的第1石英管和具有所述第2空间区域及所述第2气体导入口的第2石英管,所述第1石英管及所述第2石英管为配置成同心状的多重管构造。
3.根据权利要求2所述的半导体制造装置,
在所述第2石英管内还具备包围所述第2线圈的磁性体。
4.根据权利要求2所述的半导体制造装置,
所述第2石英管具有:具有所述第2空间区域的第1管状部和从所述第1管状部朝向所述第1空间区域突出的第2管状部,所述第2管状部的厚度比所述第1管状部的厚度薄。
5.根据权利要求1所述的半导体制造装置,
所述第1线圈配置于所述第2线圈的上方,
所述第2气体导入口配置于所述第1线圈与所述第2线圈之间。
6.根据权利要求2所述的半导体制造装置,
所述第2石英管配置于所述半导体基板的中央部的上方。
7.根据权利要求4所述的半导体制造装置,
所述第1管状部的开口直径与所述第2管状部的开口直径相等。
8.根据权利要求4所述的半导体制造装置,
所述第2管状部延伸到与所述第1线圈的下端部相同的位置。
9.根据权利要求1所述的半导体制造装置,
所述第1线圈配置于所述第2线圈的下方。
10.根据权利要求1所述的半导体制造装置,
所述第1线圈配置于所述第2线圈的上方。
11.根据权利要求1所述的半导体制造装置,
向所述第1气体导入口导入第1气体,向所述第2气体导入口与导入所述第1气体同时地导入与所述第1气体相同种类的第2气体。
12.根据权利要求11所述的半导体制造装置,
所述第1气体及所述第2气体为氧气与氢气的混合气体或氮气与氢气的混合气体。
13.根据权利要求5所述的半导体制造装置,
从所述第1线圈的中心到所述腔室的侧面的距离比从所述第2线圈的中心到所述侧面的距离小。
14.根据权利要求1所述的半导体制造装置,
向所述第1气体导入口导入第1气体,向所述第2气体导入口与导入所述第1气体同时地导入与所述第1气体不同种类的第2气体。
15.根据权利要求14所述的半导体制造装置,
所述第1气体为氦气,所述第2气体为氧气。
CN202110776703.3A 2020-09-16 2021-07-09 半导体制造装置 Active CN114267571B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-155722 2020-09-16
JP2020155722A JP2022049494A (ja) 2020-09-16 2020-09-16 半導体製造装置

Publications (2)

Publication Number Publication Date
CN114267571A true CN114267571A (zh) 2022-04-01
CN114267571B CN114267571B (zh) 2024-01-30

Family

ID=80627087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110776703.3A Active CN114267571B (zh) 2020-09-16 2021-07-09 半导体制造装置

Country Status (4)

