CN114236236B - 一种基于区间动态状态估计的谐波源定位方法 - Google Patents
一种基于区间动态状态估计的谐波源定位方法 Download PDFInfo
- Publication number
- CN114236236B CN114236236B CN202111556345.1A CN202111556345A CN114236236B CN 114236236 B CN114236236 B CN 114236236B CN 202111556345 A CN202111556345 A CN 202111556345A CN 114236236 B CN114236236 B CN 114236236B
- Authority
- CN
- China
- Prior art keywords
- interval
- harmonic
- matrix
- node
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 61
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims description 111
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
- G01R23/163—Spectrum analysis; Fourier analysis adapted for measuring in circuits having distributed constants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
本发明涉及一种基于区间动态状态估计的谐波源定位方法,包括以下步骤:采用区间数分别描述线路参数与量测误差的不确定性,建立区间谐波状态估计模型;进行量测优化配置;基于区间谐波状态估计模型,进行区间动态谐波状态估计,并确定谐波源位置。该方法有利于准确地定位谐波源。
Description
技术领域
本发明属于谐波状态估计技术领域,具体涉及一种基于区间动态状态估计的谐波源定位方法。
背景技术
近年来,随着分布式能源与电力电子设备高密度接入电网中,谐波源数量激增,系统运行状态多变,谐波污染日益严重。基于谐波状态估计的谐波源定位方法能够定量估计全网谐波电流分布情况,从而明确谐波污染来源,是谐波责任划分与谐波治理的前提。
谐波状态估计通过量测数据与量测矩阵获取全网完整、精确的谐波注入电流信息,以此作为评判谐波源来源的标准。然而,谐波状态估计受到多种不确定因素的挑战,例如测量过程中的随机噪声以及线路参数的偏差,而传统的谐波状态估计往往忽略上述因素的影响,与实际工程情况不符,无法为相关工作人员提供准确的谐波注入电流大小,致使工作人员无法准确定位谐波源。针对上述问题,本方法建立区间谐波状态估计模型,以区间数予以客观性描述不确定因素,通过区间动态谐波状态估计来获取谐波注入电流的边界信息,为谐波源定位提供全面的数据基础。
传统的动态谐波状态估计局限于确定性的谐波状态估计模型,即状态估计过程往往建立在一定的假设基础上,假定线路参数保持恒定,以及量测误差服从正态分布特征。但实际上,线路参数受到环境变化、运行状态以及设备老化等因素影响会发生偏差,同时量测误差难以用某种具体分布函数进行刻画。因此,传统动态估计方法无法准确描述实际的电网运行状态,对谐波源定位的工程应用价值有限。
发明内容
本发明的目的在于提供一种基于区间动态状态估计的谐波源定位方法,该方法有利于准确地定位谐波源。
为实现上述目的,本发明采用的技术方案是:一种基于区间动态状态估计的谐波源定位方法,包括以下步骤:
采用区间数分别描述线路参数与量测误差的不确定性,建立区间谐波状态估计模型;
进行量测优化配置;
基于区间谐波状态估计模型,进行区间动态谐波状态估计,并确定谐波源位置。
进一步地,建立区间谐波状态估计模型的具体方法如下:
根据量测装置采集数据类型,将节点谐波电压以及支路谐波电流作为量测数据对象;节点谐波电压的量测方程为:
支路谐波电流的量测方程为:
其中,为节点谐波电压,/>为节点阻抗矩阵,/>为谐波注入电流,/>为支路谐波电流,/>分别表示对地谐波导纳和支路谐波导纳,ij表示节点i与节点j之间的支路,ii表示节点i与地之间的支路,h为谐波频次,/>表示节点i对应的第h次节点谐波电压,表示谐波节点阻抗矩阵的第i行;
计及量测误差与线路参数的不确定性,搭建区间谐波状态估计模型:
其中,上标I表示该数为区间数;zI为量测量区间形式,即下标k、kl分别表示网络中能够测量到的节点和支路信息,zI由考虑量测误差的量测节点谐波电压和量测支路谐波电流区间值构成;HI为量测矩阵区间形式,由式(1)(2)构成,其中的元素均为考虑线路不确定性后的区间数;Ih I为谐波注入电流区间形式,即为状态量,作为评判谐波来源的标准。
进一步地,进行量测优化配置的具体方法如下:
根据系统完全可观性要求,量测优化配置需让全网节点均可观,测量规则如下:
1)若节点存在量测装置,则该节点的状态完全可观;
2)在某节点电压可观时,通过支路电流量测使对端节点的状态可观;
因此结合节点可观性定义,建立谐波量测优化配置的0-1规划模型:
式中,T为关联矩阵,E为n×1维的单位阵,β1和β2为权重系数,f1=XTX为量测装置的总数,f2=(E-AX)T(E-AX)反映冗余度大小,X为量测节点配置情况,其定义如下:
上述模型在满足完全可观约束的前提,实现量测的最优配置;上述模型采用离散二进制粒子群算法求解。
进一步地,基于区间谐波状态估计模型,进行区间动态谐波状态估计,其具体方法如下:
基于误差上界最优的区间卡尔曼滤波将增益区间矩阵化为点矩阵,其谐波电流区间值的保守性更低且易收敛,便于谐波源定位;
在预测阶段,获取区间谐波电流预测值以及区间先验误差矩阵,如下所示:
式中,上标-表示先验估计,上标+表示后验估计,上标I表示其元素均为区间数,下标k表示k时刻的量,下标k+1表示k+1时刻的量,即下一时刻,上标^表示估计值;表示k+1时刻的先验区间误差矩阵,即区间谐波电流预测值与真实值之间的误差;/>表示k时刻的后验区间误差矩阵,即区间谐波电流最优估计值与真实值之间的误差;/>表示k时刻的后验区间谐波电流估计值;/>表示k+1时刻的先验区间谐波电流估计值,即预测值;A为状态转移矩阵,相邻时间内的谐波电流保持不变,定为单位矩阵;Q为系统误差矩阵;
在校正阶段,通过增益矩阵并结合量测量修正区间谐波电流预测值,以此获取最优区间谐波电流估计值,同时更新后验区间误差矩阵,以进行下一时刻的谐波电流估计,直到当前时刻k不小于设定时刻N则停止迭代,如下所示:
式中,上标m表示区间数的中点,上标r表示区间数的半径,上标-1表示对矩阵求逆;Kk+1为k+1时刻的增益矩阵;R为噪声误差矩阵;G为单位矩阵;nx、ny为区间矩阵中的列数与行数;HI为区间量测矩阵;Hr,ij表示除(i,j)之外的元素均为零的半径量测矩阵,Hm为中点量测矩阵,由HI的中点构成;表示k+1时刻的后验区间谐波电流估计值,即校正后的区间谐波电流最优估计值;/>为k+1时刻的区间观测值;/>为k+1时刻的后验区间误差矩阵;表示/>的误差最优上界矩阵,即/>鉴于原式(10)中式子较长,因此将部分参数简写,由单一参数替代,如式(8)(9)所示;
其中最优上界通过下式获取:
参数取值如下:
式中,上标-1在此表示取倒数;tr()表示矩阵的迹;MI为区间对称矩阵;diag()为对角矩阵;Mr,ij表示除(i,j)之外的元素均为零的半径矩阵;Mr为半径矩阵;Mm为中点矩阵,由MI的中点构成;为MI最优上界的平方形式;β表示使区间矩阵的上界最优的取值参数;下标mid对应中点矩阵Mm,下标ii对应半径对角矩阵diag(Mr),下标kl、ij分别对应除(k,l)和(i,j)之外的元素均为零的半径矩阵Mr,kl和Mr,ij;
根据半正定矩阵性质,如果M≥N≥0,则M1/2≥N1/2≥0,将式转化为最终的最优上界;
基于谐波源节点与非谐波源节点之间的差异,定义平均零偏差αavg,计算谐波电流与零值之间的差值,以此评估定位结果:
其中c(·)表示区间中点,表示谐波电流区间估计值,Nm表示监测样本总数;
当αavg小于判断阈值λ时,表明该节点为非谐波源节点;反之,则为谐波源节点。
与现有技术相比,本发明具有以下有益效果:提供了一种基于区间动态谐波状态估计的谐波源定位方法,该方法可以顾及线路参数与量测误差的不确定性影响,同时获取谐波注入电流的波动特性,准确地判断谐波源位置。相比于动态点估计,本方法无须获取变量的具体分布,并且能够为调度人员提供状态估计结果的上下界,从而更加准确地定位谐波源。
附图说明
图1是本发明实施例的方法实现流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
如图1所示,本实施例提供了一种基于区间动态状态估计的谐波源定位方法,包括以下步骤:
1)采用区间数分别描述线路参数与量测误差的不确定性,建立区间谐波状态估计模型。
2)进行量测优化配置,达到系统完全可观的目的。
3)基于区间谐波状态估计模型,进行区间动态谐波状态估计,以反映不确定性因素对状态估计的影响以及谐波波动特征,并达到定位谐波源的目的。
1、建立区间谐波状态估计模型
根据量测装置采集数据类型,将节点谐波电压以及支路谐波电流作为量测数据对象。
节点谐波电压的量测方程为:
支路谐波电流的量测方程为:
其中,为节点谐波电压,/>为节点阻抗矩阵,/>为谐波注入电流,/>为支路谐波电流,/>分别表示对地谐波导纳和支路谐波导纳,ij表示节点i与节点j之间的支路,h为谐波频次,/>表示节点i对应的第h次谐波电压,/>表示谐波节点阻抗矩阵的第i行。
计及量测误差与线路参数的不确定性,搭建区间谐波状态估计模型:
其中,上标I表示该数为区间数,h为谐波频次;zI为量测量区间形式,即下标k、kl表示网络中能够测量到的节点或支路信息,zI由考虑量测误差的量测节点谐波电压和量测支路谐波电流区间值构成;HI为量测矩阵区间形式,由式(1)(2)构成,其中的元素均为考虑线路不确定性后的区间数;Ih I为谐波注入电流区间形式,即为状态量,作为评判谐波来源的标准。
2、量测优化配置
根据系统完全可观性要求,量测优化配置需让全网节点均可观,测量规则如下:
1)若节点存在量测装置,则该节点的状态完全可观;
2)在某节点电压可观时,通过支路电流量测使对端节点的状态可观。
因此结合节点可观性定义,建立谐波量测优化配置的0-1规划模型:
式中,T为关联矩阵,E为n×1维的单位阵,β1和β2为权重系数,f1=XTX为量测装置的总数,f2=(E-AX)T(E-AX)反映冗余度大小,X为量测节点配置情况,其定义如下:
上述模型在满足完全可观约束的前提,实现量测的最优配置。上述模型采用离散二进制粒子群算法等智能算法求解。
3、基于区间动态状态估计的谐波源定位
基于误差上界最优的区间卡尔曼滤波将增益区间矩阵化为点矩阵,其谐波电流区间值的保守性更低且易收敛,便于谐波源定位。
在预测阶段,获取区间谐波电流预测值以及区间先验误差矩阵,如下所示:
式中,上标-表示先验估计,上标+表示后验估计,上标I表示其元素均为区间数,下标k表示k时刻的量,下标k+1表示k+1时刻的量,即下一时刻,上标^表示估计值;表示k+1时刻的先验区间误差矩阵,即区间谐波电流预测值与真实值之间的误差;/>表示k时刻的后验区间误差矩阵,即区间谐波电流最优估计值与真实值之间的误差;/>表示k时刻的后验区间谐波电流估计值;/>表示k+1时刻的先验区间谐波电流估计值,即预测值;A为状态转移矩阵,认为相邻时间内的谐波电流保持不变,定为单位矩阵;Q为系统误差矩阵。
在校正阶段,通过增益矩阵并结合量测量修正区间谐波电流预测值,以此获取最优区间谐波电流估计值,同时更新区间后验误差矩阵,以进行下一时刻的谐波电流估计,直到当前时刻k不小于设定时刻N则停止迭代,如下所示:
式中,上标m表示区间数的中点,上标r表示区间数的半径,上标-1表示对矩阵求逆;Kk+1为k+1时刻的增益矩阵;R为噪声误差矩阵;G为单位矩阵;nx、ny为区间矩阵中的列数与行数;HI为区间量测矩阵;Hr,ij表示除(i,j)之外的元素均为零的半径量测矩阵,Hm为中点量测矩阵,由HI的中点构成;表示k+1时刻的后验区间谐波电流估计值,即校正后的区间谐波电流最优估计值;/>为k+1时刻的区间观测值;/>为k+1时刻的后验区间误差矩阵。/>表示/>的误差最优上界矩阵,即/>鉴于原式(10)中式子较长,因此将部分参数简写,由单一参数替代,如式(8)(9)为所示。
其中最优上界通过下式获取:
参数取值如下:
式中,上标-1在此指数值的倒数;tr()表示矩阵的迹;MI为区间对称矩阵;diag()为对角矩阵;Mr,ij表示除(i,j)之外的元素均为零的半径矩阵;Mr为半径矩阵;Mm为中点矩阵,由MI的中点构成;为MI最优上界的平方形式;b表示使区间矩阵的上界最优的取值参数;下标mid对应中点矩阵Mm,下标ii对应半径对角矩阵diag(Mr),下标kl、ij分别对应除(k,l)和(i,j)之外的元素均为零的半径矩阵Mr,kl和Mr,ij。
根据半正定矩阵性质,如果M≥N≥0,则M1/2≥N1/2≥0,将式转化为最终的最优上界。
基于谐波源节点与非谐波源节点之间的差异,定义平均零偏差αavg,计算谐波电流与零值之间的差值,以此评估定位结果:
其中c(·)表示区间中点,表示谐波电流区间估计值;Nm为监测样本总数;
当αavg小于判断阈值l时,表明该节点为非谐波源节点;反之,当αavg大于等于判断阈值l时,则为谐波源节点。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
Claims (3)
1.一种基于区间动态状态估计的谐波源定位方法,其特征在于,包括以下步骤:
采用区间数分别描述线路参数与量测误差的不确定性,建立区间谐波状态估计模型;
进行量测优化配置;
基于区间谐波状态估计模型,进行区间动态谐波状态估计,并确定谐波源位置;
基于区间谐波状态估计模型,进行区间动态谐波状态估计,其具体方法如下:
基于误差上界最优的区间卡尔曼滤波将增益区间矩阵化为点矩阵,其谐波电流区间值的保守性更低且易收敛,便于谐波源定位;
在预测阶段,获取区间谐波电流预测值以及区间先验误差矩阵,如下所示:
式中,上标-表示先验估计,上标+表示后验估计,上标I表示其元素均为区间数,下标k表示k时刻的量,下标k+1表示k+1时刻的量,即下一时刻,上标^表示估计值;表示k+1时刻的先验区间误差矩阵,即区间谐波电流预测值与真实值之间的误差;/>表示k时刻的后验区间误差矩阵,即区间谐波电流最优估计值与真实值之间的误差;/>表示k时刻的后验区间谐波电流估计值;/>表示k+1时刻的先验区间谐波电流估计值,即预测值;A为状态转移矩阵,相邻时间内的谐波电流保持不变,定为单位矩阵;Q为系统误差矩阵;
在校正阶段,通过增益矩阵并结合量测量修正区间谐波电流预测值,以此获取最优区间谐波电流估计值,同时更新后验区间误差矩阵,以进行下一时刻的谐波电流估计,直到当前时刻k不小于设定时刻N则停止迭代,如下所示:
式中,上标m表示区间数的中点,上标r表示区间数的半径,上标-1表示对矩阵求逆;Kk+1为k+1时刻的增益矩阵;R为噪声误差矩阵;G为单位矩阵;nx、ny为区间矩阵中的列数与行数;HI为区间量测矩阵;Hr,ij表示除(i,j)之外的元素均为零的半径量测矩阵,Hm为中点量测矩阵,由HI的中点构成;表示k+1时刻的后验区间谐波电流估计值,即校正后的区间谐波电流最优估计值;/>为k+1时刻的区间观测值;/>为k+1时刻的后验区间误差矩阵;/>表示的误差最优上界矩阵,即/>鉴于原式(10)中式子较长,因此将部分参数简写,由单一参数替代,如式(8)(9)所示;
其中最优上界通过下式获取:
参数取值如下:
式中,上标-1在此表示取倒数;tr()表示矩阵的迹;MI为区间对称矩阵;diag()为对角矩阵;Mr,ij表示除(i,j)之外的元素均为零的半径矩阵;Mr为半径矩阵;Mm为中点矩阵,由MI的中点构成;为MI最优上界的平方形式;β表示使区间矩阵的上界最优的取值参数;下标mid对应中点矩阵Mm,下标ii对应半径对角矩阵diag(Mr),下标kl、ij分别对应除(k,l)和(i,j)之外的元素均为零的半径矩阵Mr,kl和Mr,ij;
根据半正定矩阵性质,如果M≥N≥0,则M1/2≥N1/2≥0,将式(13)转化为最终的最优上界;
基于谐波源节点与非谐波源节点之间的差异,定义平均零偏差αavg,计算谐波电流与零值之间的差值,以此评估定位结果:
其中c(·)表示区间中点,表示谐波电流区间估计值,Nm表示监测样本总数;
当αavg小于判断阈值λ时,表明该节点为非谐波源节点;反之,则为谐波源节点。
2.根据权利要求1所述的一种基于区间动态状态估计的谐波源定位方法,其特征在于,建立区间谐波状态估计模型的具体方法如下:
根据量测装置采集数据类型,将节点谐波电压以及支路谐波电流作为量测数据对象;
节点谐波电压的量测方程为:
支路谐波电流的量测方程为:
其中,为节点谐波电压,/>为节点阻抗矩阵,/>为谐波注入电流,/>为支路谐波电流,/>分别表示对地谐波导纳和支路谐波导纳,ij表示节点i与节点j之间的支路,ii表示节点i与地之间的支路,h为谐波频次,/>表示节点i对应的第h次节点谐波电压,/>表示谐波节点阻抗矩阵的第i行;
计及量测误差与线路参数的不确定性,搭建区间谐波状态估计模型:
其中,上标I表示该数为区间数;zI为量测量区间形式,即下标k、kl分别表示网络中能够测量到的节点和支路信息,zI由考虑量测误差的量测节点谐波电压和量测支路谐波电流区间值构成;HI为量测矩阵区间形式,由式(1)(2)构成,其中的元素均为考虑线路不确定性后的区间数;Ih I为谐波注入电流区间形式,即为状态量,作为评判谐波来源的标准。
3.根据权利要求1所述的一种基于区间动态状态估计的谐波源定位方法,其特征在于,进行量测优化配置的具体方法如下:
根据系统完全可观性要求,量测优化配置需让全网节点均可观,测量规则如下:
1)若节点存在量测装置,则该节点的状态完全可观;
2)在某节点电压可观时,通过支路电流量测使对端节点的状态可观;
因此结合节点可观性定义,建立谐波量测优化配置的0-1规划模型:
式中,T为关联矩阵,E为n×1维的单位阵,β1和β2为权重系数,f1=XTX为量测装置的总数,f2=(E-AX)T(E-AX)反映冗余度大小,X为量测节点配置情况,其定义如下:
上述模型在满足完全可观约束的前提,实现量测的最优配置;上述模型采用离散二进制粒子群算法求解。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111556345.1A CN114236236B (zh) | 2021-12-17 | 2021-12-17 | 一种基于区间动态状态估计的谐波源定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111556345.1A CN114236236B (zh) | 2021-12-17 | 2021-12-17 | 一种基于区间动态状态估计的谐波源定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114236236A CN114236236A (zh) | 2022-03-25 |
CN114236236B true CN114236236B (zh) | 2024-02-06 |
Family
ID=80758544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111556345.1A Active CN114236236B (zh) | 2021-12-17 | 2021-12-17 | 一种基于区间动态状态估计的谐波源定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114236236B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116068271B (zh) * | 2023-04-06 | 2023-11-24 | 吉林大学 | 基于虚拟仪器的园区电力谐波分布与识别方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005077395A (ja) * | 2003-08-28 | 2005-03-24 | Takayoshi Hirata | 波形データの非調和的周波数分析法 |
EP2112753A1 (en) * | 2008-04-24 | 2009-10-28 | Advanced Digital Design, S.A. | Method and device for determining the rotor rotation speed of an asynchronous electric induction motor |
CN106124858A (zh) * | 2016-07-12 | 2016-11-16 | 大连理工大学 | 一种基于粒子滤波的电力系统谐波检测方法 |
CN109946518A (zh) * | 2019-03-27 | 2019-06-28 | 河南天通电力有限公司 | 基于贝叶斯方法的电力谐波信号分析方法与分析设备 |
CN110907702A (zh) * | 2019-10-30 | 2020-03-24 | 中国电力科学研究院有限公司 | 一种改进动态谐波估计方法和系统 |
CN112098721A (zh) * | 2020-08-13 | 2020-12-18 | 闽南理工学院 | 基于状态空间模型的谐波检测方法 |
-
2021
- 2021-12-17 CN CN202111556345.1A patent/CN114236236B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005077395A (ja) * | 2003-08-28 | 2005-03-24 | Takayoshi Hirata | 波形データの非調和的周波数分析法 |
EP2112753A1 (en) * | 2008-04-24 | 2009-10-28 | Advanced Digital Design, S.A. | Method and device for determining the rotor rotation speed of an asynchronous electric induction motor |
CN106124858A (zh) * | 2016-07-12 | 2016-11-16 | 大连理工大学 | 一种基于粒子滤波的电力系统谐波检测方法 |
CN109946518A (zh) * | 2019-03-27 | 2019-06-28 | 河南天通电力有限公司 | 基于贝叶斯方法的电力谐波信号分析方法与分析设备 |
CN110907702A (zh) * | 2019-10-30 | 2020-03-24 | 中国电力科学研究院有限公司 | 一种改进动态谐波估计方法和系统 |
CN112098721A (zh) * | 2020-08-13 | 2020-12-18 | 闽南理工学院 | 基于状态空间模型的谐波检测方法 |
Non-Patent Citations (3)
Title |
---|
Kalman Filtering with Harmonics Whitening for P Class Phasor Measurement Units;Amir Bashian 等;《2021 IEEE 11th International Workshop on Applied Measurements for Power Systems (AMPS)》;2-5 * |
基于区间运算的谐波用户典型工况分析;邵振国 等;《电力科学与技术学报》;第33卷(第4期);153-160 * |
粒子滤波算法研究及其在非线性估计中的应用;孟庆旭;《中国博士学位论文全文数据库工程科技Ⅱ辑》(第1期);45-50 * |
Also Published As
Publication number | Publication date |
---|---|
CN114236236A (zh) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107104442B (zh) | 计及参数模糊性的含风电场电力系统概率潮流计算方法 | |
KR101219545B1 (ko) | 전력계통에서의 최적화 기법을 적용한 파라미터 추정 방법 | |
CN112488874B (zh) | 一种数据驱动的配电网络拓扑估计与线路参数辨识方法 | |
CN113126019B (zh) | 一种智能电表误差远程估计方法、系统、终端和存储介质 | |
CN112559963B (zh) | 一种配电网动态参数辨识方法及装置 | |
CN112948757A (zh) | 一种基于改进皮尔逊相关系数的低压台区拓扑校验方法 | |
CN106980044B (zh) | 一种适应风电接入的电力系统谐波电流估计方法 | |
CN114236236B (zh) | 一种基于区间动态状态估计的谐波源定位方法 | |
CN115201563B (zh) | 一种基于联合熵的多谐波源定位方法及系统 | |
CN110443724A (zh) | 一种基于深度学习的电力系统快速状态估计方法 | |
CN112491096A (zh) | 一种用于生成电网仿真分析算例的方法及系统 | |
CN117972537B (zh) | 基于广域量测的电压互感器计量状态评估方法及系统 | |
CN114239796A (zh) | 一种基于扩展卡尔曼滤波的电力系统状态估计方法 | |
CN105071388B (zh) | 一种基于极大似然估计的配电网状态估计方法 | |
CN115965149A (zh) | 一种基于lstm算法模型的水质指标预测方法 | |
CN113783186B (zh) | 一种考虑配电网拓扑结构变化的电压预测方法 | |
CN107069710B (zh) | 计及新能源时空相关性的电力系统状态估计方法 | |
CN107977727B (zh) | 一种基于社会发展和气候因素预测光缆网阻断概率的方法 | |
CN113675854B (zh) | 一种考虑台区电压损耗的配网线变校验方法及装置 | |
CN108182529A (zh) | 一种微电网运行时的不确定因素辨识方法 | |
Chen et al. | A New Calibration Approach for Charging Facilities for Electric Vehicles via Machine Learning | |
CN115800269B (zh) | 配电网量测数据驱动的电压功率灵敏度拓扑约束估计方法 | |
CN113541143B (zh) | 一种基于elm-lstm的谐波预测方法 | |
CN117895920B (zh) | 通信链路故障下传感器网络分布式一致性卡尔曼滤波方法 | |
CN114236235A (zh) | 一种采用相似特征匹配的局部不可观系统谐波源定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |