CN114171588A - 双向导通槽栅功率mos器件结构及制造方法 - Google Patents

双向导通槽栅功率mos器件结构及制造方法 Download PDF

Info

Publication number
CN114171588A
CN114171588A CN202111473730.XA CN202111473730A CN114171588A CN 114171588 A CN114171588 A CN 114171588A CN 202111473730 A CN202111473730 A CN 202111473730A CN 114171588 A CN114171588 A CN 114171588A
Authority
CN
China
Prior art keywords
conductive type
groove
doped region
lightly doped
heavily doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111473730.XA
Other languages
English (en)
Other versions
CN114171588B (zh
Inventor
乔明
陈勇
刘文良
方冬
张发备
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111473730.XA priority Critical patent/CN114171588B/zh
Publication of CN114171588A publication Critical patent/CN114171588A/zh
Priority to US17/714,176 priority patent/US20230170411A1/en
Application granted granted Critical
Publication of CN114171588B publication Critical patent/CN114171588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0869Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种双向导通槽栅功率MOS器件结构及其制造方法,在硅片表面形成栅极、源极和漏极,实现双向导通双向耐压的功率MOS器件,可用于锂电池BMS防护等应用环境下。相比于传统BMS中采用双管串联的方式以及其他实现双向导通的结构,本发明提出的器件结构具有以下优点:第一,本发明提出的器件仅需要占据传统方式一半甚至更小的面积,极大地提高了集成度;第二,本发明所提出的器件结构制造工艺简单且制造成本也不高,降低了工艺制造上的问题;第三,本发明所提出的器件结构漏极和源极可以对换,实现上真正意义上的对称结构和双向导通双向耐压;第四,本发明所提出的器件结构由于漏极、源极和栅极均在硅片表面,因此易于集成,增加了应用环境。

Description

双向导通槽栅功率MOS器件结构及制造方法
技术领域
本发明属于半导体功率器件技术领域,主要涉及一种双向功率半导体器件及其制造方法。
背景技术
功率MOS器件具有集成度高、导通电阻低、开关速度快、开关损耗小的特点,广泛应用于各类电源管理及开关转换,有着广阔的发展和应用前景。然而传统功率MOS器件的漏源非对称结构导致的功率MOS器件单向耐压、单向导电的特性限制了功率MOS器件的应用。
在一些低功耗DC-DC转换器IC、锂离子电池充放电等需要双向耐压,双向导电的应用环境下,由于没有单一的器件可以作为双向自换向开关,因此双向开关(BDS)是由常用的固态器件组合而成的。为了建立一个具有双向导通能力的复合BDS,有必要将两个分立器件反串联,即两个单向电压器件或反并联,即两个单向电流器件,如图1所示;其应用在锂离子充放电环境中的等效电路如图2所示。然而,这种方案一方面需要两个大面积的功率MOS器件,增加了成本,降低了系统集成度;另一方面,两个功率MOS器件串联也极大地增大了电路的导通电阻,增大了电路损耗等问题。另一种可能性是通过对传统的纵向和横向器件结构进行创新,如图3、4、5所示。图3所示单槽双栅功率MOS结构其实和传统的双MOS导通结构差别不大,只是通过在单槽内引入两个栅极来减小元胞的尺寸,然而对工艺制造提出了较高的要求。而图4所示的纵向的沟槽栅功率MOS器件结构则是通过在纵向上引入双耐压pn结,其制造成本和工艺难度也不低。图5所示的横向的平面栅功率MOS器件结构则因为其大尺寸等造成的导通电阻较大,影响其在双向导通功率开关的应用。
发明内容
为解决上述问题,本发明提供了一种双向导通槽栅功率MOS器件结构及其制造方法,通过本发明提出的双向导通的功率MOS结构,在单个功率MOS管面积下,实现了源漏极可互换的双向导通双向耐压的要求。
为实现上述发明目的,本发明技术方案如下:
一种双向导通槽栅功率MOS器件结构,包括:
第二导电类型重掺杂衬底20,位于第二导电类型重掺杂衬底20上的第二导电类型轻掺杂外延层21,位于第二导电类型轻掺杂外延层21上的槽,位于槽内部的第一栅极多晶硅11,其中栅氧化层03被夹在第一栅极多晶硅11和所述槽之间,其厚度由栅极工作电位决定;第一导电类型轻掺杂区32位于所述槽两侧,其中第一导电类型轻掺杂区32底部低于所述槽的底部;第一导电类型重掺杂区31位于第一导电类型轻掺杂区32表面;第一导电类型重掺杂区31表面为介质层01,介质层01上方引出源极51和漏极61。
作为优选方式,所述槽底部注入推结形成第二导电类型沟调区23。
作为优选方式,所述槽内部的第一栅极多晶硅11上方设有分离栅极多晶硅13。
作为优选方式,第一导电类型轻掺杂区32内部设有第二导电类型掺杂区22,第二导电类型掺杂区22在第一导电类型轻掺杂区32内部左侧、中部或右侧。
作为优选方式,第二导电类型重掺杂衬底20和第二导电类型外延层21之间设有埋氧层77。
作为优选方式,槽内部的第一栅极多晶硅11为阶梯型、或者漏斗型、或U型,或降低表面场阶梯氧化物RSO型结构。
作为优选方式,所述源极和漏极进行互换。
作为优选方式,当所述结构为N型沟道时,第一导电类型为n型掺杂,第二导电类型为p型掺杂;当所述结构为P型沟道时,第一导电类型为p型掺杂,第二导电类型为n型掺杂;
并且/或者重掺杂的掺杂浓度大于1E19,轻掺杂的掺杂浓度低于1E18。
本发明还提供一种双向导通槽栅功率MOS器件的制造方法,包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面外延生长第二导电类型外延层21;
步骤3,在第二导电类型外延层21表面光刻、刻蚀形成U形槽,并在槽内形成栅氧化层03和第一栅极多晶硅11;
步骤4,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,所述第一导电类型轻掺杂区32底部低于所述槽的底部。
步骤5,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32表面形成第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于第一栅极多晶硅11顶部;
步骤6,通过淀积、光刻、刻蚀工艺形成介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61。
本发明还提供第二种双向导通槽栅功率MOS器件结构的制造方法,包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面通过外延生长第二导电类型外延层21;
步骤3,在第二导电类型外延层21表面光刻、刻蚀形成U形槽,并在槽内形成牺牲氧化层;
步骤4,通过一次或者多次的第二导电类型杂质离子注入向槽底沟道区注入,形成第二导电类型沟调区23,然后进行牺牲氧刻蚀;
步骤5,在槽内形成栅氧化层03,然后向深槽内淀积多晶硅,形成第一栅极多晶硅11;
步骤6,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,所述第一导电类型轻掺杂区32底部低于所述槽的底部;
步骤7,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32表面形成第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于第一栅极多晶硅11顶部;
步骤8,通过淀积、光刻、刻蚀工艺形成介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61。
本发明的有益效果为:本发明提供一种双向导通槽栅功率MOS器件结构及其制造方法,在硅片表面形成栅极、源极和漏极,实现双向导通双向耐压的功率MOS器件,可用于锂电池BMS防护等应用环境下。相比于传统BMS中采用双管串联的方式以及其他实现双向导通的结构,本发明所提出的器件结构具有以下优点:第一,本发明所提出的器件仅需要占据传统方式一半甚至更小的面积,极大地提高了集成度;第二,本发明所提出的器件结构制造工艺简单且制造成本也不高,降低了工艺制造上的问题;第三,本发明所提出的器件结构漏极和源极可以对换,实现上真正意义上的对称结构和双向导通双向耐压;第四,本发明所提出的器件结构由于漏极、源极和栅极均在硅片表面,因此易于集成,增加了应用环境。
附图说明
图1为传统的漏极短接MOS导通器件结构示意图。
图2为传统的漏极短接MOS等效电路图。
图3为单槽双栅功率MOS器件结构示意图。
图4为纵向的沟槽栅功率MOS器件结构示意图。
图5为横向的平面栅功率MOS器件结构示意图。
图6为本发明实施例1提出的双向导通槽栅功率MOS器件结构示意图。
图7为本发明实施例2提出的双向导通槽栅功率MOS器件结构示意图。
图8为本发明实施例3提出的双向导通槽栅功率MOS器件结构示意图。
图9为本发明实施例4提出的双向导通槽栅功率MOS器件结构示意图。
图10为实施例5对应的双向导通槽栅功率MOS器件结构示意图。其中(a)、(b)、(c)分别为第二导电类型掺杂区22在第一导电类型轻掺杂区32内部的右侧、中部、左侧。
图11为实施例6对应的双向导通槽栅功率MOS器件结构示意图。
图12为实施例7对应的双向导通槽栅功率MOS器件结构示意图。
图13为实施例8对应的双向导通槽栅功率MOS器件结构示意图。
图14为实施例9对应的双向导通槽栅功率MOS器件结构示意图。
图15为实施例10对应的双向导通槽栅功率MOS器件结构示意图。
图16为实施例11对应的双向导通槽栅功率MOS器件结构示意图。
图17为实施例1对应的制造方法工艺流程图。
图18为实施例2对应的制造方法工艺流程图。
图19为实施例5对应的制造方法工艺流程图。
图20为实施例9对应的制造方法工艺流程图。
图21为实施例1对应的双向耐压的I-V仿真曲线。
附图中,各标号所代表的部件列表如下:
01为介质层,03为栅氧化层,11为第一栅极多晶硅,12为第二栅极多晶硅,13为分离栅极多晶硅,20为第二导电类型重掺杂衬底,21为第二导电类型外延层,22为第二导电类型掺杂区,23为第二导电类型沟调区,24为第二导电类型重掺杂区,30为第一导电类型重掺杂衬底,31为第一导电类型重掺杂区,32为第一导电类型轻掺杂区,33为第一导电类型掺杂区,51为源极,61为漏极,77为埋氧层。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
如图6所示,本实施例提供一种双向导通槽栅功率MOS器件结构,包括:
第二导电类型重掺杂衬底20,位于第二导电类型重掺杂衬底20上的第二导电类型轻掺杂外延层21,位于第二导电类型轻掺杂外延层21上的槽,位于槽内部的第一栅极多晶硅11,其中栅氧化层03被夹在第一栅极多晶硅11和所述槽之间,其厚度由栅极工作电位决定;第一导电类型轻掺杂区32位于所述槽两侧,其中第一导电类型轻掺杂区32底部低于所述槽的底部;第一导电类型重掺杂区31位于第一导电类型轻掺杂区32表面;第一导电类型重掺杂区31表面为介质层01,介质层01上方引出源极51和漏极61。
本实施例还提供一种上述双向导通槽栅功率MOS器件结构的制造方法,如图17所示。
包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面外延生长第二导电类型外延层21;
步骤3,在第二导电类型外延层21表面光刻、刻蚀形成U形槽,如图17中(a),并在槽内形成栅氧化层03和第一栅极多晶硅11;
步骤4,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,所述第一导电类型轻掺杂区32底部低于所述槽的底部,如图17中(b);
步骤5,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32表面形成如图17中(c)的第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于第一栅极多晶硅11顶部;
步骤6,通过淀积、光刻、刻蚀工艺形成如图17中(c)的介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61,如图17中(d)。
在本发明提出的一种双向导通槽栅功率MOS器件结构中,漏极和源极均在表面且可互换,当栅极不加电位时,MOS管沟道关闭时,无论哪个电极加高电位,都可以通过外延层的耗尽来承受高压,从而实现双向耐压的目的,如图21仿真曲线所示;当两个MOS管沟道开启时,电流方向将随电压方向而改变,从而实现双向电流导通的目的。同时该器件结构工艺制造成本和难度均不大;并且仅需要占据传统方式一半甚至更小的面积,极大地提高了集成度;该结构由于特殊性减小了传统意义上的漂移区电阻,减小了整体的导通电阻;再者源、漏和栅极均在表面,因此是可以用于集成的应用环境下。
实施例2
如图7所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:所述槽底部注入推结形成第二导电类型沟调区23,其一次或多次注入能量大小可以不同以形成不同的结深,有效的对阈值进行调整,并防止了沟道区发生穿通的发生。
如图18所示,本实施例还提供一种上述双向导通槽栅功率MOS器件结构的制造方法,包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面通过外延生长第二导电类型外延层21;
步骤3,在第二导电类型外延层21表面光刻、刻蚀形成U形槽,如图18中(a),并在槽内形成牺牲氧化层,如图18中(b);
步骤4,通过一次或者多次的第二导电类型杂质离子注入向槽底沟道区注入,形成第二导电类型沟调区23,然后进行牺牲氧刻蚀;
步骤5,在槽内形成栅氧化层03,然后向槽内淀积多晶硅,形成第一栅极多晶硅11;如图18中(c);
步骤6,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,所述第一导电类型轻掺杂区32底部低于所述槽的底部;
步骤7,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32表面形成如图18中(d)的第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于第一栅极多晶硅11顶部;
步骤8,通过淀积、光刻、刻蚀工艺形成如图18中(d)的介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61。如图18中(e)。
实施例3
如图8所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:所述槽内部的第一栅极多晶硅11上方设有分离栅极多晶硅13。
分离栅结构可作为体内场板的辅助耗尽作用,可进一步提高该器件结构的耐压和进一步的改善整体的导通电阻。
实施例4
如图9所示的双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:在第二导电类型轻掺杂外延层21引入第一导电类型掺杂区33,第一导电类型掺杂区33在第二导电类型轻掺杂外延层21两侧,可以在同等电压等级下更进一步的降低器件的导通电阻,能够降低器件的开关损耗。
实施例5
如图10所示的双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:第一导电类型轻掺杂区32内部设有第二导电类型掺杂区22,第二导电类型掺杂区22在第一导电类型轻掺杂区32内部左侧、中部或右侧,图10中(a)、(b)、(c)分别为第二导电类型掺杂区22在第一导电类型轻掺杂区32内部的右侧、中部、左侧。
如图19所示,本实施例还提供一种上述双向导通槽栅功率MOS器件结构的制造方法,包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面通过外延生长第二导电类型轻掺杂外延层21;
步骤3,在第二导电类型轻掺杂外延层21表面光刻、刻蚀形成U形槽,如图19中(a),并在槽内形成栅氧化层03和第一栅极多晶硅11,如图19中(b);
步骤4,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,所述第一导电类型轻掺杂区32底部低于槽的底部;
步骤5,通过第二导电类型杂质离子注入,在第一导电类型轻掺杂区32内形成第二导电类型掺杂区22,如图19中(c);
步骤6,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32和第二导电类型掺杂区22表面形成如图19中(d)的第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于栅极多晶硅11顶部;
步骤8,通过淀积、光刻、刻蚀工艺形成如图19中(d)的介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61,如图19中(e)。
第二导电类型掺杂区22的引入可以在同等电压等级下更进一步的降低器件的导通电阻,能够降低器件的开关损耗;该结构和图9结构不同之处在于第二导电类型外延层21和第一导电类型轻掺杂区32的浓度不一样,即器件参与主要耐压的区域不同,导致我们引入电荷补偿的区域不同;此外图10中(a)(b)(c)三种情况的区别为引入的第二导电类型轻掺杂的超结条的位置,不同的位置对第一导电类型的辅助耗尽起到不同的效果。
实施例6
如图11所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:槽内部的第一栅极多晶硅11为阶梯型,这是出于本发明提出的结构反型沟道位置特殊以及对氧化层厚度和辅助耗尽的考虑。
实施例7
如图12所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:槽内部的第一栅极多晶硅11为漏斗型,即靠近槽底处的多晶硅宽于其上方多晶硅;这是由于本发明提出的结构反型沟道位置和特殊的应用条件所提出。
实施例8
如图13所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:槽内部的第一栅极多晶硅11为U型;且源极和漏极直接引出,增大了接触面积进而减小了接触电阻。
实施例9
如图14所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:槽内部的第一栅极多晶硅11为降低表面场阶梯氧化物RSO(RESURFStepped Oxide)型结构;且源极和漏极直接引出,增大了接触面积进而减小了接触电阻。
如图20所示,本实施例还提供一种上述双向导通槽栅功率MOS器件结构的制造方法,包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底20;
步骤2,在第二导电类型重掺杂衬底20表面通过外延生长第二导电类型轻掺杂外延层21;
步骤3,在第二导电类型轻掺杂外延层21表面光刻、刻蚀形成U形槽,并在槽内形成栅氧化层03;
步骤4,淀积多晶硅并进行回刻,同时对槽侧壁氧化层进行回刻;如图20中(a);
步骤5,在槽内进行氧化层的生长,并淀积多晶硅形成一次阶梯第一栅极多晶硅11;
步骤6,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层21表面形成第一导电类型轻掺杂区32,如图20中(b),所述第一导电类型轻掺杂区32底部低于深槽的底部;
步骤7,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区32表面形成如图20中(c)的第一导电类型重掺杂区31,所述第一导电类型重掺杂区31底部低于第一栅极多晶硅11顶部;
步骤8,通过淀积、光刻、刻蚀工艺形成如图20中(c)的介质层01和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极51和漏极61,如图20中(d)。
实施例10
如图15所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例1的区别在于:第二导电类型重掺杂衬底20和第二导电类型外延层21之间设有埋氧层77。引入的埋氧层可以避免对衬底电位的考虑,衬底也可以换成第一导电类型重掺杂。
实施例11
如图16所示,本实施例提供一种双向导通槽栅功率MOS器件结构,本实施例和实施例4的区别在于:第二导电类型重掺杂衬底20和第二导电类型外延层21之间设有埋氧层77。引入的埋氧层,可以避免对衬底电位的考虑,故衬底可以换成第一导电类型重掺杂;并且由于超结结构的引入可以在同等电压等级下更进一步的降低器件的导通电阻。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种双向导通槽栅功率MOS器件结构,其特征在于包括:
第二导电类型重掺杂衬底(20),位于第二导电类型重掺杂衬底(20)上的第二导电类型轻掺杂外延层(21),位于第二导电类型轻掺杂外延层(21)上的槽,位于槽内部的第一栅极多晶硅(11),其中栅氧化层(03)被夹在第一栅极多晶硅(11)和所述槽之间,其厚度由栅极工作电位决定;第一导电类型轻掺杂区(32)位于所述槽两侧,其中第一导电类型轻掺杂区(32)底部低于所述槽的底部;第一导电类型重掺杂区(31)位于第一导电类型轻掺杂区(32)表面;第一导电类型重掺杂区(31)表面为介质层(01),介质层(01)上方引出源极(51)和漏极(61)。
2.权利要求1所述的一种双向导通槽栅功率MOS器件结构,其特征在于:所述槽底部注入推结形成第二导电类型沟调区(23)。
3.根据权利要求1所述的一种双向导通槽栅功率MOS器件结构,其特征在于:所述槽内部的第一栅极多晶硅(11)上方设有分离栅极多晶硅(13)。
4.根据权利要求1所述的一种双向导通槽栅功率MOS器件结构,其特征在于:第一导电类型轻掺杂区(32)内部设有第二导电类型掺杂区(22),第二导电类型掺杂区(22)在第一导电类型轻掺杂区(32)内部左侧、中部或右侧。
5.根据权利要求1所述的一种双向导通槽栅功率MOS器件结构,其特征在于:第二导电类型重掺杂衬底(20)和第二导电类型外延层(21)之间设有埋氧层(77)。
6.根据权利要求1所述的一种双向导通槽栅功率MOS器件结构,其特征在于:槽内部的第一栅极多晶硅(11)为阶梯型、或者漏斗型、或U型,或降低表面场阶梯氧化物RSO型结构。
7.根据权利要求1至6任意一项所述的一种双向导通槽栅功率MOS器件结构,其特征在于:所述源极和漏极进行互换。
8.根据权利要求1至6任意一项所述的一种双向导通槽栅功率MOS器件结构,其特征在于:当所述结构为N型沟道时,第一导电类型为n型掺杂,第二导电类型为p型掺杂;当所述结构为P型沟道时,第一导电类型为p型掺杂,第二导电类型为n型掺杂;
并且/或者重掺杂的掺杂浓度大于1E19,轻掺杂的掺杂浓度低于1E18。
9.权利要求1所述的一种双向导通槽栅功率MOS器件结构的制造方法,其特征在于包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底(20);
步骤2,在第二导电类型重掺杂衬底(20)表面外延生长第二导电类型外延层(21);
步骤3,在第二导电类型外延层(21)表面光刻、刻蚀形成U形槽,并在槽内形成栅氧化层(03)和第一栅极多晶硅(11);
步骤4,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层(21)表面形成第一导电类型轻掺杂区(32),所述第一导电类型轻掺杂区(32)底部低于所述槽的底部。
步骤5,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区(32)表面形成第一导电类型重掺杂区(31),所述第一导电类型重掺杂区(31)底部低于第一栅极多晶硅(11)顶部;
步骤6,通过淀积、光刻、刻蚀工艺形成介质层(01)和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极(51)和漏极(61)。
10.权利要求2所述的一种双向导通槽栅功率MOS器件结构的制造方法,其特征在于包括以下步骤:
步骤1,选择第二导电类型重掺杂衬底(20);
步骤2,在第二导电类型重掺杂衬底(20)表面通过外延生长第二导电类型外延层(21);
步骤3,在第二导电类型外延层(21)表面光刻、刻蚀形成U形槽,并在槽内形成牺牲氧化层;
步骤4,通过一次或者多次的第二导电类型杂质离子注入向槽底沟道区注入,形成第二导电类型沟调区(23),然后进行牺牲氧刻蚀;
步骤5,在槽内形成栅氧化层(03),然后向槽内淀积多晶硅,形成第一栅极多晶硅(11);
步骤6,通过一次或多次第一导电类型杂质离子注入,在第二导电类型外延层(21)表面形成第一导电类型轻掺杂区(32),所述第一导电类型轻掺杂区(32)底部低于所述槽的底部;
步骤7,通过一次或多次第一导电类型杂质离子注入,在第一导电类型轻掺杂区(32)表面形成第一导电类型重掺杂区(31),所述第一导电类型重掺杂区(31)底部低于第一栅极多晶硅(11)顶部;
步骤8,通过淀积、光刻、刻蚀工艺形成介质层(01)和接触孔,表面金属化,通过光刻刻蚀工艺,形成表面金属接触层,构成源极(51)和漏极(61)。
CN202111473730.XA 2021-11-29 2021-11-29 双向导通槽栅功率mos器件结构及制造方法 Active CN114171588B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111473730.XA CN114171588B (zh) 2021-11-29 2021-11-29 双向导通槽栅功率mos器件结构及制造方法
US17/714,176 US20230170411A1 (en) 2021-11-29 2022-04-06 Bidirectional conduction trench gate power mos device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111473730.XA CN114171588B (zh) 2021-11-29 2021-11-29 双向导通槽栅功率mos器件结构及制造方法

Publications (2)

Publication Number Publication Date
CN114171588A true CN114171588A (zh) 2022-03-11
CN114171588B CN114171588B (zh) 2023-05-26

Family

ID=80483241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111473730.XA Active CN114171588B (zh) 2021-11-29 2021-11-29 双向导通槽栅功率mos器件结构及制造方法

Country Status (2)

Country Link
US (1) US20230170411A1 (zh)
CN (1) CN114171588B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153885B (zh) * 2023-09-15 2024-05-28 陕西亚成微电子股份有限公司 分离栅沟槽mosfet器件及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021233A1 (en) * 2000-02-10 2004-02-05 International Rectifier Corporation Vertical conduction flip-chip device with bump contacts on single surface
JP2011258970A (ja) * 2003-02-17 2011-12-22 Fuji Electric Co Ltd 双方向素子および半導体装置
US20120025305A1 (en) * 2010-07-28 2012-02-02 ON Semiconductor Trading, Ltd., a Bermuda limited liability company Bidirectional switch
CN104701380A (zh) * 2014-12-23 2015-06-10 电子科技大学 一种双向mos型器件及其制造方法
CN109037337A (zh) * 2018-06-28 2018-12-18 华为技术有限公司 一种功率半导体器件及制造方法
CN112309975A (zh) * 2020-10-27 2021-02-02 杭州士兰微电子股份有限公司 双向功率器件的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021233A1 (en) * 2000-02-10 2004-02-05 International Rectifier Corporation Vertical conduction flip-chip device with bump contacts on single surface
JP2011258970A (ja) * 2003-02-17 2011-12-22 Fuji Electric Co Ltd 双方向素子および半導体装置
US20120025305A1 (en) * 2010-07-28 2012-02-02 ON Semiconductor Trading, Ltd., a Bermuda limited liability company Bidirectional switch
CN104701380A (zh) * 2014-12-23 2015-06-10 电子科技大学 一种双向mos型器件及其制造方法
CN109037337A (zh) * 2018-06-28 2018-12-18 华为技术有限公司 一种功率半导体器件及制造方法
CN112309975A (zh) * 2020-10-27 2021-02-02 杭州士兰微电子股份有限公司 双向功率器件的制造方法

Also Published As

Publication number Publication date
US20230170411A1 (en) 2023-06-01
CN114171588B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN108807548B (zh) 带有改良fom的可扩展的sgt结构
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN102184963A (zh) 一种具有横向复合缓冲层结构的ldmos器件
CN110518059B (zh) 具有电荷平衡耐压层的纵向浮空场板器件及其制造方法
CN111799333A (zh) 一种具有电场调制区域的umosfet结构
CN102097478A (zh) 一种极低导通电阻浅槽埋沟vdmos器件
CN114823872B (zh) 一种全隔离衬底耐压功率半导体器件及其制造方法
CN106158973A (zh) 一种积累型dmos
CN106098777A (zh) 一种分裂栅积累型dmos器件
CN115881797A (zh) 一种碳化硅器件及其制备方法
CN109119463A (zh) 一种横向沟槽型mosfet器件及其制备方法
CN102097479A (zh) 一种低压埋沟vdmos器件
CN103515443B (zh) 一种超结功率器件及其制造方法
CN108598166A (zh) 基于超结自隔离的耗尽型增强型集成功率器件及制造方法
CN105932064B (zh) 沟槽栅功率mosfet及制造方法
CN114171588B (zh) 双向导通槽栅功率mos器件结构及制造方法
CN105957894A (zh) 一种具有复合介质层结构的dmos
CN108389895A (zh) 基于超结的集成功率器件及其制造方法
CN113066865A (zh) 降低开关损耗的半导体器件及其制作方法
CN109920838B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN110212026A (zh) 超结mos器件结构及其制备方法
CN213124446U (zh) 一种屏蔽栅功率mos器件
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN115050811A (zh) 一种沟槽型功率半导体器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant