CN114235192A - 一种柔性薄膜温度传感器、制备方法及物性检测方法 - Google Patents

一种柔性薄膜温度传感器、制备方法及物性检测方法 Download PDF

Info

Publication number
CN114235192A
CN114235192A CN202111588365.7A CN202111588365A CN114235192A CN 114235192 A CN114235192 A CN 114235192A CN 202111588365 A CN202111588365 A CN 202111588365A CN 114235192 A CN114235192 A CN 114235192A
Authority
CN
China
Prior art keywords
layer
temperature sensor
film temperature
flexible
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111588365.7A
Other languages
English (en)
Inventor
陈香
张劲
李星辉
刘泉
邹杰
范余银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Tianlu New Material Testing Co ltd
Original Assignee
Hunan Aerospace Tianlu New Material Testing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Tianlu New Material Testing Co ltd filed Critical Hunan Aerospace Tianlu New Material Testing Co ltd
Priority to CN202111588365.7A priority Critical patent/CN114235192A/zh
Publication of CN114235192A publication Critical patent/CN114235192A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种柔性薄膜温度传感器,由底部往上依次包括柔性基底层、绝缘层、功能层以及保护层,所述绝缘层与功能层间设置有过渡层,所述过渡层为Ta2O5层,所述Ta2O5层采用射频反应磁控溅射的方法沉积于绝缘层上。本发明还涉及该柔性薄膜传感器的制备方法和物性检测方法,本发明得到的柔性薄膜温度传感器能有效缓解薄膜伸缩开裂问题,且结构致密均匀,从而使得热接点的体积更小,热容量减小,提高灵敏度。制备过程中采用独特的物性检测方法,快速、便捷、准确地表征各层薄膜材料厚度、形貌及原子高温扩散浓度,进一步提高产品的次品检出率。

Description

一种柔性薄膜温度传感器、制备方法及物性检测方法
技术领域
本发明涉及温度传感器技术领域,具体涉及一种柔性薄膜温度传感器、制备方法及物性检测方法。
背景技术
柔性薄膜温度传感器广泛应用于医疗健康监测、运动、通信、航空航天、消防等领域,其根据将温度传感器与不同的柔性基底材料结合,制作成传感装置,能够非常方便的对复杂被测量物进行测量,具有附着力强、耐弯折、而且结构形式灵活多样的特点。
在不同基底上制备薄膜传感器需要构建不同的材料体系,在基底材料与薄膜热电偶材料之间需要沉积绝缘层以准确收集输出电信号,然而现有技术中存在的问题为高温下绝缘层薄膜容易伸缩开裂、严重的甚至产生脱落现象,严重影响薄膜传感器的使用寿命。
此外还存在的问题是,现有的柔性薄膜温度传感器的灵敏度有提升的空间。同时现有的柔性薄膜温度传感器是由多层膜组成的,各层薄膜的成分与形貌表征至关重要,对研究各层薄膜性能起着重要作用。众所周知,以金属为基底的多层薄膜大多采用切断横截面来表征各层材料物性参数,但这并不适用于柔性基底的多层薄膜表征,柔性基底一般比较薄,且易弯曲变形,切割截面后,无法直接研磨并测试,如何在柔性基底表征各层薄膜材料厚度、形貌及原子高温扩散浓度是难题。
因此本发明旨在开发一种柔性薄膜温度传感器及制备方法,以更好地满足实际需要。
发明内容
本发明所解决的技术问题在于提供一种柔性薄膜温度传感器及制备方法,以解决传统柔性薄膜温度传感器灵敏度低、多层膜易开裂脱落且断面不易表征的问题。
本发明所解决的技术问题采用以下技术方案来实现:
一种柔性薄膜温度传感器,由底部往上依次包括柔性基底层、绝缘层、功能层以及保护层,所述绝缘层与功能层间设置有过渡层,所述过渡层为Ta2O5层,所述Ta2O5层采用射频反应磁控溅射的方法沉积于绝缘层上。
进一步地,所述过渡层的厚度为1~10um。
进一步地,所述保护层为Al2O3层,保护层的厚度为3~10um。
进一步地,所述功能层为ITO/In2O3层,功能层的厚度为1~3um。
进一步地,所述绝缘层为单晶硅层,绝缘层的厚度为10~20um。
一种柔性薄膜温度传感器的制备方法,包括如下步骤:
1)准备柔性基底材料备用;
2)将所述绝缘层所需的材料作为靶材,通入纯度99.99%氧气及纯度为99.99%氩气的混合气体作为工作气体,采用磁控溅射的方式将绝缘层沉积于所述柔性基底材料上,磁控溅射功率为300~500w
3)绝缘层沉积完成后,向真空室通入纯度大于99.99%的氩气,调节两磁场电源电流和加于靶上的溅射电压,在绝缘层上依次沉积过渡层、功能层和保护层;
4)进行退火处理;
5)退火结束,在真空室内冷却后取出即可。
进一步地,步骤4)中,退火温度范围为800~1300℃,退火时间维持1~50h。
优选的,步骤4)中,退火温度范围为800℃,退火时间维持1h。
进一步地,步骤3)中,磁场电源电流为15~18mA,加于靶上的溅射电压为400~500V。
一种柔性薄膜温度传感器的物性检测方法,针对所述的柔性薄膜温度传感器进行物性检测,包括如下步骤:
S1、将所述柔性薄膜温度传感器切割后形成断面,将所述断面用固化剂进行固化处理;
S2、将固化处理后的所述断面表面进行研磨抛光处理,直至所述断面上的结构层露出完整;
S3、将所述断面进行喷金处理和加热处理;
S4、利用场发射扫描电镜进行观测,对各层薄膜厚度进行拍照和记录;将所述场发射扫描电镜继续放大倍数观测各结构层的形貌并进行拍照和记录;
S5、继续进行加热处理,加热处理结束后对所述断面由柔性基底层往保护层方向进行线性能谱扫描,观测各结构层以及结构层沿深度方向的原子浓度。
首先对柔性薄膜温度传感器进行预处理,采用树脂固化方法将柔性薄膜温度传感器固化,然后对其断面表面研磨抛光处理,使得多次薄膜完整并平整的暴露出来,提高各膜层厚度、形貌以及原子浓度分布的测试准确性。
进一步地,步骤S2中,研磨抛光处理采用分段研磨的方式,第一阶段研磨选用砂纸400~500目,压力15~20N,研磨转速800~900rpm;第二阶段研磨选用砂纸1000~1200目,压力15~20N,研磨转速600~700rpm;第三阶段研磨选用砂纸2000~2200目,压力10~15N,转速600~700rpm。
有益效果:本发明在研发过程中,发现传统柔性薄膜传感器高温下容易伸缩开裂是由于基底材料与绝缘层材料的热膨胀系数相差较大、高温下热膨胀系数不匹配导致的产生了应变现象,因此,本发明通过增加独特过渡层的添加,有效缓解薄膜伸缩开裂问题。
本发明所述的柔性薄膜温度传感器的制备方法成膜速度快、对膜层损伤小、各结构层粘附性好,且结构致密均匀,平整光滑,而且很薄,从而使得热接点的体积更小,热容量减小,提高灵敏度。
制备过程中采用独特的物性检测方法,快速、便捷、准确地表征各层薄膜材料厚度、形貌及原子高温扩散浓度,进一步提高产品的次品检出率,保证产品的质量稳定。
附图说明
图1为本发明所述的柔性薄膜温度传感器的切面示意图。
图2为本发明所述的柔性薄膜温度传感器的电阻测试结果。
图3为本发明所述的溅射有过渡层的柔性薄膜温度传感器的开裂情况。
图4为未溅射过渡层的柔性薄膜温度传感器的开裂情况。
图5为不同退火温度和退火时间对柔性薄膜温度传感器脱落程度的影响。
图6为常规检测方法得到的原子浓度信号检测结果。
图7为本发明所述的检测方法得到的原子浓度信号检测结果。
其中:1、柔性基底层;2、绝缘层;3、过渡层;4、功能层;5、保护层。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例进一步阐述本发明。
所述的柔性薄膜温度传感器,由底部往上依次包括柔性基底层1、绝缘层2、功能层4以及保护层5,所述绝缘层2与功能层4间设置有过渡层3,所述过渡层3为Ta2O5层,过渡层3的厚度为1um,所述Ta2O5层采用射频反应磁控溅射的方法沉积于绝缘层2上。所述保护层5为Al2O3层,保护层5的厚度为3um。所述功能层4为ITO/In2O3层,功能层4的厚度为1um。所述绝缘层2为单晶硅层,绝缘层2的厚度为10um。所述的柔性薄膜温度传感器的切面如图1所示。
所述柔性薄膜温度传感器的制备方法,包括如下步骤:
1)准备柔性基底材料备用;
2)将所述绝缘层所需的材料作为靶材,通入纯度99.99%氧气及纯度为99.99%氩气的混合气体作为工作气体,采用磁控溅射的方式将绝缘层沉积于所述柔性基底材料上,磁控溅射功率为300~500w;
3)绝缘层沉积完成后,将真空室抽真空至4×10-3Pa以下,向真空室通入纯度大于99.99%的氩气,调节两磁场电源电流和加于靶上的溅射电压,磁场电源电流为15~18mA,加于靶上的溅射电压为400~500V,在绝缘层上依次沉积过渡层、功能层和保护层;
4)进行退火处理,退火温度范围为800~1300℃,退火时间维持1~50h;
5)退火结束,在真空室内冷却后取出即得到产品。
所述柔性薄膜温度传感器进行物性检测包括如下步骤:
S1、将所述柔性薄膜温度传感器切割后形成断面,将所述断面用固化剂进行固化处理;
S2、将固化处理后的所述断面表面进行研磨抛光处理,直至所述断面上的结构层露出完整;研磨抛光处理采用分段研磨的方式,第一阶段研磨选用砂纸400目,压力15N,研磨转速800rpm;第二阶段研磨选用砂纸1000目,压力15N,研磨转速600rpm;第三阶段研磨选用砂纸2000目,压力10N,转速600rpm;
S3、将所述断面进行喷金处理和加热处理;喷金处理可增加导电性,放大倍数倍后图片更清晰;
S4、利用场发射扫描电镜进行观测,对各层薄膜厚度进行拍照和记录;将所述场发射扫描电镜继续放大倍数观测各结构层的形貌并进行拍照和记录;
S5、继续进行加热处理,加热处理结束后对所述断面由柔性基底层往保护层方向进行线性能谱扫描,观测各结构层以及结构层沿深度方向的原子浓度。
结果检测:
1、将得到的柔性薄膜温度传感器进行不同温度下的电阻测试,以10℃为温度间隔,升温速率2℃/min,测试-40℃~80℃之间的电阻温度曲线,如图2所示,经拟合其线性度和电阻温度系数分别为0.998、0.22%/℃。
2、开裂程度比较,未溅射过渡层的产品与溅射有过渡层的产品开裂情况如图3和图4所示,结果表明,溅射有过渡层的产品由于减少了应力,各膜层间开裂少,而未溅射过渡层的产品开裂多而明显。
3、验证不同退火温度和退火时间对柔性薄膜温度传感器脱落程度的影响,结果如图5所示。结果证明,在一定范围内,退火处理温度越高、退火处理时间越长,薄膜脱落程度越高。
4、将常规检测方法以及本发明所述的物性检测方法进行对比,结果如图6和图7所示,其中常规检测方法为常用的通过切断柔性薄膜温度传感器的横截面而直接表征各层材料物性参数。结果表明常规检测方法得到的断面膜层不平整,深度方向的原子浓度信号很弱,测试不准确,而本发明所述的方法得到的断面平整,深度方向的原子浓度信号很强,测试准确。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

1.一种柔性薄膜温度传感器,其特征在于,由底部往上依次包括柔性基底层、绝缘层、功能层以及保护层,所述绝缘层与功能层间设置有过渡层,所述过渡层为Ta2O5层,所述Ta2O5层采用射频反应磁控溅射的方法沉积于绝缘层上。
2.根据权利要求1所述的柔性薄膜温度传感器,其特征在于,所述过渡层的厚度为1~10um。
3.根据权利要求1所述的柔性薄膜温度传感器,其特征在于,所述保护层为Al2O3层,保护层的厚度为3~10um。
4.根据权利要求1所述的柔性薄膜温度传感器,其特征在于,所述功能层为ITO/In2O3层,功能层的厚度为1~3um。
5.根据权利要求1所述的柔性薄膜温度传感器,其特征在于,所述绝缘层为单晶硅层,绝缘层的厚度为10~20um。
6.一种如权利要求1~5任一所述的柔性薄膜温度传感器的制备方法,其特征在于,包括如下步骤:
1)准备柔性基底材料备用;
2)将所述绝缘层所需的材料作为靶材,通入纯度99.99%氧气及纯度为99.99%氩气的混合气体作为工作气体,采用磁控溅射的方式将绝缘层沉积于所述柔性基底材料上,磁控溅射功率为300~500w
3)绝缘层沉积完成后,向真空室通入纯度大于99.99%的氩气,调节两磁场电源电流和加于靶上的溅射电压,在绝缘层上依次沉积过渡层、功能层和保护层;
4)进行退火处理;
5)退火结束,在真空室内冷却后取出即可。
7.根据权利要求6所述的柔性薄膜温度传感器的制备方法,其特征在于,退火温度范围为800~1300℃,退火时间维持1~50h。
8.根据权利要求6所述的柔性薄膜温度传感器的制备方法,其特征在于,步骤3)中,磁场电源电流为15~18mA,加于靶上的溅射电压为400~500V。
9.一种柔性薄膜温度传感器的物性检测方法,其特征在于,针对权利要求1~5任一所述的柔性薄膜温度传感器进行物性检测,包括如下步骤:
S1、将所述柔性薄膜温度传感器切割后形成断面,将所述断面用固化剂进行固化处理;
S2、将固化处理后的所述断面表面进行研磨抛光处理,直至所述断面上的结构层露出完整;
S3、将所述断面进行喷金处理和加热处理;
S4、利用场发射扫描电镜进行观测,对各层薄膜厚度进行拍照和记录;将所述场发射扫描电镜继续放大倍数观测各结构层的形貌并进行拍照和记录;
S5、继续进行加热处理,加热处理结束后对所述断面由柔性基底层往保护层方向进行线性能谱扫描,观测各结构层以及结构层沿深度方向的原子浓度。
10.根据权利要求9所述的柔性薄膜温度传感器的物性检测方法,其特征在于,步骤S2中,研磨抛光处理采用分段研磨的方式,第一阶段研磨选用砂纸400~500目,压力15~20N,研磨转速800~900rpm;第二阶段研磨选用砂纸1000~1200目,压力15~20N,研磨转速600~700rpm;第三阶段研磨选用砂纸2000~2200目,压力10~15N,转速600~700rpm。
CN202111588365.7A 2021-12-23 2021-12-23 一种柔性薄膜温度传感器、制备方法及物性检测方法 Pending CN114235192A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111588365.7A CN114235192A (zh) 2021-12-23 2021-12-23 一种柔性薄膜温度传感器、制备方法及物性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111588365.7A CN114235192A (zh) 2021-12-23 2021-12-23 一种柔性薄膜温度传感器、制备方法及物性检测方法

Publications (1)

Publication Number Publication Date
CN114235192A true CN114235192A (zh) 2022-03-25

Family

ID=80761817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111588365.7A Pending CN114235192A (zh) 2021-12-23 2021-12-23 一种柔性薄膜温度传感器、制备方法及物性检测方法

Country Status (1)

Country Link
CN (1) CN114235192A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119043537A (zh) * 2024-10-31 2024-11-29 金华富芯微纳电子科技有限公司 Mems压力传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651791A (zh) * 2015-02-18 2015-05-27 南京汇金锦元光电材料有限公司 节能型柔性透明导电薄膜及其制备方法
KR20150064930A (ko) * 2013-12-04 2015-06-12 한국생산기술연구원 유연성을 갖는 czts 박막 제조방법, 이를 이용한 박막 태양전지 제조방법 및 박막 태양전지
CN105734512A (zh) * 2016-03-16 2016-07-06 上海理工大学 一种ZnO/Mo/ZnO透明导电薄膜的制备方法
CN108103459A (zh) * 2017-11-23 2018-06-01 青岛大学 一种高电阻温度系数氧化镍铬热敏薄膜制备方法
CN108168734A (zh) * 2018-02-08 2018-06-15 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法
CN108801515A (zh) * 2018-05-30 2018-11-13 中国电子科技集团公司第四十八研究所 一种TiON薄膜压力传感器及其制备方法
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN111122629A (zh) * 2020-01-08 2020-05-08 上海神力科技有限公司 一种薄膜材料断面扫描电镜样品制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150064930A (ko) * 2013-12-04 2015-06-12 한국생산기술연구원 유연성을 갖는 czts 박막 제조방법, 이를 이용한 박막 태양전지 제조방법 및 박막 태양전지
CN104651791A (zh) * 2015-02-18 2015-05-27 南京汇金锦元光电材料有限公司 节能型柔性透明导电薄膜及其制备方法
CN105734512A (zh) * 2016-03-16 2016-07-06 上海理工大学 一种ZnO/Mo/ZnO透明导电薄膜的制备方法
CN108103459A (zh) * 2017-11-23 2018-06-01 青岛大学 一种高电阻温度系数氧化镍铬热敏薄膜制备方法
CN108168734A (zh) * 2018-02-08 2018-06-15 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法
CN108801515A (zh) * 2018-05-30 2018-11-13 中国电子科技集团公司第四十八研究所 一种TiON薄膜压力传感器及其制备方法
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN111122629A (zh) * 2020-01-08 2020-05-08 上海神力科技有限公司 一种薄膜材料断面扫描电镜样品制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119043537A (zh) * 2024-10-31 2024-11-29 金华富芯微纳电子科技有限公司 Mems压力传感器及其制备方法
CN119043537B (zh) * 2024-10-31 2025-06-27 金华富芯微纳电子科技有限公司 Mems压力传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN107267944B (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
CN109338290B (zh) 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN108191258B (zh) 一种dlc薄膜增硬玻璃及其制备方法
Shao et al. Pt thin-film resistance temperature detector on flexible Hastelloy tapes
CN105301027A (zh) 一种透射/扫描电镜力、热耦合场加载的原位实验平台
CN107012425B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
CN114235192A (zh) 一种柔性薄膜温度传感器、制备方法及物性检测方法
CN102867907A (zh) 一种制备柔性超导薄膜的方法
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
Liu et al. Effect of thermally grown Al2O3 on electrical insulation properties of thin film sensors for high temperature environments
CN105274475A (zh) 一种膜传感器及其制备方法
CN101202144B (zh) 一种制备Fe-Mn-Si磁性形状记忆合金薄膜的方法
Liu et al. Study on the characteristics of thermo-electrodes of various deposition parameters for the flexible temperature sensor
CN102703873B (zh) 极窄回滞曲线宽度高电阻温度系数二氧化钒薄膜制备方法
CN107478798B (zh) 一种测量块体金属玻璃结构弛豫激活能的方法
CN103921500B (zh) 一种薄膜应变计及其制备方法
CN113755793A (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法
CN105803395B (zh) 一种能降低介电损耗的多层Ni/BaTiO3薄膜的制备方法
CN114112085A (zh) 一种高效率mems高温薄膜热电偶传感器的制造方法
CN116399398A (zh) 一种应变温度双参量高温薄膜传感器及其制备方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
Wang et al. Effect of annealing on the performance of nickel thermistor on polyimide substrate
CN106784303B (zh) 一种可弯曲的超大不饱和磁阻材料制备方法及制备的材料
CN205246575U (zh) 一种透射/扫描电镜力、热耦合场加载的原位实验平台
CN111175325B (zh) 一种制备薄壁管材压平测织构试样的方法及专用装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination