CN114231814B - 一种无源真空维持吸气合金的制备方法及其应用 - Google Patents

一种无源真空维持吸气合金的制备方法及其应用 Download PDF

Info

Publication number
CN114231814B
CN114231814B CN202111553116.4A CN202111553116A CN114231814B CN 114231814 B CN114231814 B CN 114231814B CN 202111553116 A CN202111553116 A CN 202111553116A CN 114231814 B CN114231814 B CN 114231814B
Authority
CN
China
Prior art keywords
alloy
sample
film
room temperature
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111553116.4A
Other languages
English (en)
Other versions
CN114231814A (zh
Inventor
鲁涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jingwei Material Technology Co ltd
Original Assignee
Shanghai Jingwei Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jingwei Material Technology Co ltd filed Critical Shanghai Jingwei Material Technology Co ltd
Priority to CN202111553116.4A priority Critical patent/CN114231814B/zh
Publication of CN114231814A publication Critical patent/CN114231814A/zh
Application granted granted Critical
Publication of CN114231814B publication Critical patent/CN114231814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种无源真空维持吸气合金的制备方法及其应用,所述材料合金配方如下:主体元素46wt%‑99wt%、M10‑45.9wt%、M20‑20wt%;其中,所述主体元素为Y、Sc中的一种或两种;其它元素也是假日其中的一种或者其它元素的复合添加;主体元素为46wt%‑80wt%,所述M1为0%‑44wt%,M1为Ti和Zr的一种或者两种混合物,其含量为Ti、Zr分别0.1wt%‑44wt%;所述M2为0‑20wt%,M1为W和Mo的一种或者两种混合物,其分别0‑20wt%。本发明能够在较低的激活温度被激活,在室温及低环境压力下,具备高的吸收氢和一氧化碳的能力,其比表面高和孔隙度大,合金的吸气平衡压降低,有利于合金的吸气性能,能够使器件在无源真空环境下,维持器件的真空环境。

Description

一种无源真空维持吸气合金的制备方法及其应用
技术领域
本发明涉各种器件无源真空的维持,例如加速器管道及各种与真空强关联的传感器器件
背景技术
各种芯片器件及核医学、氢原子钟、离子加速器等需要高真空环境,有些真空是可以通过外源真空来维持,例如干泵、分子泵、离子泵等来维持器件的真空度,但这些泵需要电源系统,其应用必须在有电的情况下完成。对于一些便捷式真空器件或者应用于空间或航天上与真空度强关联的器件,无法实现有源真空,需要依赖与无源真空材料来维持其器件高真空性,而本发明无源真空维持材料的制备方法及其应用;能够吸收器件里面多余气体,维持器件的真空性。
发明内容
本发明的目的在于提出一种无源真空维持吸气合金的制备方法及其应用,这种合金材料能够在较低的激活温度被激活,在室温及低环境压力下,具备高的吸收氢和一氧化碳的能力,能够使器件在无源真空环境下,维持器件的真空环境。
本发明的目的是这样实现的:一种无源真空维持吸气合金的制备方法及其应用,所述材料合金配方如下:
主体元素 46wt%-99wt%
M1 0-45.9wt%
M2 0-20wt%
其中,所述主体元素为Y、Sc中的一种或两种;M1为Ti和Zr的一种或者两种混合物,所述M2为W和Mo的一种或者两种混合物。
优选的,所述主体元素为46wt%-80wt%,所述M1为0%-44wt%,M1为Ti和Zr的一种或者两种混合物,其含量为Ti、Zr分别为0.1wt%-44wt%;所述M2为0-20wt%,M2为W和Mo的一种或者两种混合物,其分别为0-20wt%。
优选的,所述合金配方为:
(YxScy)40-90M10-45M20-20(wt%);
0≤x≤1,0≤y≤1,x+y=1。
优选的,所述合金配方为:
(YxScy)40-85M10-30M20-18(wt%);
0≤x≤1,0≤y≤1,x+y=1。
优选的,所述合金配方选自:
Y70Ti30(wt%)
Y72Zr28(wt%)
Sc69Ti31(wt%)
Sc64Zr36(wt%)
Y41Sc32Zr27(wt%)
Y48Sc27Ti25(wt%)
Y37Sc35Ti20Zr8(wt%)
Y40Y41Ti2Zr2Mo2W1(wt%)。
优选的,一种无源真空维持吸气合金,其制备方法用真空蒸镀法和氩气、氙气灯惰性气氛下的磁控溅射方法进行:
包括以下步骤:
将纯度为99.5~99.95%的原材料,按上述合金配方进行配料,沉积前的本底真空控制在5×10-6Pa~7×10-5Pa;在2-12英寸的晶元上或在金属薄膜基体样品上进行溅射;沉积厚度为0.2-10μm的(YxScy)40-85M10-30M20-18(wt%;0≤x≤1,0≤y≤1,x+y=1)其中M1为Ti和Zr的一种或者两种混合物;M2为0-20wt%,M1为W和Mo的一种或者两种混合物;蒸发压时的最大总沉积速率为为
对于用氩气、氙气等惰性气氛下的磁控溅射方法进行:其特征在于,所述真空维持合金薄膜由合金靶材经物理气相沉积工艺制备而成的薄膜;所述合金靶材在烧结温度890~1200℃,烧结时间1.5~3h,烧结真空度3~5×10-4Pa下经过真空粉末冶金烧结技术或真空电磁感应进行熔炼方法制备,其熔炼时的真空度为1×10-1-3×10-2Pa制得合金靶坯,后进行机加工或者背板钎焊的工艺制备成2-12英寸的靶材;用其合金靶材为阴极进行磁控溅射,将阴极合金沉积阳极基体上形成薄膜,制得无源真空维持材料薄膜;其磁控溅射工艺的参数为:腔体溅射压力为0.01-10Pa;基体衬底样品为2-12英寸的各种晶元上,如如硅晶圆、锗硅晶圆、锗晶圆或氮化镓晶圆、SiC晶圆等基体;玻璃等绝缘性晶圆进行溅射;或者在金属薄膜基体样品上,如不锈钢基体及其薄膜、NI-Cr电阻合金薄膜基体、不锈钢薄膜、可阀合金薄膜等金属薄膜、陶瓷薄膜或无机金属薄膜的基体上,基体衬底样品温度为室温-150℃;溅射功率为100W~2000W;靶材与基体衬底的距离为20~80mm;溅射20min~3.5h后,最终溅射的薄膜厚度为0.2-20微米。
优选的,所述薄膜的厚度0.2-20μm;和/或所述基体为晶圆、金属薄膜、陶瓷薄膜或无机金属薄膜。
优选的,所述无源真空维持材料吸收气体之前需要在真空条件下激活,激活真空度3-8×10-4Pa,激活温度230~500℃,激活时间15min~3.5h,激活后对样品分别在室温下测试其吸收氢气和氮气的性能,其测试结果显示,样品在室温下氢气的初始吸氢速率为13-55ml/s.cm2,2h后样品在室温下吸氢总量为20-73Pa.cm3/cm2;对样品进行吸氮气吸气性能测试时,样品在室温下初始吸氮速率为15-35ml/s.cm2,2h后样品在室温下吸氮总量22-74Pa.cm3/cm2
与现有技术相比,本发明的有益之处在于:这种合金材料能够在较低的激活温度被激活,在室温及低环境压力下,具备高的吸收氢和一氧化碳的能力,其比表面高和孔隙度大,合金的吸气平衡压降低,有利于合金的吸气性能,能够使器件在无源真空环境下,维持器件的真空环境。
附图说明
图1为本发明中的样品在不同激活温度下合金室温下的吸氢性能曲线。
图2为本发明中的样品不同激活温度下合金室温下吸收氮气的性能曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
如图1测试曲线中样品编号1所示;采用室温超高真空电子束共蒸法在2英寸的晶元上沉积Y70Ti30(wt%)薄膜,具体方法:首先用而个蒸发台对Y和Ti高纯元素进行蒸发,第一个蒸发台为Ti合金,重量放置40g;第二个蒸发台为Y合金,重量放置18g。首先对蒸镀系统抽真空,当真空到达1.0×10-6Pa时,而个蒸发台同时共蒸到基体上,基体为直径2英寸的晶元;其中Y、Ti的蒸发速率分别为 对其进行2h的真空蒸镀后,获得厚度为2.1微米厚度的薄膜;在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为450℃×30min,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸初始吸氢速率为55cm3/s.cm2,2h后室温下吸氢的总容量为为67Pa.cm3/cm2
实施例2
如图2测试曲线中样品编号2所示,采用室温超高真空电子束共蒸法在4英寸的晶元上沉积Y72Zr28(wt%)薄膜,具体方法:首先用而个蒸发台对Y和Zr高纯元素进行蒸发,第一个蒸发台为Ti合金,重量放置45g。第二个蒸发台为Y合金,重量放置20g。首先对蒸镀系统抽真空,当真空到达4×10-6Pa时,而个蒸发台同时共蒸到基体上,基体为直径2英寸的晶元。其中Y、Ti的蒸发速率分别为对其进行2h的真空蒸镀后,获得厚度为3.1微米厚度的薄膜。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为250℃×3h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸收氮气的初始速率为35cm3/s.cm2,2h后样品在室温下吸收氮气总容量为74Pa.cm3/cm2
实施例3
如图1测试曲线中样品编号3所示,采用室温超高真空电子束共蒸法在6英寸的晶元上沉积Sc69Ti31(wt%)薄膜,具体方法:首先用而个蒸发台对Sc和Ti高纯元素进行蒸发,第一个蒸发台为Ti合金,重量放置60。第二个蒸发台为Y合金,重量放置30g。首先对蒸镀系统抽真空,当真空到达4×10-6Pa时,而个蒸发台同时共蒸到基体上,基体为直径2英寸的晶元。其中Y、Ti的蒸发速率分别为 对其进行1h的真空蒸镀后,获得厚度为2.5微米厚度的薄膜。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为500℃×30min,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸初始吸氢速率52.9cm3/s.cm2,2h后样品在室温下吸收氢气的总容量为73Pa.cm3/cm2。具体性能测试见图1曲线中样品3。
实施例4
如图2测试曲线样品4所示,采用室温超高真空电子束共蒸法在8英寸的晶元上沉积Sc64Zr36(wt%)薄膜,具体方法:首先用而个蒸发台对Sc和Zr高纯元素进行蒸发,第一个蒸发台为Ti合金,重量放置100g。第二个蒸发台为Y合金,重量放置56g。首先对蒸镀系统抽真空,当真空到达2×10-6Pa时,而个蒸发台同时共蒸到基体上,基体为直径2英寸的晶元。其中Y、Ti的蒸发速率分别为 对其进行2.2h的真空蒸镀后,获得厚度为2.8微米厚度的薄膜。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为250℃×2h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸收氮气初始速率为26.3cm3/s.cm2,2h后样品在室温下吸收氮气的总容量为55Pa.cm3/cm2。具体性能测试见图2曲线中样品4
实施例5
如图1测试曲线样品5所示,将纯度为99.95%的各种原料,称其重量百分比Y41Sc32Zr27(wt%)进行配料。将所述混合料进行真空电磁感应进行两次熔炼,其熔炼时的真空度为1×10-2Pa制得合金靶坯;对靶坯进行机械加工,制得尺寸为4英寸的合金靶材。利用物理气相沉积工艺为磁控溅射工艺。其磁控溅射工艺的参数为:腔体溅射压力为2.1Pa;基体衬底样品为12英寸的晶元,基体衬底样品温度为80℃;溅射功率为1380W;靶材与基体衬底的距离为55mm。溅射2.0h后,最终溅射的薄膜厚度为2.1微米。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T 25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为235℃×3h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下初始吸氢速率为19cm3/s.cm2,2h后样品在室温下吸气总容量为39Pa.cm3/cm2。具体性能测试见图1曲线中样品5
实施例6
如图2测试曲线样品6所示,将纯度为99.95%的各种原料,称其重量百分比Y48Sc27Ti25(wt%进行配料。将所述混合料进行真空电磁感应进行两次熔炼,其熔炼时的真空度为1.2×10-1Pa制得合金靶坯;对靶坯进行机械加工,制得尺寸为4英寸的合金靶材。利用物理气相沉积工艺为磁控溅射工艺。其磁控溅射工艺的参数为:腔体溅射压力为0.9Pa;基体衬底样品为1mm不锈钢薄膜,基体衬底样品温度为100℃;溅射功率为350W;靶材与基体衬底的距离为60mm。溅射2.5h后,最终溅射的薄膜厚度为2.2微米。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T 25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为230℃×3h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸初始吸氮气速率为15cm3/s.cm2,2h后样品在室温下吸收氮气的总吸气容量为22Pa.cm3/cm2。具体性能测试见图2曲线中样品6。
实施例7
如图1测试曲线中样品7所示,将纯度为99.95%的各种原料,称其重量百分比Y37Sc35Ti20Zr8进行配料。将所述混合料进行真空电磁感应进行两次熔炼,其熔炼时的真空度为1.5×10-1Pa制得合金靶坯;对靶坯进行机械加工,制得尺寸为4英寸的合金靶材。利用物理气相沉积工艺为磁控溅射工艺。其磁控溅射工艺的参数为:腔体溅射压力为0.9Pa;基体衬底样品为0.01mm不锈钢薄膜,基体衬底样品温度为100℃;溅射功率为150W;靶材与基体衬底的距离为60mm。溅射2.5h后,最终溅射的薄膜厚度为2.2微米。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T 25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为230℃×2h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸初始吸氢速率为13cm3/s.cm2,2h后样品在室温下的吸收氢气总吸气容量为20Pa.cm3/cm2。具体性能测试见图1曲线中样品7。
实施例8
如图2测试曲线中样品8所示,将纯度为99.95%的各种原料,称其重量百分比Y40Y41Ti2Zr2Mo2W1(wt%进行配料。将所述混合料进行真空电磁感应进行两次熔炼,其熔炼时的真空度为2×10-1Pa制得合金靶坯;对靶坯进行机械加工,制得尺寸为4英寸的合金靶材。利用物理气相沉积工艺为磁控溅射工艺。其磁控溅射工艺的参数为:腔体溅射压力为0.9Pa;基体衬底样品为0.08mm不锈钢薄膜,基体衬底样品温度为100℃;溅射功率为450W;靶材与基体衬底的距离为65mm。溅射2.5h后,最终溅射的薄膜厚度为2.2微米。在定压法测试仪器上,对其进行吸气性能测试,测试方法采用国标GB/T25497-2010。测试工艺为:对测试腔体抽真空,当腔体的背底真空度达10-8Pa时,采用外置加热法激活样品,激活工艺为230℃×3.5h,激活完成后,将样品冷却至室温,对其进行测试。测试时的流导为4×10-4Pa。测试结果显示,样品在室温下吸初始吸氮气速率为16cm3/s.cm2,2h后样品在室温下吸收氮气的总容量为23Pa.cm3/cm2。具体性能测试见图2曲线中样品8。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (4)

1.一种无源真空维持吸气合金薄膜,其特征在于:合金配方选自以下配方中的任意一种:
Y41Sc32Zr27(wt %)、
Y48Sc27Ti25(wt %)、
Y37Sc35Ti20Zr8(wt %)、
Y45Sc45Ti3Zr3Mo2W2 ( wt %);
所述无源真空维持吸气合金薄膜的制备方法包括以下步骤:
(1)将纯度为99.5 ~ 99.95%的原材料,选择以下任意一种合金配方进行配料:
Y41Sc32Zr27(wt %)、
Y48Sc27Ti25(wt %)、
Y37Sc35Ti20Zr8(wt %)、
Y45Sc45Ti3Zr3Mo2W2 ( wt %);
(2)用氩气、氙气惰性气氛下的磁控溅射方法进行,所述无源真空维持吸气合金薄膜由合金靶材经物理气相沉积工艺制备而成;所述合金靶材采用真空电磁感应熔炼方法制备,其熔炼时的真空度为1×10-1 ~ 3×10-2 Pa,后进行机加工或者背板钎焊的工艺制备成2 ~12英寸的合金靶材;用合金靶材为阴极进行磁控溅射,将阴极合金沉积在阳极基体上形成薄膜,制得无源真空维持吸气材料薄膜;其磁控溅射工艺的参数为:腔体溅射压力为0.01 ~10 Pa;基体衬底样品为2 ~ 12英寸的晶圆或者金属薄膜基体样品;基体衬底样品温度为室温-150℃;溅射功率为 100 ~ 2000 W;靶材与基体衬底样品的距离为20 ~ 80 mm;溅射20min ~ 3.5 h后,最终溅射的薄膜厚度为0.2 ~ 20 μm。
2.根据权利要求1所述的一种无源真空维持吸气合金薄膜,其特征在于,所述金属薄膜基体样品为Ni-Cr电阻合金薄膜、不锈钢薄膜、可伐合金薄膜中的一种。
3.根据权利要求1所述的一种无源真空维持吸气合金薄膜,其特征在于,所述晶圆为硅晶圆、锗晶圆、氮化镓晶圆、SiC晶圆基体中的一种。
4.根据权利要求1所述的一种无源真空维持吸气合金薄膜,其特征在于,所述无源真空维持吸气合金薄膜吸收气体之前需要在真空条件下激活,激活真空度3×10-4 ~ 8×10-4 Pa,激活温度230 ~ 500 ℃,激活时间15 min ~ 3.5 h,激活后样品在室温下的初始吸氢速率为13 ~ 55 ml/s·cm-2,2 h后样品在室温下吸氢总量为20 ~ 73 Pa·cm3/cm2;激活后样品在室温下初始吸氮速率为15 ~ 35 ml/s·cm-2,2h后样品在室温下吸氮总量22 ~ 74Pa·cm3/cm2
CN202111553116.4A 2021-12-17 2021-12-17 一种无源真空维持吸气合金的制备方法及其应用 Active CN114231814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111553116.4A CN114231814B (zh) 2021-12-17 2021-12-17 一种无源真空维持吸气合金的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111553116.4A CN114231814B (zh) 2021-12-17 2021-12-17 一种无源真空维持吸气合金的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114231814A CN114231814A (zh) 2022-03-25
CN114231814B true CN114231814B (zh) 2024-08-16

Family

ID=80758210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111553116.4A Active CN114231814B (zh) 2021-12-17 2021-12-17 一种无源真空维持吸气合金的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114231814B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1248184A (en) * 1969-04-03 1971-09-29 Westinghouse Electric Corp Yttrium alloy getter
CN113621851A (zh) * 2021-07-15 2021-11-09 上海晶维材料科技有限公司 一种高性能薄膜吸气剂及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2225352C2 (ru) * 2002-01-22 2004-03-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Способ изменения кинетики выделения радиогенного гелия-3 из твердой фазы тритида металла
CN106591790B (zh) * 2016-12-28 2019-12-13 杭州大立微电子有限公司 靶材制备方法和吸气剂薄膜形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1248184A (en) * 1969-04-03 1971-09-29 Westinghouse Electric Corp Yttrium alloy getter
CN113621851A (zh) * 2021-07-15 2021-11-09 上海晶维材料科技有限公司 一种高性能薄膜吸气剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization";Peter Ngene等;《nature communications》;20171129;第8卷;第1-8页 *
Peter Ngene等."Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization".《nature communications》.2017,第8卷第1-8页. *

Also Published As

Publication number Publication date
CN114231814A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN109536908A (zh) 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备
JP2011523978A (ja) モリブデン−ニオブ合金、かかる合金を含有するスパッタリングターゲット、かかるターゲットの製造方法、それから製造される薄膜、およびその使用
JP2009522104A (ja) 薄膜ゲッタ装置に関する改善
JPS582022A (ja) 薄膜形成方法
CN114231814B (zh) 一种无源真空维持吸气合金的制备方法及其应用
CN112144030A (zh) 一种钛基稀土合金靶材及其制备方法
Xu et al. Influence of deposition pressure, substrate temperature and substrate outgassing on sorption properties of Zr–Co–Ce getter films
CN112626460A (zh) 一种高性能Ti-Co-RE靶材及大吸气量薄膜吸气剂制备的方法
CN113621851A (zh) 一种高性能薄膜吸气剂及其应用
Zhou et al. Influence of the sputtering glancing angle on the microstructure and adsorption characteristics of Zr-Co-RE getter films
TW200422412A (en) Silicon sintered compact and method for producing the same
CN109988998A (zh) 一种多元高熵合金薄膜的制备方法
CN113445005A (zh) 一种低应力TiW薄膜的制备方法
Lee et al. Effect of the substrate bias voltage on the crystallographic orientation of reactively sputtered AlN thin films
CN114231819B (zh) 一种无源真空维持合金的制备方法及其应用
CN112226737A (zh) 一种稀土元素合金化法提高钛锆固溶体合金靶材性能的方法
JPH022834B2 (zh)
CN110863174A (zh) 一种无需激活的钛基吸氢材料及其制备方法
CN108004506B (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
CN100480418C (zh) 射频磁控溅射制备ZrW2O8/ZrO2薄膜的方法
CN114231819A (zh) 一种无源真空维持合金的制备方法及其应用
CN113428830A (zh) 一种低激活温度高性能吸气薄膜
Wasson et al. Ion absorbing stencil mask coatings for ion beam lithography
CN113136504B (zh) 吸气合金及其应用、吸气靶材及吸气薄膜
Knorr et al. Texture development in thin metallic films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method and application of a passive vacuum maintained suction alloy

Granted publication date: 20240816

Pledgee: The Bank of Shanghai branch Caohejing Limited by Share Ltd.

Pledgor: Shanghai Jingwei Material Technology Co.,Ltd.

Registration number: Y2024980040165