CN109581553B - 一种可见光波段超材料完美吸收体及其自组装制备方法 - Google Patents

一种可见光波段超材料完美吸收体及其自组装制备方法 Download PDF

Info

Publication number
CN109581553B
CN109581553B CN201910022934.8A CN201910022934A CN109581553B CN 109581553 B CN109581553 B CN 109581553B CN 201910022934 A CN201910022934 A CN 201910022934A CN 109581553 B CN109581553 B CN 109581553B
Authority
CN
China
Prior art keywords
metamaterial
absorber
perfect
visible light
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910022934.8A
Other languages
English (en)
Other versions
CN109581553A (zh
Inventor
张海斌
刘红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201910022934.8A priority Critical patent/CN109581553B/zh
Publication of CN109581553A publication Critical patent/CN109581553A/zh
Application granted granted Critical
Publication of CN109581553B publication Critical patent/CN109581553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种可见光波段超材料完美吸收体及其自组装制备方法,涉及功能型光学超材料技术领域。超材料完美吸收体结构是由金纳米八面体颗粒上层、二氧化硅中间介质层以及金属铝底层所组成,其膜层厚度在几十纳米至百纳米;自组装工艺过程是在液相环境下,相互带电的纳米颗粒与金属‑介质层之间进行。通过调控各自组装实验参数,所制备超材料吸收体在可见光波段400nm~760nm能实现80%以上的平均吸收率,波长540nm、727nm附近超材料吸收体存在两个典型的近完美吸收峰,吸收率达到99%以上,且其对入射光偏振不敏感。

Description

一种可见光波段超材料完美吸收体及其自组装制备方法
技术领域
本发明涉及功能型光学超材料技术领域,特别涉及一种可见光波段超材料完美吸收体及其自组装制备方法。
背景技术
随着现今微纳米科学与制造技术的迅猛发展,人们对光或电磁波的调控达到了崭新的高度。其中,如何实现对光或电磁波的有效吸收成为了功能光学材料基础与应用研究的关键目标之一。近年来,利用金属与介质的亚波长人工结构所形成的一类超材料吸收体已经受到了广泛关注,并在能量收集、传感探测、非线性光学、隐身技术等领域展现出显著的作用和巨大的应用潜力。
截至目前,人们普遍采用一种自上而下的微纳刻蚀加工技术对不同工作波段的超材料吸收体进行构造设计。其显著特点在于,内部结构单元统一而规范,呈周期性排列;吸收体吸波性能受控性好且稳定性高。然而,这类超材料吸收体却面临着成本高,难于大规模制造,工作频段窄等问题,很大程度上阻碍了其实际应用的推广,尤其是对于高频可见光波段的超材料吸收体而言(结构单元尺寸通常在数十纳米范围,不易于精确加工制造)。因此,开发一种可供选择的、经济的制造方式以满足大面积、高性能的超材料吸收体实际应用显得十分重要。
自组装技术是一类新近开发的自下而上的超材料吸收体制造技术。通过将预合成的胶体贵金属纳米粒子与适宜的金属或介质进行耦合,其已被证实能够实现可见光波段超材料吸收体的有效加工制造。2012-2014年间,A.Moreau等人(Nature,2012,492,86.)和J.Geldmeier(Adv.Funct.Mater.2014,24,6797.)等人先后将Ag纳米立方体通过聚合电介质与数十纳米厚度的Au膜进行吸附组装后制作出了反射特性可调控的可见光波段超材料吸收体,其平均吸收率~80%;C.
Figure GDA0002525099990000011
等人(Nano Lett.2013,13,3352.)则开发了一种核壳的Au@SnSx、Au@ZnO纳米结构单元,将其自组装于Al-SiO2纳米薄膜之上形成了一类超薄的可见光吸收体,550nm-650nm波段吸收体的平均吸收率达到~85%,最近,A.Baron研究小组(Opt.&Laser Technology 2016,82,94.)和S.Hewlett研究小组(Plasmonics,2017,12,419.)又报道了模板辅助、蒸发沉积等其他自组装方法,其所得吸收体平均吸收率也在80%左右,为单频响应。以上这些研究虽然在可见光波段超材料吸收体的制造成本、合成规模方面展现出了一定优势(相较于传统方式),但其仍然存在平均吸收率偏低和工作带宽偏窄的问题,需要研究者们对于新型的结构及自组装方法进行不断探索改进。
发明内容
本发明针对现有自组装方式制备可见光波段超材料吸收体所面临的平均吸收率偏低和工作带宽偏窄的问题,提出了一种新型的具有双带完美吸收特性的超材料吸收体结构及其自组装制备方法,未来有望应用于太阳能电池和生物传感领域。
本发明采用的技术方案为:可见光波段超材料完美吸收体的结构是由金纳米八面体颗粒上层、二氧化硅中间介质层以及金属铝底层所组成,简写为Au nanoctahedron/SiO2spacer/Al reflector。该结构中上层Au nanoctahedron是一种随机排列状态,其大小均匀,边长约为80nm,取向无序,表面覆盖率在17%~30%之间。中间层SiO2和底层Al膜厚度分别控制在10nm~100nm范围。可见光波段400nm~760nm内,超材料吸收体具有>80%的平均吸收率,波长540nm、727nm附近超材料吸收体存在两个典型的近完美吸收峰,吸收率达到99%以上,且其对入射光偏振不敏感。
本发明可见光波段超材料完美吸收体的自组装制备方法,包含如下操作步骤:
S1:将洁净基片置于真空镀膜系统中,镀制金属Al底膜及SiO2介质膜的厚度分别在10nm~100nm。
S2:将预镀制Al-SiO2薄膜的基片垂直浸渍于10mM浓度的表面带正电的胶体金纳米八面体颗粒溶液(7:1的蒸馏水和无水乙醇混液)中24h~72h,在静电吸附作用下完成Aunanoctahedron/SiO2spacer/Al reflector结构的自组装制备。
其中,真空镀膜系统可选用磁控溅射仪或蒸镀仪;金纳米八面体颗粒溶液为7:1的蒸馏水和无水乙醇混合液。
本发明的有益效果是:详细研究了Au nanoctahedron/SiO2spacer/Al reflector结构的各影响因素,获得了光吸收性能优异的可见光波段超材料吸收体,其平均吸收率超过了80%,且存在两个典型的大于99%的近完美吸收峰,这在以往的自组装超材料吸收体研究中是未见报道的;通过改变金纳米八面体颗粒的表面覆盖率、二氧化硅厚度等自组装实验参数可实现对超材料完美吸收体光吸收体特性有效调控,其吸收峰位置、吸收率将发生特征性的变化。另外,本发明超材料完美吸收体对于入射光偏振不敏感,自组装方法较为稳定可靠。
附图说明
图1为Au nanoctahedron/SiO2spacer/Al reflector超材料完美吸收体S偏振光吸收曲线;
图2为Au nanoctahedron/SiO2spacer/Al reflector超材料完美吸收体RMS图;
图3为调控SiO2厚度至60nm时,所得超材料吸收体的吸收光谱图;
图4为调控Au nanoctahedron的表面覆盖率至17%时,所得超材料吸收体的吸收光谱图;
图5为Au nanoctahedron/SiO2spacer/Al reflector超材料完美吸收体SEM图;
图6为Au nanoctahedron/SiO2spacer/Al reflector超材料完美吸收体P偏振光吸收曲线。
具体实施方式:
结合以下具体实施案例及附图,对本发明作进一步说明,但本发明的保护内容不局限于以下实施例。熟悉本领域的技术人员可容易对以下实例进行修改,并把一般原理应用到其它实例中而不通过创造性的劳动。故凡本领域技术人员根据本发明之提示,对本发明进行的修改和改进均在本发明的保护之内,并且以所附的权利要求书为保护范围。
实施例1
将洁净基片置于真空镀膜系统中,自下而上分别镀制80nm厚Al膜和30nm厚的SiO2介质膜,随后将预镀制Al-SiO2薄膜基片垂直浸渍于10mM浓度的表面带正电的胶体Aunanoctahedron溶液中36h,得到覆盖率为22%的Au nanoctahedron上层,洗净烘干,最终获得所需超材料吸收体并进行相关结构、性能测试表征。
实施例2
将洁净基片置于真空镀膜系统中,自下而上分别镀制60nm厚Al膜和10nm厚的SiO2介质膜,随后将预镀制Al-SiO2薄膜基片垂直浸渍于10mM浓度的表面带正电的胶体Aunanoctahedron溶液中24h,得到覆盖率为17%的Au nanoctahedron上层,洗净烘干,最终获得所需超材料吸收体并进行相关结构、性能测试表征。
实施例3
将洁净基片置于真空镀膜系统中,自下而上分别镀制70nm厚Al膜和50nm厚的SiO2介质膜,随后将预镀制Al-SiO2薄膜基片垂直浸渍于10mM浓度的表面带正电的胶体Aunanoctahedron溶液中60h,得到覆盖率为30%的Au nanoctahedron上层,洗净烘干,最终获得所需超材料吸收体并进行相关结构、性能测试表征。
实施例4
将洁净基片置于真空镀膜系统中,自下而上分别镀制100nm厚Al膜和90nm厚的SiO2介质膜,随后将预镀制Al-SiO2薄膜基片垂直浸渍于10mM浓度的表面带正电的胶体Aunanoctahedron溶液中24h,得到覆盖率为17%的Au nanoctahedron上层,洗净烘干,最终获得所需超材料吸收体并进行相关结构、性能测试表征。
对照例1
将洁净基片置于真空镀膜系统中,自下而上分别镀制80nm厚Al膜和30nm厚的SiO2介质膜,随后将预镀制Al-SiO2薄膜基片垂直浸渍于10mM浓度的表面带正电的胶体Aunanoctahedron溶液中18h,得到覆盖率为10%的Au nanoctahedron上层,洗净烘干,最终获得所需超材料吸收体并进行相关结构、性能测试表征。
对照例2
将洁净基片置于真空镀膜系统中,自下而上分别镀制70nm厚Al膜和20nm厚的SiO2介质膜获得所需试样并进行相关结构、性能测试表征。
对照例3
将洁净基片置于7:3的浓硫酸和双氧水溶液中30min,洗净吹干,将其垂直浸渍于10mM浓度的表面带正电的胶体Au nanoctahedron溶液中60h,得到覆盖率30%的Aunanoctahedron层,洗净烘干,获得所需试样并进行相关结构、性能测试表征。
表1:本发明的超材料吸收体的光吸收性能
Figure GDA0002525099990000041

Claims (4)

1.一种可见光波段超材料完美吸收体,其特征在于:所述超材料完美吸收体是由金纳米八面体颗粒上层、二氧化硅中间介质层以及金属铝底层组成,该超材料完美吸收体结构中金纳米八面体颗粒上层是一种随机排列状态,其大小均匀,取向无序,表面覆盖率在17%~30%之间,所用金纳米八面体颗粒是具有空间对称的正八面体,其边长为80 nm;二氧化硅中间层和金属铝底层的薄膜厚度分别控制在10 nm~100 nm范围;可见光波段400 nm~760 nm内,超材料吸收体具有>80%的平均吸收率,且存在两个典型的近完美吸收峰。
2.根据权利要求1所述的可见光波段超材料完美吸收体,其特征在于:超材料吸收体的两个典型近完美吸收峰分别在波长540 nm和727 nm 附近,其吸收率>99%,且对入射光偏振不敏感。
3.一种如权利要求1所述的可见光波段超材料完美吸收体的自组装制备方法,其特征在于,包含如下操作步骤:
S1:将洁净基片置于真空镀膜系统中,镀制金属Al底膜及SiO2介质膜的厚度分别在10nm~100nm;
S2:将预镀制Al-SiO2薄膜的基片垂直浸渍于10 mM浓度的表面带正电的胶体金纳米八面体颗粒溶液中24h~72h,在静电吸附作用下完成超材料完美吸收体的自组装制备。
4.根据权利要求3所述的可见光波段超材料完美吸收体的自组装制备方法,其特征在于:真空镀膜系统可选用磁控溅射仪或蒸镀仪;金纳米八面体颗粒溶液为7:1的蒸馏水和无水乙醇混合液。
CN201910022934.8A 2019-01-10 2019-01-10 一种可见光波段超材料完美吸收体及其自组装制备方法 Active CN109581553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910022934.8A CN109581553B (zh) 2019-01-10 2019-01-10 一种可见光波段超材料完美吸收体及其自组装制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910022934.8A CN109581553B (zh) 2019-01-10 2019-01-10 一种可见光波段超材料完美吸收体及其自组装制备方法

Publications (2)

Publication Number Publication Date
CN109581553A CN109581553A (zh) 2019-04-05
CN109581553B true CN109581553B (zh) 2020-10-16

Family

ID=65916139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910022934.8A Active CN109581553B (zh) 2019-01-10 2019-01-10 一种可见光波段超材料完美吸收体及其自组装制备方法

Country Status (1)

Country Link
CN (1) CN109581553B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239881A (zh) * 2019-09-09 2020-06-05 上海海事大学 一种在太阳光谱高反射及在中红外高吸收的超材料吸波体
CN111842073B (zh) * 2020-07-09 2022-09-20 中国科学院光电技术研究所 基于核壳Au@SiO2超原子的无序结构超材料及其制备方法
CN114460673B (zh) * 2022-01-21 2023-05-26 中南大学 一种基于等离激元共振的高温太阳光谱选择性吸收器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554244A (zh) * 2012-03-12 2012-07-11 苏州大学 金属纳米颗粒与碳材料复合物的自组装可控制备方法
CN203766150U (zh) * 2014-01-17 2014-08-13 中国科学院上海技术物理研究所 一种基于可见到近红外波段吸收膜系结构
CN104656170A (zh) * 2014-12-24 2015-05-27 江西师范大学 一种宽波段光全吸收器及其制备方法
CN106400120A (zh) * 2016-10-14 2017-02-15 中国科学院光电技术研究所 一种三十二面体金纳米晶体及其可控制备方法
CN104568849B (zh) * 2014-12-24 2017-07-25 江西师范大学 三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途
CN108333654A (zh) * 2018-03-05 2018-07-27 江西师范大学 一种钛材料电磁波完美吸收器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150205021A1 (en) * 2014-01-20 2015-07-23 Pc Krause And Associates, Inc. Metamaterial for improved energy efficiency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554244A (zh) * 2012-03-12 2012-07-11 苏州大学 金属纳米颗粒与碳材料复合物的自组装可控制备方法
CN203766150U (zh) * 2014-01-17 2014-08-13 中国科学院上海技术物理研究所 一种基于可见到近红外波段吸收膜系结构
CN104656170A (zh) * 2014-12-24 2015-05-27 江西师范大学 一种宽波段光全吸收器及其制备方法
CN104568849B (zh) * 2014-12-24 2017-07-25 江西师范大学 三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途
CN106400120A (zh) * 2016-10-14 2017-02-15 中国科学院光电技术研究所 一种三十二面体金纳米晶体及其可控制备方法
CN108333654A (zh) * 2018-03-05 2018-07-27 江西师范大学 一种钛材料电磁波完美吸收器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cu/Zr纳米多层膜微结构与力学性能;苑永涛,刘红;《光电工程》;20081030;第35卷(第10期);全文 *
One-pot synthesis of high-index faceted AgCl nanocrystals with trapezohedral, concave hexoctahedral structures and their photocatalytic activity;Zhang Haibin;《Nanoscale》;20150529;全文 *
Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices;Zhang Haibin;《Physical Chemistry Chemical Physics》;20171224;全文 *
Size-tunable uniform gold octahedra: fast synthesis, characterization, and plasmonic properties;Zhang Haibin;《RSC Advances》;20170316;全文 *
基于金属纳米结构的纳米光子器件研究;夏良平;《中国博士学位论文全文数据库》;中国学术期刊(光盘版)电子杂志社;20141015(第10期);全文 *

Also Published As

Publication number Publication date
CN109581553A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN109581553B (zh) 一种可见光波段超材料完美吸收体及其自组装制备方法
Liu et al. Truncated titanium/semiconductor cones for wide-band solar absorbers
Zhao Bottom-up fabrication methods of optical metamaterials
JP2011515216A5 (zh)
JP2011515216A (ja) 基板のコーティング方法
Sugumaran et al. Characterization of composite PVA–Al 2 O 3 thin films prepared by dip coating method
CN108169171B (zh) 一种基于表面等离子激元共振的折射率测试及其制作方法
Liu et al. Colloid templated semiconductor meta-surface for ultra-broadband solar energy absorber
CN103568441B (zh) 一种低成本大面积薄膜超吸收体及其制备方法
Chang et al. Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods
CN112147724B (zh) 基于Mxene的宽频和广角完美吸收体及其制备方法
CN110048227B (zh) 基于二氧化钒相变动态可调的蝴蝶结纳米天线装置及方法
CN101551569A (zh) 一种基于金属纳米团簇阵列的非线性光学材料及制备方法
CN104475116B (zh) 二氧化锡纳米线修饰的三氧化二铁纳米棒阵列的制备方法
CN110993731B (zh) 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法
CN103232172B (zh) 大面积制备二氧化钛纳米中空球有序薄膜的方法
CN113249700B (zh) 一种具有红外高折射率低色散的超材料及其制备方法
Ghai et al. Ultra-black superhydrophobic multilayer broadband optical absorber
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
Yatsugi et al. Highly anisotropic titanium nitride nanowire arrays for low-loss hyperbolic metamaterials fabricated via dynamic oblique deposition
CN111943254A (zh) 均匀分散的氧化锌-多层石墨烯复合材料及其制备方法
CN115911885A (zh) 基于温控网状二氧化钒微结构的太赫兹宽带吸波器
Nourolahi et al. Light absorption with branched gold cauliflower-like nanostructure arrays
CN100383275C (zh) 一种金银纳米颗粒分散氧化物光学薄膜制备方法
CN105158825A (zh) 一种抗反射结构及其构筑方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant