CN114213136A - 快速制备高性能碳陶复合材料的等离子沉积方法及设备 - Google Patents

快速制备高性能碳陶复合材料的等离子沉积方法及设备 Download PDF

Info

Publication number
CN114213136A
CN114213136A CN202111654317.3A CN202111654317A CN114213136A CN 114213136 A CN114213136 A CN 114213136A CN 202111654317 A CN202111654317 A CN 202111654317A CN 114213136 A CN114213136 A CN 114213136A
Authority
CN
China
Prior art keywords
carbon
composite material
ceramic composite
plasma deposition
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111654317.3A
Other languages
English (en)
Inventor
张涛
张鹏
钟博
郝桓民
范丽君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Luhang Carbon Materials Technology Co ltd
Harbin Institute of Technology Weihai
Original Assignee
Yantai Luhang Carbon Materials Technology Co ltd
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Luhang Carbon Materials Technology Co ltd, Harbin Institute of Technology Weihai filed Critical Yantai Luhang Carbon Materials Technology Co ltd
Priority to CN202111654317.3A priority Critical patent/CN114213136A/zh
Publication of CN114213136A publication Critical patent/CN114213136A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开一种快速制备高性能碳陶复合材料的等离子沉积方法及设备,将碳陶纤维预制体放入真空室中,碳陶纤维预制体与高压电源连接,碳陶纤维预制体外设感应线圈,通入真空室中的气体介质在真空高压下形成高温等离子体,其中带负电的分子基团在电场力作用下高速撞击碳陶纤维预制体进行沉积。该方法以等离子气源为介质,通过化学气相沉积来制备高性能碳陶复合材料,加工效率高、致密度高。等离子沉积设备结构简单,可对预制体快速致密化,设备能耗低,加工效率高。

Description

快速制备高性能碳陶复合材料的等离子沉积方法及设备
技术领域
本发明涉及碳陶复合材料制备领域,具体涉及一种快速制备高性能碳陶复合材料的等离子沉积方法及设备。
背景技术
碳素材料具有低密度、高强度、高比模量、高导热性、低膨胀系数、优异的摩擦性能和抗热冲击性能以及尺寸稳定性高等优点,已广泛应用于航天、航空、光伏、粉末冶金、工业高温炉等领域,但其在温度高于350℃的有氧环境中发生氧化反应,导致材料的性能急剧下降,限制了其发展。氧化物、碳化物和硼化物等陶瓷材料机械强度和硬度高,抗氧化能力强、而耐热冲击性、可机械加工性及润滑性差,与碳素复合材料具有很强的互补性。碳陶复合材料基本保持了碳材料的优异性能,并继承了陶瓷材料的优点,具有耐高温,耐烧蚀,质轻等特点,在航空和轨道交通刹车盘材料、航天烧蚀隔热材料等领域有着巨大的应用价值。而目前制备高性能碳陶复合材料的方法主要有化学气相渗透(CVI)和浸渍裂解(PIP)方法。其中,CVI方法通过在真空炉内引入含有基体元素的气体介质,在近2000 ℃的高温作用下,气体介质在陶瓷(或碳)纤维预制体内渗透并裂开,碳、氮、硅等基体元素以共价键陶瓷的结构被保留,H、O等元素以气态形式逸出,该方法沉积效率低,大尺寸结构件容易导致芯部未浸渍而造成孔隙率高的缺陷,因此制造成本较高。PIP方法由于采用正压浸渍,反复多次裂解的方法提高碳陶复合材料的致密度,但浸渍-裂解过程次数较多,自动化度不完善,因此大大制约了制备效率。
发明内容
本发明的目的是一种高性能碳陶复合材料的制备方法及专用设备,该方法以等离子气源为介质,通过化学气相沉积来制备高性能碳陶复合材料,加工效率高、致密度高。
为了达到上述目的,本申请所采用的技术方案为:
快速制备高性能碳陶复合材料的等离子沉积方法,包括以下步骤:
(1)制备碳陶纤维预制体。
采用商用碳纤维制备碳陶纤维预制体。
(2)化学气相沉积:将步骤(1)得到的碳陶纤维预制体放入真空室中,碳陶纤维预制体与高压电源连接,碳陶纤维预制体外设感应线圈,通入真空室中的气体介质在真空高压下形成高温等离子体,其中带负电的分子基团在电场力作用下高速撞击碳陶纤维预制体进行沉积。
所述步骤(2)中气体介质包括甲烷CH4、乙炔C2H2、丙酮C3H6O、四氯硅烷SiCl4、氮气N2中的一种或几种。
所述步骤(2)沉积时间5-20 h。
所述步骤(2)中高压电极对电压:1-30 kV,感应线圈频率:400Hz~120KHz,功率:10-30 kW。
所述步骤(2)中真空室真空度:6×10-2-8×10-3Pa。
所述步骤(2)中等离子体温度:80-500 ℃,碳陶纤维预制体加热温度:1000-2200℃。
本发明还还提供一种快速制备高性能碳陶复合材料的等离子沉积设备,该设备包括真空室,真空室通过真空管路与抽真空装置连接,真空室内设高压电极对、感应线圈及与高压电源连接的电极板,碳陶纤维预制体与电极板连接,碳陶纤维预制体位于感应线圈内,气体介质通过导气管导入高压电极对之间。
所述抽真空装置包括机械泵、罗茨泵和分子泵,真空室的真空管路与机械泵进气口连接,罗茨泵的进气口与机械泵的出气口连接,罗茨泵的出气口与分子泵的进气口连接。其中机械泵为开始时抽粗真空,从1个标准大气压抽至3000~2000Pa;罗茨泵将真空度进一步提升至1000~600Pa;分子泵为控制等离子体腔室的极限真空,达到真空等离子放电的真空度10-1~10-3Pa。
作为一种优选方式,所述真空室中设有行星式公/自转装置,行星式公/自转装置包括固定齿圈、太阳轮和行星轮,行星轮由行星架支撑,行星轮分别与太阳轮和固定齿圈啮合,太阳轮由电机驱动转动,电极板设置在行星轮上。置于电极板上的碳陶纤维预制体随行星轮自转同时公转,旋转的碳陶纤维预制体内部均匀沉积带电离子,获得尽可能沉积均匀的复合材料。
作为一种优选方式,高压电极对的数量6-8对均匀分布。
作为一种优选方式,高压电极对中与电源负极连接的电极上设有小孔,小孔孔径6-15mm。高压电离产生的带电粒子从小孔通过,进入真空室。
本发明的有益效果是:本方法由于采用带电等离子体高速撞击预制体的纤维表面,因此沉积速度比传统的CVI化学气相渗透高;同时,离子与纤维表面键合,形成化学键,大大提高了局部结合力和致密度,对提高复合材料力学性能有显著优势。等离子沉积设备结构简单,可对预制体快速致密化,设备能耗低,加工效率高。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为等离子沉积设备的示意图。
图2为行星式公/自转装置结构示意图。
图3为固定齿圈、太阳轮和行星轮分布示意图。
图4不同高度断层照片,其中a为垂直于X方向层段扫描复合材料样品组织结构,b垂直于Y方向层段扫描复合材料样品组织结构,c垂直于Z方向层段扫描复合材料样品组织结构, d三维样品层段取样示意图。
图5 VG Studio 3D截图。
1真空室,2机械泵,3罗茨泵,4分子泵,5减压阀,6高压电极对,7电极板,8感应线圈,9真空管路,10导气管,11碳陶纤维预制体, 12小孔,13行星轮,14固定齿圈,15行星架,16太阳轮,17电机,18支架,19、20高压电源。
具体实施方式
实施例1
本发明快速制备高性能碳陶复合材料的等离子沉积方法,包括以下步骤:
(1)制备碳陶纤维预制体。
采用商用碳纤维制备碳陶纤维预制体,本方法对预制体无特殊要求。可采用以下两种方法进行制备。
碳陶纤维预制体制备方法1:
(a)采用商用碳纤维(T300,T700, T1000或T1100等,丝束3K,6K,12K,24K等)经过短切,短切长度20~80mm;
(b)在40-85℃将碳纤维分散成接近单丝状态,为后续成网做准备;
(c)将分散好的碳纤维经过气流成网(或梳理成网或液相悬浮成网),制备成幅宽1000~2400mm,克重30~180g/m2的碳纤维网胎;
(d)将碳纤维网胎5~60层叠加,并针刺成整体结构,针刺密度10-40针/cm,Z向纤维体积分数不低于30%制备成整体结构。
碳陶纤维预制体制备方法2:
(a)将商用碳纤维(T300,T700, T1000或T1100等,丝束3K,6K,12K,24K等)经过三轴向提花机织成型,机织张力80-200cN,预制体密度0.4-0.7g/cm3
(b)将织物加热到60-150℃(保温30-180min),去掉碳纤维表面上浆剂,预留填充空隙。
(2)化学气相沉积:将步骤(1)的碳陶纤维预制体放入真空室中,碳陶纤维预制体与高压电源连接,碳陶纤维预制体外设感应线圈,通入真空室中的气体介质在真空高压下形成高温等离子体,其中带负电的分子基团在电场力作用下高速撞击碳陶纤维预制体进行沉积。
气体介质包括甲烷CH4、乙炔C2H2、丙酮C3H6O、四氯硅烷SiCl4中的一种或几种,气体介质选择根据制备复合材料的需要进行确定。本实施例中,以制备碳/碳化硅复合材料为例,选择甲烷CH4、乙炔C2H2、丙酮C3H6O、四氯硅烷SiCl4,按照摩尔比:1:0.8~1.5:0.3~0.6:0.9~1.2通入高压电极对之间,在真空高压条件下产生电离成质子和带负电的分子基团(H+,CH3 -,C2H-,C2H3O-)等。
高压电极对电压:1-30 kV,感应线圈频率:400Hz~120KHz,功率:10-30 kW。感应线圈频率是中频或高频电磁振荡频率,范围:400Hz~120KHz。感应线圈在导体中形成感应电流(涡流),感应电流克服导体本身的电阻而产生焦耳热,用这一热量加热导体本身,使其升温、熔化,达到各种热加工的目的。本实施例中利用感应线圈对碳陶纤维预制体加热,碳陶纤维预制体加热温度:1000-2200℃,在局部形成高温,大大降低能耗。
本实施例中,真空室真空度:6×10-2~8×10-3Pa,等离子温度:80-500 ℃,
沉积时间5-20 h。
对本发明制备的样品,半径3cm的扇形试样(2.5D针刺)采用高精度计算机断层扫描系统(YXLON-Y.CT-Modular)进行测试,测试精度76μm,电压:80kV。在测试过程中从其他任意坐标取层断面图,如图4所示,选择4个不同高度断层,分别对垂直于X方向、Y方向和Z方向的层段扫描,获得相应的复合材料样品组织结构可以看到碳纤维间隙被均匀沉积上陶瓷基体。碳/碳化硅复合材料整体结构致密,均匀。
对本发明制备的不同外形尺寸的复合材料层段扫描图,如图5所示,从表面到内部碳纤维间隙被基体填充。
本发明中由于采用带电等离子体高速撞击预制体的纤维表面,因此沉积速度比传统的CVI化学气相渗透高,传统CVI沉积只依靠热扩散,沉积非常缓慢,效率低;同时,离子与纤维表面键合,形成化学键,大大提高了局部结合力和致密度,对提高复合材料力学性能有显著优势。
实施例2
为了实现快速制备高性能碳陶复合材料的等离子沉积方法,本实施例提供一种快速制备高性能碳陶复合材料的等离子沉积设备。该设备如图1所示,包括真空室1,真空室1通过真空管路9与抽真空装置连接,真空室1内设高压电极对6、感应线圈8及与高压电源20连接的电极板7,碳陶纤维预制体11与电极板7连接,碳陶纤维预制体11位于感应线圈8内,气体介质通过导气管10导入高压电极对6之间。在高压电极对6的作用下,导入的气体介质被电离成带电等离子体。导气管10上设有减压阀5,气体介质通过减压阀5引入高压电极对6之间。减压阀5将工作气体压力减至0.01-100Pa,防止高压工作气体直接充入真空造成对电极和样品的冲击损伤。
碳陶纤维预制体11可直接与电极板7相连接,链接压力8~30N,二者之间的连接可采用压紧螺栓,压紧螺栓与电极板7采用高强高纯等静压石墨材料。
本实施例中,抽真空装置包括机械泵2、罗茨泵3和分子泵4,真空室1的真空管路9与机械泵2进气口连接,罗茨泵3的进气口与机械泵2的出气口连接,罗茨泵3的出气口与分子泵4的进气口连接。通过机械泵2、罗茨泵3和分子泵4之间的配合工作,保证真空室1中的真空度稳定、控制可靠。机械泵2抽粗真空,使真空室1中从1个标准大气压抽至3000~2000Pa;罗茨泵3将真空度进一步提升至1000~600Pa;分子泵4为控制真空室1的极限真空,达到真空等离子放电的真空度10-1~10-3Pa。
对导气管10导入的气体介质进行高压电离的高压电极对6的数量6-8对,均匀分布于真空室1中。真空室1的外壳接地。高压电极对6电压为1-30 kV,高压电极对6与高压电源19连接,高压电极对6的负极与高压电源19的负极连接,高压电极对6的正极与与高压电源19的正极连接并接地。高压电极对6与高压电源19负极连接的电极上设有小孔12,小孔12孔径6-15mm。高压电离产生的带电离子从小孔12通过,并在电场力作用下高速撞击碳陶纤维预制体11。
感应线圈8接高频或中频电源,感应线圈8为铜制中空结构,表面喷涂氧化锆陶瓷涂层,涂层厚度50-350um,内腔走冷却水。利用感应线圈8对碳陶纤维预制体11加热,碳陶纤维预制体11加热温度控制在1000-2200℃,在局部形成高温,大大降低能耗。
本实施例中采用行星式公/自转装置,带动碳陶纤维预制体11自转及公转,使高压电离粒子尽可能均匀沉积与碳陶纤维预制体11中获得高性能碳陶复合材料。行星式公/自转装置包括固定齿圈14、太阳轮16和行星轮13,行星轮13由行星架15支撑,行星轮13分别与太阳轮16和固定齿圈14啮合,太阳轮16由电机17驱动转动,电极板7设置在行星轮13上。电机17和固定齿圈14由支架18支撑,电机17驱动太阳轮16转动,从而带动行星轮13沿固定齿圈14移动。在此过程中,行星轮13除了绕自身轴线的自转外,同时还可绕太阳轮16公转。 置于电极板7上的碳陶纤维预制体11随行星轮13自转同时公转,分布在真空室1高压电极对6产生的高压电离粒子撞击更为均匀,从而实现陶纤维预制体的纤维内部均匀沉积带电离子,获得尽可能沉积均匀的复合材料。
使用时,将碳陶纤维预制体11置于真空室1中,然后,依次开启机械泵2、罗茨泵3和分子泵4,将真空度抽至6×10-2~8×10-3Pa。将气体介质通过减压阀5引入高压电极对6形成的高压电离室中,气体介质被电离成质子和带负电的分子基团(H+,CH3-,C2H-,C2H3O-等)。带负电分子在电场力作用下高速撞击接电极板的碳陶纤维预制体11,实现快速致密化。预制体通过感应线圈8实现局部高温,大大降低了能耗。

Claims (10)

1.快速制备高性能碳陶复合材料的等离子沉积方法,其特征在于:包括以下步骤:
(1)制备碳陶纤维预制体;
(2)化学气相沉积:将步骤(1)碳陶纤维预制体放入真空室中,碳陶纤维预制体与高压电源连接,碳陶纤维预制体外设感应线圈,通入真空室中的气体介质在真空高压下形成高温等离子体,其中带负电的分子基团在电场力作用下高速撞击碳陶纤维预制体进行沉积。
2.根据权利要求1所述的快速制备高性能碳陶复合材料的等离子沉积方法,其特征在于:所述步骤(2)中气体介质包括甲烷CH4、乙炔C2H2、丙酮C3H6O、四氯硅烷SiCl4、氮气N2中的一种或几种。
3.根据权利要求1所述的快速制备高性能碳陶复合材料的等离子沉积方法,其特征在于:所述步骤(2)沉积时间5-20 h;高压电极对电压:1-30 kV,感应线圈频率:400Hz~120KHz,功率:10-30 kW。
4.根据权利要求1所述的快速制备高性能碳陶复合材料的等离子沉积方法,其特征在于:所述步骤(2)中真空室真空度:6×10-2-8×10-3Pa。
5.根据权利要求1所述的快速制备高性能碳陶复合材料的等离子沉积方法,其特征在于:所述步骤(2)中等离子体温度:80-500 ℃,碳陶纤维预制体加热温度:1000-2200℃。
6.一种快速制备高性能碳陶复合材料的等离子沉积设备,其特征在于:所述设备包括真空室,真空室通过真空管路与抽真空装置连接,真空室内设高压电极对、感应线圈及与高压电源连接的电极板,碳陶纤维预制体与电极板连接,碳陶纤维预制体位于感应线圈内,气体介质通过导气管导入高压电极对之间。
7.根据权利要求6所述的一种快速制备高性能碳陶复合材料的等离子沉积设备,其特征在于:所述抽真空装置包括机械泵、罗茨泵和分子泵,真空室的真空管路与机械泵进气口连接,罗茨泵的进气口与机械泵的出气口连接,罗茨泵的出气口与分子泵的进气口连接。
8.根据权利要求6所述的一种快速制备高性能碳陶复合材料的等离子沉积设备,其特征在于:所述真空室中设有行星式公/自转装置,行星式公/自转装置包括固定齿圈、太阳轮和行星轮,行星轮由行星架支撑,行星轮分别与太阳轮和固定齿圈啮合,太阳轮由电机驱动转动,电极板设置在行星轮上。
9.根据权利要求6所述的一种快速制备高性能碳陶复合材料的等离子沉积设备,其特征在于:高压电极对的数量6-8对。
10.根据权利要求6所述的一种快速制备高性能碳陶复合材料的等离子沉积设备,其特征在于:高压电极对中与电源负极连接的电极上设有小孔,小孔孔径6-15mm。
CN202111654317.3A 2021-12-30 2021-12-30 快速制备高性能碳陶复合材料的等离子沉积方法及设备 Pending CN114213136A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111654317.3A CN114213136A (zh) 2021-12-30 2021-12-30 快速制备高性能碳陶复合材料的等离子沉积方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111654317.3A CN114213136A (zh) 2021-12-30 2021-12-30 快速制备高性能碳陶复合材料的等离子沉积方法及设备

Publications (1)

Publication Number Publication Date
CN114213136A true CN114213136A (zh) 2022-03-22

Family

ID=80707048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111654317.3A Pending CN114213136A (zh) 2021-12-30 2021-12-30 快速制备高性能碳陶复合材料的等离子沉积方法及设备

Country Status (1)

Country Link
CN (1) CN114213136A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557097A (zh) * 2014-12-24 2015-04-29 中南大学 一种碳/碳复合材料的快速致密方法
CN106966746A (zh) * 2016-06-29 2017-07-21 北京航空航天大学 等离子体增强微波热解制备陶瓷基复合材料的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557097A (zh) * 2014-12-24 2015-04-29 中南大学 一种碳/碳复合材料的快速致密方法
CN106966746A (zh) * 2016-06-29 2017-07-21 北京航空航天大学 等离子体增强微波热解制备陶瓷基复合材料的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋伟忠: "《搪瓷与搪玻璃》", 中国轻工业出版社, pages: 220 *

Similar Documents

Publication Publication Date Title
CN100336156C (zh) 等离子体辅助气体产生
CN105256407A (zh) 基于同轴静电纺丝工艺的“核-壳”结构的碳-碳化硅复合纳米纤维及制备方法
EP2607518A1 (en) Nanostructured antennas
CN109053207A (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN100497804C (zh) 一种在碳纤维表面制备碳化硅涂层的方法
CN104532549B (zh) 一种基于微波诱导等离子体快速获取碳/碳化硅同轴纤维的方法及应用
CN101413210A (zh) 等离子体处理涂覆纳米二氧化硅的碳纤维表面改性的方法
CN107127335B (zh) 一种核壳型碳包覆铁纳米复合材料的制备方法
US3462340A (en) Fiber-containing pyrolytic composite material
CN1181172A (zh) 等离子体处理装置和方法
CN108249945B (zh) 聚丙烯腈预氧丝纤维增强复合材料轴承的加工方法
CN100491613C (zh) 一种生产石墨化纤维的方法及装置
Lu et al. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature
CN106966746B (zh) 等离子体增强微波热解制备陶瓷基复合材料的方法及装置
CN114213136A (zh) 快速制备高性能碳陶复合材料的等离子沉积方法及设备
Hu et al. Rapid and low-cost carbon/carbon composites by using graphite slurry impregnated prepregs
KR20110034728A (ko) 연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법
CN1329567C (zh) 一种碳纤维连续石墨化的方法及其装置
Ma et al. Formation of C-doped SiO2 coatings on carbon fibers by the sol-dipping process
CN117342540A (zh) 一种炭气凝胶-热解炭复合材料及其制备方法
CN211522036U (zh) 一种石墨纤维/碳化硅复合材料激光原位成型装置
CN105859303A (zh) 一种碳/碳复合材料预制体及其制备方法
CN1519390A (zh) 一种连续SiC纤维增强Ti合金基复合材料先驱丝的制备方法
US20110064891A1 (en) Methods of rapidly densifying complex-shaped, asymmetrical porous structures
CN1683284A (zh) 一种快速制备纤维增强陶瓷基复合材料或碳/碳复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination