CN114249325A - 一种制备硅纳米腔的方法 - Google Patents

一种制备硅纳米腔的方法 Download PDF

Info

Publication number
CN114249325A
CN114249325A CN202111580591.0A CN202111580591A CN114249325A CN 114249325 A CN114249325 A CN 114249325A CN 202111580591 A CN202111580591 A CN 202111580591A CN 114249325 A CN114249325 A CN 114249325A
Authority
CN
China
Prior art keywords
polystyrene
array
silicon
silicon wafer
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111580591.0A
Other languages
English (en)
Inventor
张永军
徐震
温嘉红
赵晓宇
张丰艺
张鉴
钟家松
王雅新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202111580591.0A priority Critical patent/CN114249325A/zh
Publication of CN114249325A publication Critical patent/CN114249325A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种制备硅纳米腔的方法,本发明采用自组装方法制备的高度有序的聚苯乙烯小球阵列,放入等离子体清洗机中刻蚀,利用磁控溅射在聚苯乙烯小球阵列表面溅射50~200nm的金属,取下聚苯乙烯小球阵列,将纳米孔阵列放入盛有NaOH溶液的烧杯中刻蚀;本发明与块状结构相比,硅纳米结构在性能上有其优越性,研究显示,硅在紫外光范围内同样具有局域表面等离子激元效应,能达到类似贵金属(金、银)纳米结构的增强效果,在光电器件的制备,表面增强拉曼检测等方面效果显著。本发明制备得到了一种图案化硅纳米结构。该制备方法的创新性在于可以对硅纳米结构的尺寸、间隙等方面进行很方便的控制。进而研究其光电效应。

Description

一种制备硅纳米腔的方法
技术领域
本发明涉及纳米材料制备技术领域,尤其是涉及一种简易制备硅纳米结构的方法。
背景技术
与块状结构相比,硅纳米结构的性能有所提高。然而,约束和加载条件不足以加工和制造高性能的设备。研究发现,贵金属,如金、银等是可见光和近红外光谱中使用最广泛的等离子体材料。同时也有研究表明,铝是一种广泛研究的材料,支持紫外线中的等离子体激元,其中铝纳米结构的光学模式可以通过改变几何参数或通过氧化的材料成分来控制。相比之下,硅是半导体工业中使用最广泛的材料。有趣的是,它也属于在紫外光谱范围内表现出强烈带间跃迁的p-块元素组,同样也支持紫外线中的表面等离子激元。硅纳米结构在紫外范围内具有潜在的应用,例如用于光谱过滤的纳米结构器件、等离子体增强硅光电探测器、分子手性询问和催化
发明内容
本发明针对现有技术的不足,提出了一种简易制备硅纳米结构的方法,工艺步骤简单,可操作性强。
为了实现上述目的,本发明采用以下技术方案:一种简易制备硅纳米结构的方法,包括以下步骤:
1)采用自组装方法制备的高度有序的聚苯乙烯小球阵列。
1a)清洗硅片;
1b)制备六方密排的聚苯乙烯小球阵列;
将直径500nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散,用移液枪将聚苯乙烯小球分散液滴在硅片上,使分散液均匀分布在硅片上,将硅片倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列,最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用。
2)将高度有序的聚苯乙烯小球阵列放入等离子体清洗机中刻蚀,蚀刻气体为体积比为O2:Ar=4:1的混合气体,经过刻蚀聚苯乙烯小球的直径由500nm减小到350nm。
3)利用磁控溅射在其表面溅射50~200nm的金属、合金、半导体或金属氧化物;
4)将溅射完成的聚苯乙烯小球阵列取下来,在原衬底上得到六角密排结构的纳米孔结构。
5)将纳米孔阵列放入盛有NaOH溶液的烧杯中,加热至50~100℃,刻蚀时间为0.5~5min,得到硅纳米结构。
作为优选,清洗硅片,具体为:将硅片并放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中。将烧杯放在烤焦台上加热至沸腾,并保持5~10min,冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
作为优选,步骤3)溅射的材料为Au,在溅射功率为25W,真空度为2×10-4Pa的高真空条件下,通入氩气流量为20sccm,垂直于经过刻蚀聚苯乙烯小球阵列进行溅射,溅射时间3min,溅射厚度为100nm。
作为优选,步骤4)将溅射完成的聚苯乙烯小球阵列取下来的方法为利用胶带粘贴下来。
本发明的有益效果:与块状结构相比,硅纳米结构在性能上有其优越性,研究显示,硅在紫外光范围内同样具有局域表面等离子激元效应,能达到类似贵金属(金、银)纳米结构的增强效果,在光电器件的制备,表面增强拉曼检测等方面效果显著。
本发明设计并制备得到了一种图案化硅纳米结构。该制备方法的创新性在于可以对硅纳米结构的尺寸、间隙等方面进行很方便的控制。进而研究其光电效应。
附图说明
图1结构制备流程图;
图2金纳米孔阵列;
图3金纳米孔阵列在NaOH溶液中刻蚀温度60℃,刻蚀时间为2.5min;
图4金纳米孔阵列在NaOH溶液中刻蚀温度80℃,刻蚀时间为2.5min;
图5金纳米孔阵列在NaOH溶液中刻蚀温度80℃,刻蚀时间为1.5min。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述。
实施例1
如图1所示:
1)采用自组装方法制备的高度有序的聚苯乙烯小球阵列。
1a)清洗硅片。将硅片并放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中。将烧杯放在烤焦台上加热至沸腾,并保持5min,冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
1b)制备六方密排的聚苯乙烯小球阵列。将直径500nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散,用移液枪将聚苯乙烯小球分散液滴在大块的硅片,使分散液均匀分布在硅片上,将大硅片缓慢倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列,最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用。
2)将高度有序的聚苯乙烯小球阵列放入等离子体清洗机中刻蚀,蚀刻气体为体积比为O2:Ar=4:1的混合气体,经过刻蚀聚苯乙烯小球的直径由500nm减小到300nm。
3)利用磁控溅射在其表面溅射100nm的金,在溅射功率为25W,真空度为2×10-4Pa的高真空条件下,通入氩气流量为20sccm,垂直于经过刻蚀聚苯乙烯小球阵列进行溅射,溅射时间3min,溅射厚度为100nm。
4)利用胶带将溅射完成的聚苯乙烯小球阵列粘贴下来,在原衬底上得到六角密排结构的纳米孔结构。
5)将纳米孔阵列放入盛有NaOH溶液的烧杯中,加热至60℃,刻蚀时间为2.5min,得到硅纳米结构。
本实施例中生成的银纳米粒子如图2、图3所示。
实施例2
实施例2与实施例1不同之处在于:
步骤(5)中,加热温度为80℃,其余与实施例1完全相同。
本实施例中生成的银纳米粒子如图4所示。
实施例3
实施例3与实施例1不同之处在于:
步骤(5)中,加热温度为80℃,刻蚀时间为1.5min其余与实施例1完全相同。
本实施例中生成的银纳米粒子如图5所示。

Claims (4)

1.一种制备硅纳米腔的方法,其特征在于,该方法具体包括以下步骤:
1)采用自组装方法制备的高度有序的聚苯乙烯小球阵列;
1a)清洗硅片;
1b)制备六方密排的聚苯乙烯小球阵列;
将直径500nm聚苯乙烯小球和无水乙醇的按照体积比为1:1混合,再通过超声处理使聚苯乙烯小球均匀分散,用移液枪将聚苯乙烯小球分散液滴在硅片上,使分散液均匀分布在硅片上,将硅片倾斜的滑入液面平稳的器皿中,在水面上形成密排的聚苯乙烯小球阵列,最后用清洗后的硅片将浮在水面上的小球阵列缓慢的捞起来,吸水干燥后备用;
2)将高度有序的聚苯乙烯小球阵列放入等离子体清洗机中刻蚀,蚀刻气体为体积比为O2:Ar=4:1的混合气体,经过刻蚀聚苯乙烯小球的直径由500nm减小到350nm;
3)利用磁控溅射在其表面溅射50~200nm的金属、合金、半导体或金属氧化物;
4)将溅射完成的聚苯乙烯小球阵列取下来,在原衬底上得到六角密排结构的纳米孔结构;
5)将纳米孔阵列放入盛有NaOH溶液的烧杯中,加热至50~100℃,刻蚀时间为0.5~5min,得到硅纳米结构。
2.根据权利要求1所述的一种制备硅纳米腔的方法,其特征在于:清洗硅片,具体为:将硅片并放入烧杯中,在烧杯中分别加入体积比为1:2:6的氨水、过氧化氢和去离子水的混合溶液中;将烧杯放在烤焦台上加热至沸腾,并保持5~10min,冷却后将液体倒出,依次用去离子水,无水乙醇反复超声15min。
3.根据权利要求1所述的一种制备硅纳米腔的方法,其特征在于:步骤3)溅射的材料为Au,在溅射功率为25W,真空度为2×10-4Pa的高真空条件下,通入氩气流量为20sccm,垂直于经过刻蚀聚苯乙烯小球阵列进行溅射,溅射时间3min,溅射厚度为100nm。
4.根据权利要求1所述的一种制备硅纳米腔的方法,其特征在于:步骤4)将溅射完成的聚苯乙烯小球阵列取下来的方法为利用胶带粘贴下来。
CN202111580591.0A 2021-12-22 2021-12-22 一种制备硅纳米腔的方法 Pending CN114249325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111580591.0A CN114249325A (zh) 2021-12-22 2021-12-22 一种制备硅纳米腔的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111580591.0A CN114249325A (zh) 2021-12-22 2021-12-22 一种制备硅纳米腔的方法

Publications (1)

Publication Number Publication Date
CN114249325A true CN114249325A (zh) 2022-03-29

Family

ID=80794250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111580591.0A Pending CN114249325A (zh) 2021-12-22 2021-12-22 一种制备硅纳米腔的方法

Country Status (1)

Country Link
CN (1) CN114249325A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887687A (zh) * 2006-07-14 2007-01-03 清华大学 一种硅纳米线阵列的制备方法
CN101497429A (zh) * 2009-03-06 2009-08-05 吉林大学 硅中空纳米锥阵列的制备方法
CN104505408A (zh) * 2014-12-17 2015-04-08 上海师范大学 晶体硅纳米孔阵列材料及其制备方法
CN110668399A (zh) * 2019-09-16 2020-01-10 吉林师范大学 一种高度有序并且重复性好的呈轴对称的周期性的纳米孔洞结构的制备方法
CN111816558A (zh) * 2019-04-12 2020-10-23 中国科学院长春光学精密机械与物理研究所 一种硅基深孔微结构的制作方法
CN113046707A (zh) * 2021-02-09 2021-06-29 杭州电子科技大学 一种纳米花阵列结构的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887687A (zh) * 2006-07-14 2007-01-03 清华大学 一种硅纳米线阵列的制备方法
CN101497429A (zh) * 2009-03-06 2009-08-05 吉林大学 硅中空纳米锥阵列的制备方法
CN104505408A (zh) * 2014-12-17 2015-04-08 上海师范大学 晶体硅纳米孔阵列材料及其制备方法
CN111816558A (zh) * 2019-04-12 2020-10-23 中国科学院长春光学精密机械与物理研究所 一种硅基深孔微结构的制作方法
CN110668399A (zh) * 2019-09-16 2020-01-10 吉林师范大学 一种高度有序并且重复性好的呈轴对称的周期性的纳米孔洞结构的制备方法
CN113046707A (zh) * 2021-02-09 2021-06-29 杭州电子科技大学 一种纳米花阵列结构的制备方法及其应用

Similar Documents

Publication Publication Date Title
Singh et al. Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications
Wang et al. Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties
Pan et al. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders
Kiraly et al. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering
Chen et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water
Tang et al. Silver nanodisks with tunable size by heat aging
Geng et al. Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts
Wang et al. Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon
CN102556952B (zh) 金属杯-柱复合纳米结构阵列及其制备方法
CN109856116B (zh) 一种利用表面增强拉曼散射原位监测化学反应的分级纳米锥阵列及其制备方法
Yang et al. Template-directed dewetting of a gold membrane to fabricate highly SERS-active substrates
CN113385680B (zh) 一种金属纳米片的制备方法
CN111426674B (zh) 一种增强sers活性的太阳花纳米阵列结构及其制备方法
CN110668396A (zh) 一种周期波浪状纳米孔结构阵列的制备方法
CN111411335B (zh) 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用
CN107012438A (zh) 一种热稳定性增强型多孔银镁铝合金膜的制备方法
CN109581553B (zh) 一种可见光波段超材料完美吸收体及其自组装制备方法
Bai et al. Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure
CN114249325A (zh) 一种制备硅纳米腔的方法
CN110554021A (zh) 一种SPR在近红外具有强SERS活性的Ag/TiS2分层复合基底及其制备方法
Puišo et al. Plasmonic properties of silver in polymer
Tan et al. Controllable preparation of single-crystal diamond nanopillar clusters by metal cyclic dewetting process
Li et al. Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing
Li et al. Antireflection subwavelength structures based on silicon nanowires arrays fabricated by metal-assisted chemical etching
CN110668397A (zh) 一种高度有序倾斜纳米柱的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220329

RJ01 Rejection of invention patent application after publication