CN113385680B - 一种金属纳米片的制备方法 - Google Patents

一种金属纳米片的制备方法 Download PDF

Info

Publication number
CN113385680B
CN113385680B CN202110547716.3A CN202110547716A CN113385680B CN 113385680 B CN113385680 B CN 113385680B CN 202110547716 A CN202110547716 A CN 202110547716A CN 113385680 B CN113385680 B CN 113385680B
Authority
CN
China
Prior art keywords
metal
nano
array
film
metal nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110547716.3A
Other languages
English (en)
Other versions
CN113385680A (zh
Inventor
温嘉红
赵晓宇
杨志峰
王雅新
张永军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110547716.3A priority Critical patent/CN113385680B/zh
Publication of CN113385680A publication Critical patent/CN113385680A/zh
Application granted granted Critical
Publication of CN113385680B publication Critical patent/CN113385680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及纳米复合材料合成技术领域,针对金属纳米片构筑步骤繁琐、制备周期长的问题,提供一种金属纳米片的制备方法,先在硅衬底上自组装出密排的PS胶体球阵列,得到有序PS胶体球阵列模板;再在表面磁控溅射一层金属膜,形成金属纳米帽子阵列(MFON);然后在表面继续溅射氧化物薄膜,重复溅射金属膜和氧化物薄膜0‑9次得到纳米柱[M/(XaOb)]n(n=1‑10)多层膜结构;最后除去PS胶体球阵列进行退火处理,即得金属纳米片。本发明将PS胶体球模板和物理沉积技术相结合,步骤简单、金属消耗量少、重复性好,且制得的金属纳米片比表面积大。

Description

一种金属纳米片的制备方法
技术领域
本发明涉及纳米复合材料合成技术领域,尤其是涉及一种金属纳米片的制备方法。
背景技术
随着世界人口的迅猛增加和工业化程度的不断提高,日益严峻的环境污染和能源短缺问题成为人类社会面临的重要挑战之一。光催化反应在太阳能的驱动下,既可以催化降解各类污染物,又可以催化分解水生成氢气和氧气,是一种绿色、高效、能解决能源和环境污染问题的有效方法。近年来的研究发现,在大的比表面积衬底上生长具有催化性能的金属纳米粒子如Pt(Ni、Pd、Ru等)有助于提高催化效率。退火后生长出的金属纳米片有大量的空腔,以及小的片间距具有非常大的比表面积利于金属纳米粒子催化剂的附着,用在光催化方面有很大的应用前景。
当光波(电磁波)入射到金属与介质分界面时,在光波电磁场驱动下金属表面的自由电子发生集体振荡,形成的一种沿着金属表面传播的近场电磁波,即为表面等离子体或表面等离激元(Surface Plasmons,SPs)。表面等离激元具有一系列新奇的光学性质,例如对光的选择性吸收和散射、局域电场增强、电磁波的亚波长束缚等等。在金属薄膜与介质的界面上激发的表面等离激元可以沿着薄膜远程传播,形成传导的表面等离激元(surfacepropagating plasmon,SPP);而在一些金属纳米结构中,当自由电子振荡频率与入射光频率相符时,产生光的强吸收,局域电磁场得到极大增强,这时形成局域的表面等离激元或局域表面等离子体共振(Localized Surface Plasmon Resonance,LSPR),Au、Ag等贵金属纳米材料的局域表面等离激元比较容易激发,且具有极大而可控的吸收和散射性质,可以通过改变纳米材料的尺寸、形貌、组成、电荷以及其所处的介电环境等来改变其共振频率,从而实现可选择性地散射和吸收不同频率的光。通过局域表面等离子体激元共振增强,贵金属纳米颗粒可以把光场的能量在空间上聚焦到纳米尺度的范围,在纳米尺度上控制光能量的传输,从而产生巨大的电磁场增强,实现局域化加热。实验和理论研究表明,随着颗粒尺寸的减小,表面等离激元非辐射和辐射衰减的比值变大;更多的光被颗粒吸收从而转化为热,而不是被散射出去。而这些纳米结构间距足够小时,局域等离子体激元间的耦合会造成局域场的骤然放大。贵金属纳米结构的表面等离子体调控在光热转换、太阳能电池、光催化、表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)等应用中具有独特的优势。
理论预测并已经被实验证实,在一些锋利的拐角或相邻的纳米图纹化金属的边缘所构成的狭窄缝隙处,局域表面等离子体能够被激发产生非常强的电磁场,使拉曼信号的增强因子可以提高到108-1010量级,坐落在拐角或缝隙处的探针分子对拉曼信号强度的贡献远远高于其他分子。基底上能够使拉曼信号倍增的结构被称为“热点”。近年来,科学家们总结出热点产生的部位多集中在“尖端”、“空腔”、“间隙”部位。退火后生长出的银纳米片满足这些特征,能够出现大量的热点对信号有非常大的增强作用,可以用在生物检测、传感、药物筛选等领域。
超薄二维金属纳米片由于其独特的形貌结构、较小的颗粒尺寸、较大的表面体积比和原子级的层片厚度而具有超强的催化性能、光伏性能和电化学性能,在功能陶瓷、光催化、锂离子电池、太阳能电池、气体传感器等方面得到了广泛的应用。例如,石墨烯因其较高的载流子迁移率、良好的机械柔韧度和光透明性以及优异的化学稳定性,使得这种二维纳米结构材料已在包括场效应晶体管、柔性透明电极、触摸屏、新型复合材料、传感器、催化剂载体、储能器件等领域中展现出了广阔的应用前景。
由于纳米材料具有独特的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,因此它在光、电、磁、热等各个方面都展现出不同于常规材料的特性。金属纳米材料的性能很大程度上取决于粒子的形状、尺寸、组成、结晶度和结构,理论上人们可通过控制以上参数来精细调整纳米粒子的性质。而金属纳米材料不仅保留了纳米材料固有的特性,还具有良好的导电性能、化学稳定性等特点,被广泛应用在催化、检测、能源、印刷、生物乃至光电等各个领域。以银纳米片为例,现在制备银纳米片常见的方法有化学法、光转化、热生长和模板化生长等制作银纳米片的方法,但是其制作工艺相对复杂、反应条件苛刻、成本高,重复性差。例如采用电化学沉积法可制备站立在导电衬底上的银纳米片阵列(Liu,G.;Cai,W.;Liang,C.Cryst.Growth Des.2008,8,2748-2752.),该阵列可作为一种有效的拉曼增强衬底,但在制备过程中必须使用直流电源,且制备的银纳米片密度相对较小,导致SERS活性相对较低,将会限制此SERS衬底在实际痕量检测中的应用。据此需要一种理想的解决方法。
发明内容
本发明为了克服金属纳米片构筑步骤繁琐、制备周期长的问题,提供一种金属纳米片的制备方法,将PS胶体球模板和物理沉积技术相结合,步骤简单、金属消耗量少、重复性好,且制得的金属纳米片比表面积大。
为了实现上述目的,本发明采用以下技术方案:
一种金属纳米片的制备方法,其特征在于,包括以下步骤:
(A)在硅衬底上自组装出密排的PS胶体球阵列,得到有序PS胶体球阵列模板;
(B)在步骤(A)中得到的有序PS胶体球阵列模板表面磁控溅射一层金属膜,形成金属纳米帽子阵列(MFON);
(C)在步骤(B)金属纳米帽子阵列(MFON)表面继续溅射氧化物薄膜,重复步骤(B)和(C)0-9次得到纳米柱[M/(XaOb)]n(n=1-10)多层膜结构;
(D)将步骤(C)中得到的纳米柱[M/(XaOb)]n(n=1-10)多层膜结构除去PS胶体球阵列后进行退火处理,即得金属纳米片。
本发明将PS胶体球模板和物理沉积技术相结合,制备出纳米柱[M/(XaOb)]n结构,式中M表示金属,XaOb表示氧化物。由于PS胶体球在高温下会融化变形影响实验结果,所以在退火前除去PS胶体球,以减少PS胶体球对实验的影响,可以将PS胶体球阵列放到四氢呋喃中浸泡过夜溶解除去PS胶体球,再用酒精或去离子水反复冲洗,晾干。PS胶体球模板和物理沉积技术相结合后构建的纳米图纹结构阵列具有均匀性好、有序度高、可重复性强的优点,尤其是在PS胶体球模板缝隙处的金属液最先溢出形成金属纳米片。相比于化学沉积法、水热法以及其它技术,该方法的主要优点在于生产所需的工艺简单、反应条件温和、比表面积大、无需使用昂贵的试剂因此成本低廉,同时该方法重复性好。使用该方法制备的银纳米片具有很大的比表面积因而具有优良的电催化性能。
作为优选,步骤(B)中的金属选自Au、Ag、Cu、Al或Zn中的一种。
作为优选,步骤(B)中的金属为Ag,步骤(D)中退火温度为600-800℃。作为进一步优选,步骤(D)中退火温度为800℃。不同温度下退火,表面有不同现象。以银为例,在温度为300℃、400℃、500℃、600℃、700℃、800℃下退火后的SEM图像,可以清晰的看出在不同温度下退火界面发生的变化,在500℃的界面上有明显的晶粒长大的现象,600℃时缝隙处产生银纳米片,到800℃时整个界面都产生银纳米片。
作为优选,步骤(C)中氧化物薄膜选自SiO2薄膜、ZrO2薄膜或CeO2薄膜,氧化物薄膜的熔点高于所述金属薄膜的熔点且利于金属薄膜中的晶粒长大。氧化物薄膜在金属熔化后往外溢出,起到隔离的作用,并且最先在缝隙(PS胶体球去掉后排列不紧密处即间隙大的地方)处溢出,所以氧化物薄膜的熔点需要高于所述金属薄膜的熔点。另外,氧化物薄膜最好在一定的温度下利于金属中晶粒长大。
作为优选,步骤(A)中PS胶体球的直径为200-500nm。排列的PS胶体球阵列直径在200nm~500nm范围内比较容易形成阵列,1000nm或者更大的很难形成局部有序的阵列结构。
作为优选,步骤(B)中金属膜的厚度为30-50nm。金属膜太薄从缝隙出溢出的金属纳米片出现的很少;金属膜太厚金属纳米片不易形成且浪费金属材料。
作为优选,步骤(C)中氧化物薄膜的厚度为5-10nm。氧化物薄膜厚度太大会导致金属膜在熔化后无法溢出;氧化物薄膜厚度太小金属溢出过程中容易破裂导致缝隙太大,金属都从该处溢出没法生成金属纳米片。
作为优选,步骤(A)中硅衬底先被处理成亲水性,再进行自组装。硅衬底处理后具有亲水性,便于单层有序的PS胶体球附着在硅衬底上。
作为优选,步骤(D)中退火处理在管式炉中进行,且退火前通入Ar气。为了防止金属被氧化,将处理好的样品晾干后放到管式炉中在高纯Ar气的保护下进行退火。
上述制备方法制得的金属纳米片可以应用于光催化、二维材料或表面增强拉曼散射SERS。制备银纳米片具有大的比表面,可以用作二维材料或提高光催化效率,也可以用在SERS领域增强信号。
因此,本发明的有益效果为:(1)本发明利用PS胶体球模板和物理沉积技术相结合,构建的纳米图纹结构阵列具有均匀性好、有序度高、可重复性强的优点;(2)相比于化学沉积法、水热法以及其它技术,生产所需的工艺简单、制备周期短、反应条件温和、成本低廉;(3)使用本方法制备的银纳米片具有很大的比表面积,因而具有优良的电催化性能,可以用于SERS领域增强信号。
附图说明
图1为本发明的制备流程图;
图中A为PS胶体球阵列模板,B为Ag纳米帽子阵列,C为纳米柱[Ag/SiO2]n(n=4)多层膜结构,D为除去PS胶体球阵列的纳米柱[Ag/SiO2]n(n=4)多层膜结构,E1为实施例1得到的产物,E2为实施例4得到的银纳米片,E3为实施例5得到的银纳米片,E4为实施例6得到的银纳米片。
图2为本发明的产物扫描电镜图;
图中,a为实施例2的退火温度为300℃下产物扫描电镜图,b为实施例3的退火温度为400℃下产物扫描电镜图,c为实施例1的退火温度为500℃下产物扫描电镜图,d为实施例4的退火温度为600℃下产物扫描电镜图,e为实施例5的退火温度为700℃下产物扫描电镜图,f为实施例6的退火温度为800℃下产物扫描电镜图。
具体实施方式
下面通过具体实施例,对本发明的技术方案做进一步说明。
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的,实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1
一种银纳米片的制备方法,包括以下步骤:
(A)利用自组装法,在具有亲水性表面的硅衬底上自组装出密排的直径为200nm的PS胶体球阵列模板(如图1A所示);
(B)在步骤(A)中得到的PS胶体球阵列模板表面磁控溅射一层厚度为30nm的Ag膜后形成Ag纳米帽子阵列(如图1B所示);
(C)将步骤(B)中继续溅射一层厚度为5nm的SiO2薄膜,重复步骤(B)和(C)3次得到纳米柱[Ag/SiO2]n(n=4)多层膜结构(如图1C所示);
(D)对步骤(C)中得到的纳米柱[Ag/SiO2]n(n=4)多层膜结构用四氢呋喃溶液将PS胶体球阵列去除,并用酒精或去离子水进行反复冲洗(如图1D所示);
(E)对步骤(D)将处理好的样品晾干后放到管式炉中在高纯Ar气的保护下在500℃进行退火。如图1-E1和图2-c所示,界面上有明显的晶粒长大的现象。
实施例2
一种银纳米片的制备方法,与实施例1不同的是,本实施例中步骤(E)退火温度为300℃,结构表面基本上没有变化,如图2-a所示。
实施例3
一种银纳米片的制备方法,与实施例1不同的是,本实施例中步骤(E)退火温度为400℃,结构表面有晶粒长大的现象,如图2-b所示。
实施例4
一种银纳米片的制备方法,与实施例1不同的是,本实施例中步骤(E)退火温度为600℃,得到银纳米片。如图1-E2所示以及2-d所示,缝隙处有零星的银纳米片。
实施例5
一种银纳米片的制备方法,与实施例1不同的是,本实施例中步骤(E)退火温度为700℃,得到银纳米片。如图1-E3所示以及2-e所示,在整个界面开始有零星的银纳米片。
实施例6
一种银纳米片的制备方法,与实施例1不同的是,本实施例中步骤(E)退火温度为800℃,得到银纳米片。如图1-E4所示以及2-f所示,在整个界面出现大量的银纳米片。
实施例7
一种银纳米片的制备方法,包括以下步骤:
(A)利用自组装法,在具有亲水性表面的硅衬底上自组装出密排的直径为500nm的PS胶体球阵列模板;
(B)在步骤(A)中得到的PS胶体球阵列模板表面磁控溅射一层厚度为50nm的Ag膜后形成Ag纳米帽子阵列;
(C)将步骤(B)中继续溅射一层厚度为10nm的SiO2薄膜,[Ag/SiO2]n(n=1)结构;
(D)对步骤(C)中得到的[Ag/SiO2]n(n=1)结构用四氢呋喃溶液将PS胶体球阵列去除,并用酒精或去离子水进行反复冲洗。
(E)对步骤(D)将处理好的样品晾干后放到管式炉中在高纯Ar气的保护下在800℃进行退火得到银纳米片。
实施例8
一种金纳米片的制备方法,包括以下步骤:
(A)利用自组装法,在具有亲水性表面的硅衬底上自组装出密排的直径为200nm的PS胶体球阵列模板;
(B)在步骤(A)中得到的PS胶体球阵列模板表面磁控溅射一层厚度为30nm的Au膜后形成Au纳米帽子阵列;
(C)将步骤(B)中继续溅射一层厚度为5nm的SiO2薄膜,形成[Au/SiO2]n(n=1)结构;
(D)对步骤(C)中得到的[Au/SiO2]n(n=1)结构用四氢呋喃溶液将PS胶体球阵列去除,并用酒精或去离子水进行反复冲洗。
(E)对步骤(D)将处理好的样品晾干后放到管式炉中在高纯Ar气的保护下在900℃下进行退火得到金纳米片。
对比例1
与实施例6的区别为金属膜厚度为25nm。
对比例2
与实施例6的区别为金属膜厚度为55nm。
对比例3
与实施例6的区别为氧化物薄膜的厚度为3nm。
对比例4
与实施例6的区别为氧化物薄膜的厚度为15nm。
如图2所示,将实施例1和6中制备出银纳米片进行扫描电镜观察,其结构分别如其中的a~f所示,通过电镜观察可知,通过本发明制备的纳米图纹阵列具有大的比表面积的优点,可以用作二维材料或光催化,也可以用在SERS领域增强信号。通过在不同温度下进行退火可以使其界面发生变化,只有当温度达到600℃左右银纳米片在缝隙处有生成,当温度达到800℃左右整个界面才会生成大面积的银纳米片。温度根据要生长的金属类型来确定,不同金属其熔点不一样其最低温度也不一样。对比例1中金属膜太薄,从缝隙出溢出的金属纳米片出现的很少;对比例2中金属膜太厚金属纳米片不易形成且浪费金属材料。对比例3中氧化物薄膜的厚度太小,金属溢出过程中容易破裂导致缝隙太大,金属都从该处溢出没法生成金属纳米片;对比例4中氧化物薄膜厚度太大导致金属膜在熔化后无法溢出。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种金属纳米片的制备方法,其特征在于,包括以下步骤:
(A)在硅衬底上自组装出密排的PS胶体球阵列,得到有序PS 胶体球阵列模板;
(B)在步骤(A)中得到的有序PS 胶体球阵列模板表面磁控溅射一层金属膜,形成金属纳米帽子阵列(MFON);
(C)在步骤(B)金属纳米帽子阵列(MFON)表面继续溅射氧化物薄膜,重复步骤(B)和(C)0-9次得到纳米柱[M/(XaOb)]n(n=1-10)多层膜结构;
(D)将步骤(C)中得到的纳米柱[M/(XaOb)]n(n=1-10)多层膜结构除去PS 胶体球阵列后进行退火处理,即得金属纳米片;
步骤(B)中的金属为Ag,步骤(D)中退火温度为800℃;
步骤(B)中金属膜的厚度为50 nm;
步骤(C)中氧化物薄膜的厚度为10 nm;
步骤(C)中氧化物薄膜为SiO2薄膜。
2.根据权利要求1所述的一种金属纳米片的制备方法,其特征在于,步骤(A)中PS胶体球的直径为200-500 nm。
3.根据权利要求1所述的一种金属纳米片的制备方法,其特征在于,步骤(A)中硅衬底先被处理成亲水性,再进行自组装。
4.根据权利要求1所述的一种金属纳米片的制备方法,其特征在于,步骤(D)中退火处理在管式炉中进行,且退火前通入Ar气。
CN202110547716.3A 2021-05-19 2021-05-19 一种金属纳米片的制备方法 Active CN113385680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110547716.3A CN113385680B (zh) 2021-05-19 2021-05-19 一种金属纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110547716.3A CN113385680B (zh) 2021-05-19 2021-05-19 一种金属纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN113385680A CN113385680A (zh) 2021-09-14
CN113385680B true CN113385680B (zh) 2023-04-25

Family

ID=77618128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110547716.3A Active CN113385680B (zh) 2021-05-19 2021-05-19 一种金属纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN113385680B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976904B (zh) * 2021-10-20 2024-02-13 杭州电子科技大学 一种微腔内光激发化学诱导生长贵金属纳米粒子的方法
CN114262875B (zh) * 2021-12-27 2024-05-07 杭州电子科技大学 一种Ag纳米带/片/花的制备方法
CN114318227B (zh) * 2021-12-29 2023-12-22 杭州电子科技大学 一种花瓣纳米片周期性阵列制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592635A (zh) * 2019-01-22 2019-04-09 杭州电子科技大学 一种可控制备复合型纳米图纹阵列的方法
CN110106488A (zh) * 2019-05-31 2019-08-09 苏州工业职业技术学院 一种花状分级结构Au@Ag纳米片有序阵列的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027587A2 (en) * 2010-08-25 2012-03-01 Rensselaer Polytechnic Institute Tunable nanoporous films on polymer substrates, and methods for their manufacture
CN105648413A (zh) * 2016-01-22 2016-06-08 吉林师范大学 一种金属/氧化物复合表面增强拉曼活性基底的制备方法
CN105839062A (zh) * 2016-04-05 2016-08-10 吉林师范大学 一种复合型多层膜结构银纳米线及其制备方法
CN107313046B (zh) * 2017-05-12 2019-12-20 北京邮电大学 一种sers基底及其制备方法
CN112499581B (zh) * 2020-11-12 2023-07-04 西安交通大学 一种表面增强拉曼散射衬底的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592635A (zh) * 2019-01-22 2019-04-09 杭州电子科技大学 一种可控制备复合型纳米图纹阵列的方法
CN110106488A (zh) * 2019-05-31 2019-08-09 苏州工业职业技术学院 一种花状分级结构Au@Ag纳米片有序阵列的制备方法

Also Published As

Publication number Publication date
CN113385680A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113385680B (zh) 一种金属纳米片的制备方法
Wang et al. Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties
CN109592635B (zh) 一种可控制备复合型纳米图纹阵列的方法
Li et al. Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications
Pan et al. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders
Ding et al. Nanoporous metals for catalytic and optical applications
Zou et al. Well-aligned arrays of CuO nanoplatelets
Zhou et al. Highly reducible CeO2 nanotubes
Luo et al. Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property
CN108698849B (zh) 通过在悬浮的非负载型石墨烯纳米片上生长氧化锌纳米棒或微米棒获得的石墨烯基复合纳米结构的生产
Zhou et al. Au nanoparticles coupled three-dimensional macroporous BiVO4/SnO2 inverse opal heterostructure for efficient photoelectrochemical water splitting
Bayansal et al. Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures
CN108459004B (zh) 一种银和金纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
Qiu et al. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process
Diao et al. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application
Umar et al. Formation of high-yield gold nanoplates on the surface: effective two-dimensional crystal growth of nanoseed in the presence of poly (vinylpyrrolidone) and cetyltrimethylammonium bromide
Wang et al. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly
CN102219389B (zh) 利用氧化石墨烯衍生物自组装获得的碳膜的制备方法
Liu et al. Graphene modulated 2D assembly of plasmonic gold nanostructure on diamond-like carbon substrate for surface-enhanced Raman scattering
Umar et al. A seed-mediated growth method for vertical array of single-crystalline CuO nanowires on surfaces
Baranov et al. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis
Shen et al. Pyramid-shaped single-crystalline nanostructure of molybdenum with excellent mechanical, electrical, and optical properties
Dan et al. Highly ordered Au-decorated Ag nanorod arrays as an ultrasensitive and reusable substrate for surface enhanced Raman scattering
Chen et al. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes
Swetha et al. High-index facet defined shape-controlled electrochemical synthesis of nanocrystals: A mini review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210914

Assignee: Zhejiang saiweike Photoelectric Technology Co.,Ltd.

Assignor: HANGZHOU DIANZI University

Contract record no.: X2023330000336

Denomination of invention: A preparation method for metal nanosheets

Granted publication date: 20230425

License type: Common License

Record date: 20230612

EE01 Entry into force of recordation of patent licensing contract