Country Link
US (1) US20220084799A1 (zh)
JP (1) JP2022049494A (zh)
CN (1) CN114267571B (zh)
TW (1) TWI801915B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284291A (ja) * 1997-04-02 1998-10-23 Hitachi Ltd プラズマ処理装置及び処理方法
US6238528B1 (en) * 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
US20020185226A1 (en) * 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
US20060019039A1 (en) * 2004-07-20 2006-01-26 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
CN201962350U (zh) * 2010-11-09 2011-09-07 中微半导体设备(上海)有限公司 一种原位清洁第iii族元素和第v族元素化合物沉积反应腔的装置
CN104152869A (zh) * 2014-08-22 2014-11-19 中国科学院宁波材料技术与工程研究所 等离子体薄膜沉积装置及沉积方法
KR20160139642A (ko) * 2015-05-28 2016-12-07 인투코어테크놀로지 주식회사 자속 감금부를 가지는 유도 결합 플라즈마 장치
US20190198301A1 (en) * 2017-12-27 2019-06-27 Mattson Technology, Inc. Plasma Processing Apparatus and Methods
CN111188027A (zh) * 2020-02-12 2020-05-22 南京大学 一种化学气相沉积设备和成膜方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689880A (ja) * 1992-09-08 1994-03-29 Tokyo Electron Ltd エッチング装置
US5683548A (en) * 1996-02-22 1997-11-04 Motorola, Inc. Inductively coupled plasma reactor and process
US8617351B2 (en) * 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
US6674241B2 (en) * 2001-07-24 2004-01-06 Tokyo Electron Limited Plasma processing apparatus and method of controlling chemistry
US7183716B2 (en) * 2003-02-04 2007-02-27 Veeco Instruments, Inc. Charged particle source and operation thereof
US7967996B2 (en) * 2007-01-30 2011-06-28 Applied Materials, Inc. Process for wafer backside polymer removal and wafer front side photoresist removal
KR101526507B1 (ko) * 2013-11-15 2015-06-09 피에스케이 주식회사 기판 처리 장치 및 방법
DE102014216195A1 (de) * 2014-08-14 2016-02-18 Robert Bosch Gmbh Vorrichtung zum anisotropen Ätzen eines Substrats und Verfahren zum Betreiben einer Vorrichtung zum anisotropen Ätzen eines Substrats
JP6230573B2 (ja) * 2015-07-06 2017-11-15 株式会社日立国際電気 半導体装置の製造方法、プログラム、基板処理システム及び基板処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284291A (ja) * 1997-04-02 1998-10-23 Hitachi Ltd プラズマ処理装置及び処理方法
US6238528B1 (en) * 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
US20020185226A1 (en) * 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
US20060019039A1 (en) * 2004-07-20 2006-01-26 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
CN201962350U (zh) * 2010-11-09 2011-09-07 中微半导体设备(上海)有限公司 一种原位清洁第iii族元素和第v族元素化合物沉积反应腔的装置
CN104152869A (zh) * 2014-08-22 2014-11-19 中国科学院宁波材料技术与工程研究所 等离子体薄膜沉积装置及沉积方法
KR20160139642A (ko) * 2015-05-28 2016-12-07 인투코어테크놀로지 주식회사 자속 감금부를 가지는 유도 결합 플라즈마 장치
US20190198301A1 (en) * 2017-12-27 2019-06-27 Mattson Technology, Inc. Plasma Processing Apparatus and Methods
CN111188027A (zh) * 2020-02-12 2020-05-22 南京大学 一种化学气相沉积设备和成膜方法

Also Published As

Publication number Publication date
JP2022049494A (ja) 2022-03-29
TWI801915B (zh) 2023-05-11
US20220084799A1 (en) 2022-03-17
CN114267571B (zh) 2024-01-30
TW202213434A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
TW561545B (en) Plasma processing system with dynamic gas distribution control
CN105379428B (zh) 等离子体处理装置和等离子体处理方法
US7887669B2 (en) Vacuum processing apparatus
JP4025636B2 (ja) 誘導結合プラズマ装置
JP5893865B2 (ja) プラズマ処理装置およびマイクロ波導入装置
JP5042661B2 (ja) プラズマ処理装置及びフィルタユニット
US20040219737A1 (en) Method and apparatus for processing a workpiece with a plasma
EP2755453B1 (en) Plasma generator and cvd device
JP2006221852A (ja) 誘導結合型プラズマ発生装置
KR102116474B1 (ko) 기판 처리 장치 및 기판 처리 방법
US8920599B2 (en) High efficiency gas dissociation in inductively coupled plasma reactor with improved uniformity
CN114267571B (zh) 半导体制造装置
KR20180066844A (ko) 기판 처리 장치
KR100645423B1 (ko) 처리장치 및 방법
KR20080066888A (ko) 다중 경로 유도 결합 플라즈마 반응기
KR20230133914A (ko) 성막 장치 및 성막 방법
JP6981460B2 (ja) バッフルユニット、これを含む基板処理装置
US10593783B2 (en) Processing method
WO2023210392A1 (ja) プラズマ処理装置、プラズマ処理方法、およびリモートプラズマ源
KR100804780B1 (ko) 이중 가스 공급 구조를 갖는 플라즈마 처리 챔버
JP2023116233A (ja) プラズマ処理を行う装置、及びプラズマ処理を行う方法
JP2004006654A (ja) 処理装置及び処理方法
CN113544825B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
JP2009088347A (ja) 基板処理装置
KR20210106907A (ko) 안테나 세그먼트 및 유도 결합 플라스마 처리 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant