CN1141505C - 纳米高性能树脂复合材料管道及其制法 - Google Patents

纳米高性能树脂复合材料管道及其制法 Download PDF

Info

Publication number
CN1141505C
CN1141505C CNB011027436A CN01102743A CN1141505C CN 1141505 C CN1141505 C CN 1141505C CN B011027436 A CNB011027436 A CN B011027436A CN 01102743 A CN01102743 A CN 01102743A CN 1141505 C CN1141505 C CN 1141505C
Authority
CN
China
Prior art keywords
resin
pipeline
composite material
silvalin
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011027436A
Other languages
English (en)
Other versions
CN1319737A (zh
Inventor
黄振群
杨洪举
苏桂敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB011027436A priority Critical patent/CN1141505C/zh
Publication of CN1319737A publication Critical patent/CN1319737A/zh
Application granted granted Critical
Publication of CN1141505C publication Critical patent/CN1141505C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种纳米高性能树脂复合材料管道及其制法,其固化树脂胶具有如下组分:树脂100份,纳米SiO20.5-1 0份,固化剂1-3份。方法是先将纳米SiO2用0.1-0.5份的有机硅氧烷包裹处理,然后使用超声波设备或高性能粉碎机将纳米SiO2团聚体打碎,均匀分散到不饱和树脂或环氧树脂中,然后配入其他材料,拌匀,将纤维纱浸胶,缠绕,固化,切割打磨修整制成。本发明工艺简便合理、易行,成本低,其管道具有耐磨性、冲击强度、提伸强度、弯曲强度、耐热性较高的特点,用途广泛。

Description

纳米高性能树脂复合材料管道及其制法
本发明涉及树脂材料的应用及管道技术领域。
现在市场上应用的玻璃钢(复合材料)管道,虽然具有较好的轻质、高强、耐腐蚀等特点,但本身硬度低,耐磨性不理想,冲击强度差等不足,拉伸强度、弯曲强度和耐热性能有待于提高。为了达到理想的强度,必须增加其厚度,那么也就相应增大了成本,因而影响了该类产品的推广。
本发明的目的是提供一种纳米高性能树脂复合材料管道及其制造方法,其方法简便、合理、易行、成本低,其管道具有优良的耐磨性、耐热性、冲击强度、拉伸强度、弯曲强度等特点,用途广泛。
本发明之一是这样实现的:一种纳米高性能树脂复合材料管道,由纤维纱和固化树脂胶组成,其特征在于固化树脂胶由如下重量份数配比组分的材料制成:
不饱和树脂或环氧树脂        100份
纳米SiO2                   0.5-10份
固化剂                      0.5-3份
促进剂                      0.2-6份
纤维纱材料可用玻璃纤维或碳纤维。
本发明之二是这样实现的:一种上述的纳米高性能树脂复合材料管道的制造方法,其特征在于:
a、进行胶液配制:按所述重量份数配比组分加入配制,先将纳米SiO2用0.1-0.5份的有机硅氧烷分散剂包裹处理,然后使用超声波设备或高性能粉碎机将纳米SiO2团聚体粉碎,使其均匀地分散到不饱和树脂或环氧树脂中;
b、在树脂中加入固化剂及促进剂,捣拌均匀;
c、将纤维纱进行浸胶处理;
d、利用模具将浸胶的纤维纱进行缠绕,制成所要求的管道;
e、将管道进行切割、打磨修整即得成品管道。
本发明的特别是:方法简单,合理,易行,成本低,其管道具有优良的耐磨性、耐热性、冲击强度、拉伸强度、弯曲强度高的特点。可广泛用于市政建设、石化、电力、建筑、农业等行业,应用前景十分广阔。
以下结合实施例作详述,但不作为对本发明的限定。
实施例:
1、液体胶配制:
    材料                            实施例kg
    1     2     3     4     5
不饱和树脂或还氧树脂     100     100     100     100     100
纳米SiO2     0.5     2     5     8     10
固化剂     1     1.5     2     2.5     3
促进剂 2 3 4 5 6
注:(1)树脂用环氧树脂或不饱和树脂,如191或196等;
(2)固化剂可用过氧化甲乙酮等,可为常规技术;
(3)促进剂可用环烷酸钴等,可为常规技术。
2、工艺:方法同上述(略)。管内径Φ1000mm,壁厚16mm,长12000mm。
3、性能检测数据如下(与SiO2比较):
耐磨性:提高1-2倍;
冲击强度:提高50-70%;
拉伸强度:提高10-30;
弯曲强度:提高8-16%;
马丁耐热度:提高2-3度;
综合成本:降低15-40%。

Claims (3)

1、一种纳米高性能树脂复合材料管道,由纤维纱和固化树脂胶组成,其特征在于固化树脂胶由如下重量份数配比组分的材料制成:
不饱和树脂或环氧树脂             100份
纳米SiO2                        0.5-10份
固化剂                           0.5-3份
促进剂                           0.2-6份
2、根据权利要求1所述的管道,其特征在于纤维纱材料用玻璃纤维或碳纤维。
3、一种权利要求1或2中任一权利要求所述的纳米高性能树脂复合材料管道的制造方法,其特征在于:
a、进行胶液配制:按所述重量份数配比组分加入配制,先将纳米SiO2用0.1-0.5份的有机硅氧烷分散剂包裹处理,然后使用超声波设备或高性能粉碎机将纳米SiO2团聚体粉碎,使其均匀地分散到不饱和树脂或环氧树脂中;
b、在树脂中加入固化剂及促进剂,捣拌均匀;
c、将纤维纱进行浸胶处理;
d、利用模具将浸胶的纤维纱进行缠绕,制成所要求的管道;
e、将管道进行切割、打磨修整即得成品管道。
CNB011027436A 2001-01-04 2001-01-04 纳米高性能树脂复合材料管道及其制法 Expired - Fee Related CN1141505C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011027436A CN1141505C (zh) 2001-01-04 2001-01-04 纳米高性能树脂复合材料管道及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011027436A CN1141505C (zh) 2001-01-04 2001-01-04 纳米高性能树脂复合材料管道及其制法

Publications (2)

Publication Number Publication Date
CN1319737A CN1319737A (zh) 2001-10-31
CN1141505C true CN1141505C (zh) 2004-03-10

Family

ID=4652957

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011027436A Expired - Fee Related CN1141505C (zh) 2001-01-04 2001-01-04 纳米高性能树脂复合材料管道及其制法

Country Status (1)

Country Link
CN (1) CN1141505C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247428B1 (ko) * 2013-08-13 2021-05-03 쓰리엠 이노베이티브 프로퍼티즈 캄파니 비구형 실리카 나노입자를 함유하는 나노복합재, 복합재, 물품, 및 이의 제조 방법
CN103396656A (zh) * 2013-08-27 2013-11-20 连云港神鹰碳纤维自行车有限责任公司 一种纳米改性碳纤维预浸料用环氧树脂体系的制备方法
CN106433033A (zh) * 2016-09-09 2017-02-22 天津工业大学 无机粒子、碳纤维协同提高环氧树脂摩擦磨损性能材料的制备

Also Published As

Publication number Publication date
CN1319737A (zh) 2001-10-31

Similar Documents

Publication Publication Date Title
CN105131529B (zh) 纤维表面涂覆纤维素纳米晶用于多尺度增强复合材料的制备方法
Zunjarrao et al. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles
EP2616504B1 (en) Nanoparticle pultrusion processing aide
KR20130108352A (ko) 섬유 강화되고 나노입자 로딩된 열경화성 중합체 복합 와이어 및 케이블, 및 방법
CN103225369B (zh) 一种表面具有螺纹结构的纤维复合筋及其制备方法
Martinez et al. The compression strength of composites with kinked, misaligned and poorly adhering fibres
Zhang et al. Reinforcement of continuous fibers for extruded wood-flour/HDPE composites: Effects of fiber type and amount
Sarr et al. Study on the improvement of interfacial strength between glass fiber and matrix resin by grafting cellulose nanofibers
KR20030060937A (ko) 보강성 조성물의 수지와 강화 섬유의 커플링
CN105694176A (zh) 一种抗菌增强hdpe管道功能母料及其制备方法
CN1141505C (zh) 纳米高性能树脂复合材料管道及其制法
Shettar et al. Study on mechanical properties and water uptake of polyester-nanoclay nanocomposite and analysis of wear property using RSM
TW201945442A (zh) Frp筋及其製造方法
CN106976284B (zh) 一种耐磨玻璃钢板材
Wang et al. Surface sizing introducing carbon nanotubes for interfacial bond strengthening of basalt fiber–reinforced polymer composites
Bharath et al. Tensile and erosion behaviour of medium calcined alumina microparticles on GFRP composites fabricated with vacuum bagging process
Hu et al. Insight into the enhanced interfacial adhesion of carbon fiber reinforced composites: A facile ferric ion and tannic acid self-assembly strategy
CN105839398B (zh) 一种纳米片层二硫化钨增强型碳纤维上浆剂及其制备方法
Wang et al. Interfacial reinforced carbon fiber composites inspired by biological interlocking structure
Kusmono et al. Effect of clay addition on mechanical properties of unsaturated polyester/glass fiber composites
Ramesh et al. High-content Al-T6/pineapple fiber/brass mesh reinforcements on nanosilica-toughened epoxy hybrid natural fiber metal laminate composite for aircraft applications
Bhati et al. Composites and Its Applications: A Review
Aknyede et al. Static and Dynamic Loading Behavior of Hybrid Epoxy Composite with Alumina Nanoparticles
SARR Improvement of the strength of fiber-reinforced polymer by grafting cellulose nanofibers onto the reinforcements
Sarode et al. A review on tensile properties of epoxy polymer matrix nanocomposites by pure and hybrid nanosilica reinforcements

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee