CN105734512A - 一种ZnO/Mo/ZnO透明导电薄膜的制备方法 - Google Patents

一种ZnO/Mo/ZnO透明导电薄膜的制备方法 Download PDF

Info

Publication number
CN105734512A
CN105734512A CN201610148702.3A CN201610148702A CN105734512A CN 105734512 A CN105734512 A CN 105734512A CN 201610148702 A CN201610148702 A CN 201610148702A CN 105734512 A CN105734512 A CN 105734512A
Authority
CN
China
Prior art keywords
zno
reative cell
sputtering
substrate
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610148702.3A
Other languages
English (en)
Inventor
廉吉庆
张大伟
王小平
王丽军
王兆芳
宁仁敏
宋明丽
柯小龙
陈海将
苏德龙
管璐璐
林承军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610148702.3A priority Critical patent/CN105734512A/zh
Publication of CN105734512A publication Critical patent/CN105734512A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明提供了一种ZnO/Mo/ZnO透明导电薄膜的制备方法,室温下先将基片清洗,用氮气枪吹干;然后将ZnO靶材、Mo靶材和基片放入磁控溅射反应室,将反应室抽真空,打开温控电源,将基片加热,向反应室通入氩气和氧气的混合气,开启ZnO靶材一侧的射频电源,溅射ZnO靶材;将反应室重新抽真空,开启Mo靶材一侧的射频电源,溅射Mo靶材;将反应室重新抽真空,再开启ZnO靶材一侧的射频电源,溅射ZnO靶材;然后将样品取出,放到马弗炉中退火,冷却后得到ZnO/Mo/ZnO叠层结构透明导电薄膜。本发明利用ZnO的良好光电性能和Mo的低电阻率,制备成叠层ZnO/Mo/ZnO透明导电薄膜。

Description

一种ZnO/Mo/ZnO透明导电薄膜的制备方法
技术领域
本发明属于光电薄膜材料领域,具体涉及一种ZnO/Mo/ZnO透明导电薄膜的制备方法。
背景技术
透明导电材料作为多数电子显示器件中不可或缺的组成部分而广泛地应用于各种平板显示、触摸式显示屏、薄膜太阳能电池等很多领域。
20世纪初,透明导电CdO薄膜的出现引起研究者的重视,并从此开启了透明导电氧化物薄膜(TCO)的研究热潮。TCO薄膜导电性能良好、可见光波段透射性高,并且在红外范围内的反射性能良好。并包括In2O3基薄膜、SnO2基薄膜和ZnO基薄膜三大类,其中铟锡氧化物(In2O3:Sn,简称ITO)薄膜是应用最广的TCO薄膜,其光电性能优良、制备简单且易于刻蚀。但ITO薄膜的方阻较大,难以应用于大尺寸平面显示,此外,铟属稀缺金属、有毒,且生产成本大,不能满足平板显示器向大面积和快速显示发展的应用要求。
随着掺杂和制膜工艺的日趋成熟,研究者开始对ZnO薄膜进行掺杂研究。ZnO基薄膜与ITO薄膜相比,价格低廉、无毒、制备温度较低且制膜方法多,往ZnO中掺入B、F、Al之后其薄膜的光电性能及热稳定性都得到提高。其中,ZnO:Al(简称AZO)是最具潜力的一种ZnO基透明导电薄膜,其低电阻率、高可见光透过率使其达到了相关设备器件中的实验要求。但ZnO基薄膜的制膜工艺不易掌控,产品重复性不好,未能满足工业化生产的要求。掺杂条件与工艺还在不断摸索中。
目前国内外有关ZnO的掺杂技术的报道非常多,但有关ZnO/Mo/ZnO叠层透明导电薄膜的制备及研究几乎没有。掺杂工艺的不均匀、不稳定性促使我们寻求制备的新方法,双射频磁控溅射技术在薄膜材料制备上的应用史无前例。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种ZnO/Mo/ZnO透明导电薄膜的制备方法,所述的这种ZnO/Mo/ZnO透明导电薄膜的制备方法要解决现有技术中的ZnO基薄膜的制膜工艺不易掌控、产品重复性不好,未能满足工业化生产的要求的技术问题。
本发明提供了一种ZnO/Mo/ZnO透明导电薄膜的制备方法,包括如下步骤:
1)室温下将基片清洗,然后用氮气枪将其吹干;
2)打开磁控溅射反应室,把纯度为99.999%的ZnO靶材和Mo靶材固定在反应室中,将基片放入磁控溅射反应室,将反应室抽真空到9.9×10-4Pa,打开温控电源,将基片加热到300~400℃,待基片温度均匀后,向反应室通入氩气和氧气的混合气,所述的氩气和氧气的体积比为(3~8):1,开启ZnO靶材一侧的射频电源,将溅射功率调至40~100W,调节压强至2~5Pa,打开挡板,溅射8~16min40s,ZnO厚度为45~65nm;
3)将反应室重新抽真空至9.9×10-4Pa,开启Mo靶材一侧的射频电源,将溅射功率调至75~100W,向反应室通入氩气,调节压强至0.4~0.6Pa,打开挡板,溅射10~40s,Mo层厚度在5~15nm;
4)将反应室重新抽真空至9.9×10-4Pa,再开启ZnO靶材一侧的射频电源,将溅射功率调至40~100W,向反应室通入氩气和氧气的混合气,所述的氩气和氧气的体积比为(3~8):1,调节压强至2~5Pa,打开挡板,溅射8~16min40s,ZnO厚度为45~65nm;
5)待反应室温度降至常温,将样品取出,放到马弗炉中在150~400℃退火1h,冷却至常温,得到ZnO/Mo/ZnO叠层结构透明导电薄膜。
进一步的,室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗。
进一步的,所述的基片是载玻片。
本发明利用双射频磁控溅射技术,利用ZnO的良好光电性能和Mo的低电阻率,制备成叠层ZnO/Mo/ZnO透明导电薄膜,Mo的加入提高了膜系的载流子浓度,提高了薄膜的导电性能,Mo离子与Zn离子离子半径接近,在Mo/ZnO晶界处晶格畸变小,可减少界面对光子的散射,保证光学透过率在80%以上。本发明利用双射频磁控溅射系统制备出膜厚均匀,导电性能优异,光学透过率良好的ZnO/Mo/ZnO透明导电薄膜,其电阻率低至9.3×10-5Ω·cm,400~800nm平均透过率达到80%以上。且此方法镀膜均匀,薄膜质量较高。
本发明和已有技术相比,其技术进步是显著的。本发明工艺简单,双射频磁控溅射,易于控制条件,且制备的薄膜均匀性好,薄膜性能优异,可用于制造平板显示器、太阳能电池、发光二极管、手机等光电显示器件的电极材料。
附图说明
图1为本发明方法制备的ZnO/Mo/ZnO叠层透明导电薄膜示意图,其中1为基片,2为ZnO薄膜层,3为中间Mo薄膜层。
图2为实例1不同退火温度下的ZnO/Mo/ZnO透明导电薄膜在400~800nm之间的透过率曲线。
图3为实例1制备的ZnO/Mo/ZnO透明导电薄膜的SEM图像。
具体实施方式
下面对本发明实施例作详细说明。本实施例以本发明技术方案为前提下进行实施,给出了详细的实施方案和操作过程。但本发明的保护范围不限于下述实施例。
实施例1
室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗20min。之后用高纯度的氮气枪将其吹干。打开反应室把纯度为99.999%ZnO靶材和Mo靶材固定(ZnO在左侧),将样品放入磁控溅射反应室,将反应室抽真空到9.0×10-4Pa。打开温控电源,将基片加热到300℃。待基片温度均匀后,向反应室通入高纯度的氩气氧气(氩氧比例为3:1),开启左侧射频电源,将溅射功率调至40W,调节压强至2Pa,打开挡板,溅射16min40s,ZnO厚度约50nm。
将反应室重新抽真空至9.0×10-4Pa,开启右侧射频电源,将溅射功率调至75W,向反应室通入氩气,调节压强至0.5Pa,打开挡板,溅射26s,Mo厚度约10nm。
将反应室重新抽真空至9.0×10-4Pa,再开启左侧射频电源,将溅射功率调至40W,向反应室通入氩气氧气(氩气氧气比例为3:1),调节压强至2Pa,打开挡板,溅射16min40s,ZnO厚度约50nm。
待反应室温度降至常温,将样品取出,放到马弗炉中在150~400℃退火1h。冷却至常温,得到厚度约110nm的ZnO/Mo/ZnO叠层结构透明导电薄膜。
对实施例1在不同退火温度下可见光范围内的透过率和表面形貌进行表征,由图2可见,在250℃下退火1h得到的ZnO/Mo/ZnO透明导电薄膜在400-800nm波段的光学透过率约为82%。由图3可见,ZnO/Mo/ZnO薄膜表面形貌均匀,结晶程度好,界面散射和吸收少,有利于提高光学透过率。
实施例2
室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗20min。之后用高纯度的氮气枪将其吹干。打开反应室把纯度为99.999%ZnO靶材和Mo靶材固定(ZnO在左侧),将样品放入磁控溅射反应室,将反应室抽真空到9.0×10-4Pa。打开温控电源,将基片加热到350℃。待基片温度均匀后,向反应室通入高纯度的氩气氧气(氩氧比例为4:1),开启左侧射频电源,将溅射功率调至60W,调节压强至2Pa,打开挡板,溅射12min,ZnO厚度约45nm。
将反应室重新抽真空至9.0×10-4Pa,开启右侧射频电源,将溅射功率调至85W,向反应室通入氩气,调节压强至0.5Pa,打开挡板,溅射10s,Mo厚度约5nm。
将反应室重新抽真空至9.0×10-4Pa,再开启左侧射频电源,将溅射功率调至60W,向反应室通入氩气氧气(氩气氧气比例为4:1),调节压强至2Pa,打开挡板,溅射12min,ZnO厚度约45nm。
待反应室温度降至常温,将样品取出,放到马弗炉中在250℃退火1h。冷却至常温,得到厚度约95nm的ZnO/Mo/ZnO叠层结构透明导电薄膜。
实施例3
室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗20min。之后用高纯度的氮气枪将其吹干。打开反应室把纯度为99.999%ZnO靶材和Mo靶材固定(ZnO在左侧),将样品放入磁控溅射反应室,将反应室抽真空到9.0×10-4Pa。打开温控电源,将基片加热到300℃。待基片温度均匀后,向反应室通入高纯度的氩气氧气(氩氧比例为6:1),开启左侧射频电源,将溅射功率调至80W,调节压强至2Pa,打开挡板,溅射10min,ZnO厚度约65nm。
将反应室重新抽真空至9.0×10-4Pa,开启右侧射频电源,将溅射功率调至75W,向反应室通入氩气,调节压强至0.5Pa,打开挡板,溅射20s,Mo厚度约8nm。
将反应室重新抽真空至9.0×10-4Pa,再开启左侧射频电源,将溅射功率调至80W,向反应室通入氩气氧气(氩气氧气比例为6:1),调节压强至2Pa,打开挡板,溅射10min,ZnO厚度约65nm。
待反应室温度降至常温,将样品取出,放到马弗炉中在250℃退火1h。冷却至常温,得到厚度约138nm的ZnO/Mo/ZnO叠层结构透明导电薄膜。
实施例4
室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗20min。之后用高纯度的氮气枪将其吹干。打开反应室把纯度为99.999%ZnO靶材和Mo靶材固定(ZnO在左侧),将样品放入磁控溅射反应室,将反应室抽真空到9.0×10-4Pa。打开温控电源,将基片加热到400℃。待基片温度均匀后,向反应室通入高纯度的氩气氧气(氩氧比例为8:1),开启左侧射频电源,将溅射功率调至80W,调节压强至2Pa,打开挡板,溅射8min,ZnO厚度约55nm。
将反应室重新抽真空至9.0×10-4Pa,开启右侧射频电源,将溅射功率调至100W,向反应室通入氩气,调节压强至0.5Pa,打开挡板,溅射16s,Mo厚度约12nm。
将反应室重新抽真空至9.0×10-4Pa,再开启左侧射频电源,将溅射功率调至80W,向反应室通入氩气氧气(氩气氧气比例为8:1),调节压强至2Pa,打开挡板,溅射8min,ZnO厚度约55nm。
待反应室温度降至常温,将样品取出,放到马弗炉中在250℃退火1h。冷却至常温,得到厚度约122nm的ZnO/Mo/ZnO叠层结构透明导电薄膜。
实施例5
室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗20min。之后用高纯度的氮气枪将其吹干。打开反应室把纯度为99.999%ZnO靶材和Mo靶材固定(ZnO在左侧),将样品放入磁控溅射反应室,将反应室抽真空到9.0×10-4Pa。打开温控电源,将基片加热到400℃。待基片温度均匀后,向反应室通入高纯度的氩气氧气(氩氧比例为3:1),开启左侧射频电源,将溅射功率调至100W,调节压强至2Pa,打开挡板,溅射8min,ZnO厚度约60nm。
将反应室重新抽真空至9.0×10-4Pa,开启右侧射频电源,将溅射功率调至75W,向反应室通入氩气,调节压强至0.5Pa,打开挡板,溅射40s,Mo厚度约15nm。
将反应室重新抽真空至9.0×10-4Pa,再开启左侧射频电源,将溅射功率调至100W,向反应室通入氩气氧气(氩气氧气比例为3:1),调节压强至2Pa,打开挡板,溅射8min,ZnO厚度约60nm。
待反应室温度降至常温,将样品取出,放到马弗炉中在250℃退火1h。冷却至常温,得到厚度约135nm的ZnO/Mo/ZnO叠层结构透明导电薄膜。

Claims (3)

1.一种ZnO/Mo/ZnO透明导电薄膜的制备方法,其特征在于包括如下步骤:
1)室温下将基片清洗,然后用氮气枪将其吹干;
2)打开磁控溅射反应室,把纯度为99.999%的ZnO靶材和Mo靶材固定在反应室中,将基片放入磁控溅射反应室,将反应室抽真空到9.9×10-4Pa,打开温控电源,将基片加热到300~400℃,待基片温度均匀后,向反应室通入氩气和氧气的混合气,所述的氩气和氧气的体积比为(3~8):1,开启ZnO靶材一侧的射频电源,将溅射功率调至40~100W,调节压强至2~5Pa,打开挡板,溅射8~16min40s,ZnO厚度为45~65nm;
3)将反应室重新抽真空至9.9×10-4Pa,开启Mo靶材一侧的射频电源,将溅射功率调至75~100W,向反应室通入氩气,调节压强至0.4~0.6Pa,打开挡板,溅射10~40s,Mo层厚度在5~15nm;
4)将反应室重新抽真空至9.9×10-4Pa,再开启ZnO靶材一侧的射频电源,将溅射功率调至40~100W,向反应室通入氩气和氧气的混合气,所述的氩气和氧气的体积比为(3~8):1,调节压强至2~5Pa,打开挡板,溅射8~16min40s,ZnO厚度为45~65nm;
5)待反应室温度降至常温,将样品取出,放到马弗炉中在150~400℃退火1h,冷却至常温,得到ZnO/Mo/ZnO叠层结构透明导电薄膜。
2.根据权利要求1所述的一种ZnO/Mo/ZnO透明导电薄膜的制备方法,其特征在于:室温下将基片依次用无水乙醇、丙酮、去离子水超声清洗。
3.根据权利要求1所述的一种ZnO/Mo/ZnO透明导电薄膜的制备方法,其特征在于:所述的基片是载玻片。
CN201610148702.3A 2016-03-16 2016-03-16 一种ZnO/Mo/ZnO透明导电薄膜的制备方法 Pending CN105734512A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610148702.3A CN105734512A (zh) 2016-03-16 2016-03-16 一种ZnO/Mo/ZnO透明导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610148702.3A CN105734512A (zh) 2016-03-16 2016-03-16 一种ZnO/Mo/ZnO透明导电薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN105734512A true CN105734512A (zh) 2016-07-06

Family

ID=56251240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610148702.3A Pending CN105734512A (zh) 2016-03-16 2016-03-16 一种ZnO/Mo/ZnO透明导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105734512A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637204A (zh) * 2016-12-01 2017-05-10 梁结平 Ag/ZnO/Mg光电透明导电薄膜的沉积方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148761A (zh) * 2006-09-22 2008-03-26 王海斗 FeS/MoS2纳米多层膜及其制备方法
CN101398123A (zh) * 2007-09-29 2009-04-01 中国人民解放军装甲兵工程学院 一种WS2/MoS2固体润滑多层膜及其制备方法
CN101618615A (zh) * 2009-07-30 2010-01-06 上海工具厂有限公司 VC/Si3N4纳米多层涂层及其制备方法
CN103031556A (zh) * 2012-12-27 2013-04-10 沈阳工程学院 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148761A (zh) * 2006-09-22 2008-03-26 王海斗 FeS/MoS2纳米多层膜及其制备方法
CN101398123A (zh) * 2007-09-29 2009-04-01 中国人民解放军装甲兵工程学院 一种WS2/MoS2固体润滑多层膜及其制备方法
CN101618615A (zh) * 2009-07-30 2010-01-06 上海工具厂有限公司 VC/Si3N4纳米多层涂层及其制备方法
CN103031556A (zh) * 2012-12-27 2013-04-10 沈阳工程学院 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUNG-WEI WU 等: "Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering", 《MATERIALS LETTERS》 *
孙洪涛 等: "退火温度对ZnO/Mo/ZnO透明导电薄膜结构及光电性能的影响", 《材料科学与工程学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637204A (zh) * 2016-12-01 2017-05-10 梁结平 Ag/ZnO/Mg光电透明导电薄膜的沉积方法

Similar Documents

Publication Publication Date Title
El Hajj et al. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
CN105551579B (zh) 一种可电致变色的多层透明导电薄膜及其制备方法
CN103993288B (zh) 一种透明导电FTO/Ag/FTO复合薄膜的制备方法
CN105624625B (zh) 一种提高ZnO/Ag/ZnO透明导电膜光电性能的方法
CN103397303A (zh) 透明铌酸镁铋薄膜压控变容管的制备方法
CN108914077A (zh) 一种基于Nb2O5的透明导电氧化物薄膜及其制备方法
CN103031556B (zh) 一种ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法
KR101449258B1 (ko) 산화물 기반의 고 유연성 투명전극
CN108914064B (zh) 一种rpd用多元导电氧化物材料及其制备方法
CN102071402A (zh) 一种金属掺杂氧化锌基薄膜的制备方法
CN204884600U (zh) 一种用于智能调光玻璃的ito柔性导电膜
CN103924191A (zh) 在基片上镀制ito薄膜的方法
CN105734512A (zh) 一种ZnO/Mo/ZnO透明导电薄膜的制备方法
CN105489270B (zh) 一种夹层结构透明导电薄膜及其制备方法
CN108441833B (zh) 一种多层透明导电膜及其制备方法
CN103952678B (zh) 一种高迁移率的掺氟氧化锌基透明导电薄膜的制备方法
US20130334688A1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
CN105483630A (zh) 一种制备柔性azo薄膜的方法
CN102650044B (zh) 一种SGZO-Au-SGZO透明导电膜的制备方法
CN106637204A (zh) Ag/ZnO/Mg光电透明导电薄膜的沉积方法
CN105154841B (zh) 铋掺杂氧化锡薄膜的制备方法
CN104078238A (zh) 一种高调谐压控透明氧化镍薄膜电容器的制备方法
CN103014705A (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN105449035A (zh) 一种提高透明导电氧化物ITiO薄膜性能的方法
CN103996540A (zh) 全透型铋基焦绿石薄膜压控变容管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160706

WD01 Invention patent application deemed withdrawn after publication