TW201945442A - Frp筋及其製造方法 - Google Patents

Frp筋及其製造方法 Download PDF

Info

Publication number
TW201945442A
TW201945442A TW108114149A TW108114149A TW201945442A TW 201945442 A TW201945442 A TW 201945442A TW 108114149 A TW108114149 A TW 108114149A TW 108114149 A TW108114149 A TW 108114149A TW 201945442 A TW201945442 A TW 201945442A
Authority
TW
Taiwan
Prior art keywords
reinforcing member
composite reinforcing
member according
composite
vinyl ester
Prior art date
Application number
TW108114149A
Other languages
English (en)
Inventor
大衛 R 哈特曼
凱文 斯波
Original Assignee
美商Ocv腦力資本公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Ocv腦力資本公司 filed Critical 美商Ocv腦力資本公司
Publication of TW201945442A publication Critical patent/TW201945442A/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters

Abstract

一種用於鋼筋混凝土的纖維強化塑膠(FRP)筋,以及製造該FRP筋的系統和方法係揭露的。

Description

FRP筋及其製造方法
交互參照相關申請案
本申請案主張2018年4月23日提申之美國專利臨時申請案第62/661,455號案之優先權和任何權益,該者之全部內容係併入本文以作為參考。
發明領域
本發明一般概念有關纖維強化材料,且更特別地,有關用於鋼筋混凝土的纖維強化塑膠(FRP)筋和製造該FRP筋的方法。
發明背景
筋普遍用於鋼筋混凝土結構,諸如道路、橋樑、隧道、機場跑道、彎曲形變(levies)和停車場(parking decks)、及除此之外。在這種結構中,筋係嵌入於混凝土內,且筋的外表面經常為有螺紋的(ribbed),以為了機械地黏合其至該混凝土上。混凝土提供抗壓強度(粗略地說,抗壓縮性),而筋提供抗拉強度(抗拉力)。混凝土為當今使用最廣泛的人造建築材料。
由纖維和樹脂複合材製成的筋產品為該項技藝中已知的,諸如,舉例而言,於美國專利第9,624,667號案及第8,511,038號案中所揭露者,該二者之全部揭露內容係以其整體併入本文以作為參考。如'667專利中所述,此等複合筋產品比用鋼製成的產品提供幾個優點。首先最重要的是,複合材料筋不會經歷鋼在某些混凝土環境中經歷的腐蝕和降解。當鋼筋腐蝕時,其失去強度,從而在承受抗拉、壓縮、彎曲或剪切載重時變得不那麼有效。進一步,當筋腐蝕時,其基本上膨脹並「吹散」周圍的混凝土塊,從而使混凝土在承受壓縮載重時較不有效。
如'038專利中所述,複合筋的其他優點包括為非金屬(或非磁性)和不導電,具有鋼筋(steel reinforcing rod)約二至三倍的抗拉強度和1/4重量,且較諸鋼棒具有與混凝土或岩石更相容的熱膨脹係數。這種複合條(composite bars)經常藉由拉擠成型(pultrusion)製程生產並具有線性或均勻的輪廓。傳統的拉擠成型製程涉及從其來源拖引出一強化材料束(例如,纖維或纖維絲),潤濕該纖維並藉由將該強化材料通過在一開槽中的樹脂浴而浸漬它們(較佳地用熱固性的聚合物樹脂),將經樹脂潤濕和浸漬之束拉過一成型模具以對準纖維束並以操控成恰當的橫截面構形,並在維持該絲上張力的同時在一模型中固化該樹脂。因為該纖維完全透過拉擠成型製程發展而沒有被切割或切碎,所得到的產品一般在縱向方向上(即,在纖維絲拉出的方向上)具有異常高的抗拉強度。
發明概要
本文提出提供一經改良的複合筋構造,以及製造該經改良複合筋的方法。
該複合筋的改良可以包括,但不限於超越傳統FRP筋提高的耐久性、提高的抗拉強度和提高的彈性模量中之一或多者。
舉例而言,本發明一般概念含括生產較高模量、更堅韌、更耐用之筋的製造技術。在一些情況中,該筋包括一表面處理,無論筋是否處於張力、壓縮或剪切載重下,透過黏著和內聚力強度有效地轉移載重,使混凝土局部壓縮,並橫跨該混凝土中的筋強化物(及在雙軸或單向陣列中的筋間距)分擔該載重,以最小化由於撓曲的裂縫。
由於該經改良之FRP筋的增強性質,當替代鋼筋時,較諸用傳統複合筋典型將為所需(例如,1.5或更多倍),可以使用較少的該複合筋(例如,1-1.3倍)。
形成該經改良FRP筋的方法涉及拉擠成型製程,其包括預成型、預熱和預潤濕連續準直(collimated)玻璃纖維粗紗,以在該拉擠棒(pultruded rod)中固結成均勻的更高玻璃含量、更高模量的玻璃組成物,或更高模量混合物。該拉擠棒係於一熱固性樹脂中固化,而沒有顯著的殘餘應力,該者造成空隙、裂紋或劈裂,導致載重環境的過早失效或耐久性問題。該經固化棒提供內部強化,其橫跨該棒基質和工作區域(應變能量吸收)均勻地分擔載重,伴隨高剪切模量、高斷裂韌度和低損傷累積率(damage accumulation rate)。
隨後施用於該固化棒的表面處理可以進一步使適當的滑移應變和機械剪切黏著成為可能,以在張力、壓縮、彎曲或局部剪切載重下安置混凝土在剪切壓縮下達到最佳的內聚力,當設計混凝土的粉碎臨界值時。
在一示例性實施例中,一複合強化構件包含數個藉由固化的乙烯基酯樹脂連接在一起的纖維,其中該等纖維基本上彼此平行,且其中該乙烯基酯樹脂係調配以提高該強化構件的耐腐蝕性。
在一些示例性實施例中,胺甲酸乙酯係加入至該乙烯基酯樹脂中。在一些示例性實施例中,酚醛清漆係加入至該乙烯基酯樹脂中。在一些示例性實施例中,丙烯酸酯係加入至該乙烯基酯樹脂中。在一些示例性實施例中,環氧樹脂係加入至該乙烯基酯樹脂中。在一些示例性實施例中,氯乙烯係加入至該乙烯基酯樹脂中。在一些示例性實施例中,辛基矽烷係加入至該乙烯基酯樹脂中。在一些示例性實施例中,矽烷化聚氮醯胺(polyazamide)係加入至該乙烯基酯樹脂中。在一些示例性實施例中,n,n-二甲基乙醇胺的辛酸鹽係加入至該乙烯基酯樹脂中。在一些示例性實施例中,啉基相關的胺係加入至該乙烯基酯樹脂中。
在一些示例性實施例中,該乙烯基酯樹脂具有大於4%之一斷裂伸長率。
在一些示例性實施例中,該乙烯基酯樹脂具有在3%至7%範圍內之一固化收縮率。
在一些示例性實施例中,該乙烯基酯樹脂具有在100℃至130℃範圍內之一玻璃轉化溫度。
在一些示例性實施例中,該乙烯基酯樹脂包括一金屬添加劑。在一些示例性實施例中,該金屬添加劑為鐵墨(iron black)顏料。
在一些示例性實施例中,該複合強化構件係為一圓柱形棒。在一些示例性實施例中,該棒具有在0.25英吋至3.0英吋範圍內之一直徑。在一些示例性實施例中,該棒具有在0.375英吋至1.5英吋範圍內之一直徑。在一些示例性實施例中,該棒具有在10英尺至75英尺範圍內之一長度。在一些示例性實施例中,該棒具有在20英尺至60英尺範圍內之一長度。
在一些示例性實施例中,該棒為直的。在一些示例性實施例中,該纖維距該棒之中軸線的定向偏離係小於5度。在一些示例性實施例中,該棒具有至少一個大於45度的彎曲。
在一些示例性實施例中,一面紗(veil)係圍繞著該棒包覆。在一些示例性實施例中,該面紗係為玻璃面紗、聚酯面紗和丙烯酸面紗中之一者。在一些示例性實施例中,該面紗具有在10g/m2 至50g/m2 範圍內之一面密度(areal density)。
在一些示例性實施例中,該纖維由玻璃纖維組成。在一些示例性實施例中,該玻璃纖維構成該複合強化構件之至少83重量%。
在一些示例性實施例中,該等纖維包含玻璃纖維。在一些示例性實施例中,該等玻璃纖維的直徑係於13μm至35μm範圍內。在一些示例性實施例中,該等玻璃纖維的直徑係於17μm至32μm範圍內。在一些示例性實施例中,該等玻璃纖維的線性質量密度係在1,200德士(tex)至19,200德士範圍內。在一些示例性實施例中,該等玻璃纖維的線性質量密度係在2,400德士至8,800德士範圍內。
在一些示例性實施例中,該等纖維包含第一玻璃纖維和第二玻璃纖維。在一些示例性實施例中,該第一玻璃纖維和該第二玻璃纖維彼此的玻璃組成不同。在一些示例性實施例中,該第一玻璃纖維和該第二玻璃纖維彼此的纖維直徑不同。
在一些示例性實施例中,該等纖維包括玻璃纖維和非玻璃纖維。在一些示例性實施例中,該非玻璃纖維為碳纖維。
在一些示例性實施例中,該等纖維具有大於81 GPa之一彈性模量。在一些示例性實施例中,該等纖維具有大於88 GPa之一彈性模量。在一些示例性實施例中,該等纖維具有大於95 GPa之一彈性模量。
在一些示例性實施例中,該等纖維構成該複合強化構件之65重量%至88重量%。在一些示例性實施例中,該等纖維構成該複合強化構件之80重量%至86重量%。
在一些示例性實施例中,該複合強化構件具有在55 GPa至80 GPa範圍內之一彈性模量。
在一些示例性實施例中,該複合強化構件具有至少45 MPa之一界面剪切強度。
在一些示例性實施例中,該複合強化構件具有至少1,000J/g的應變能釋放率(strain energy release rate)。
在一示例性實施例中,用於鋼筋混凝土的一複合筋包含一第一材料;一第二材料;和一固化的乙烯基酯樹脂,其中該第一材料的線性質量密度係大於該第二材料的線性質量密度,其中該第一材料形成該複合筋的核心,其中該第二材料形成環繞該核心的鞘,且其中該經固化的乙烯基酯樹脂將該鞘和該核心黏合在一起。
雖然本文呈現了各種示例性實施例,其等涉及用於形成複合筋的樹脂系統,該樹脂系統係配製或以其他方式改性以包括一或多種賦予該複合筋所欲性質的添加劑,但是本發明一般概念亦考慮了添加劑可以藉由施加一塗層至該複合筋,諸如當該筋尚未完全固化時(例如,在離開拉擠成型模具時)而引入(代替或除了經由該樹脂系統外)。更確切地,這種塗層可以為多用途塗層,賦予該複合筋諸如耐腐蝕性、UV抗性、可偵測性……等等性質。
無論添加劑係經由該樹脂系統和/或某些塗層形式引入,該等添加劑典型地係希望在該複合筋的表面處或附近以實現其意欲的效果。
本發明一般概念之眾多其他層面、優點和/或特徵從下列示例性實施例的詳細說明、從該等請求項、及從隨附提交的附圖,將變得更加顯而易見。
較佳實施例之詳細說明
雖然本發明的一般概念係可以有在許多不同形式中的實施例,其具體實施例係在該等圖式中顯示並且將在本文中詳細說明,應理解的是本揭露內容係視為本發明一般概念之原理的示例。相應地,本發明一般概念係不意欲受限於本文所例示的具體實施例。
本發明的一般概念含括用於鋼筋混凝土及之類的纖維強化塑膠(FRP)筋,以及用於生產這種複合筋的系統和方法。本發明的FRP筋具有取決於材料和拉擠成型製程變量交互作用的性質。相應地,下列對本發明一般概念及其示例性實施例的說明將集中於這些輸入材料(例如,玻璃和樹脂)和加工層面,以及所得到之筋的所得有益性質。
輸入材料
該複合筋係藉由拉擠成型製程(如下所述)形成,在該製程中,連續玻璃纖維,諸如Advantex®牌玻璃纖維(由無硼E-CR玻璃組成物製成,可從俄亥俄州托利多的歐文斯康寧獲得),係通過一模具進料以形成具有所欲之橫截面的棒、條或其他線性強化構件。
典型地,該強化構件將呈具有圓形橫截面之棒的形狀。這些棒可以切割成任何所欲的長度。在一些示例性實施例中,該棒可以塑形(例如,彎曲)和/或與其他棒接合以形成更複雜的形狀和結構。
該輸入材料應具有大於81GPa之一模量,無論是純玻璃組成物或是混合材料(例如,組合玻璃纖維和碳纖維)。在一些示例性實施例中,該輸入材料具有大於88GPa之一模量。在一些示例性實施例中,該輸入材料具有大於95GPa之一模量。
在一些示例性實施例中,該玻璃纖維的直徑係在13μm至35μm範圍內。在一些示例性實施例中,該玻璃纖維的直徑係在17μm至32μm範圍內。
在一些示例性實施例中,該玻璃纖維的線性質量密度係在1,200德士至19,200德士範圍內。在一些示例性實施例中,該玻璃纖維的線性質量密度係在2,400德士至8,800德士範圍內。
在一些示例性實施例中,其中該密度係相對高的(例如,≥8,800德士),使得該纖維的直徑係相對大的(例如,≥32μm),加入填充劑材料,諸如黏土,可以幫助改良該複合筋的抗拉強度,藉由更佳的德士束對準和圍繞該束均等的樹脂分佈,以改良在該複合筋中的剪切延遲效應(shear lag effect)。意外發現的是,可以使用比認為必要的更少的填充劑含量,這允許提高該複合筋中的纖維含量用於更高的抗拉模量和強度。舉例而言,取決於填充劑含量,71%的纖維體積將為約83重量%至85重量%的玻璃纖維。如圖9之圖表900所顯示,在具有4,400德士和大約17μm纖維直徑之E-CR玻璃事例中(虛線上方的點),填充劑含量0份/每百份樹脂(phr)至5phr為所欲的,而在具有8,800德士和大約32µm纖維直徑之E-CR玻璃事例中(虛線下方的點),2phr至6phr的填充劑含量為所欲的。
在一些示例性實施例中,其中該輸入材料呈現更複雜的配置/構造,諸如核心-鞘配置,用於核心的輸入材料將具有比用於外鞘之輸入材料更大的德士。
該輸入材料(例如玻璃纖維、碳纖維)典型地將具有施加於其上的一上漿劑(sizing),該者與用於形成該複合棒的樹脂基質相容。
在一些示例性實施例中,該玻璃含量將為該拉擠棒的至少83wt.%。在一些示例性實施例中,該玻璃或混合纖維含量將在拉擠棒的65wt.%至88wt.%範圍內。在一些示例性實施例中,該玻璃含量將在拉擠棒的80wt.%至86wt.%範圍內。
在一些示例性實施例中,該輸入材料為混合纖維含量,其包括E-CR玻璃纖維和高模量玻璃纖維的組合。在一些示例性實施例中,該輸入材料為包括E-CR玻璃纖維和碳纖維的混合纖維含量。在一些示例性實施例中,該輸入材料為包括E-CR玻璃纖維和金屬線(metal strand)的混合纖維含量。在具有鞘-核心配置的各種示例性實施例中,該鞘材料可以為E-CR玻璃纖維,而該核心含有E-CR玻璃纖維和/或一些其他纖維。
在該複合筋中包括一金屬線有利於使用傳統的非專用偵測手段(諸如透地雷達)偵測嵌入結構(例如混凝土)中的複合筋。不像鋼筋,複合筋不能藉由此種手段固有地偵測到。在混凝土結構中定位複合筋的能力對於確保混凝土結構的結構完整性和評估老化結構中複合筋的完整性為重要的。
在一些示例性實施例中,該金屬線係為輸入至該拉擠成型製程(如上所述)之混合纖維的一部分。在其他示例性實施例中,該金屬線與其他輸入材料(例如,玻璃纖維)分開地輸入到該拉擠成型製程中。
在一些示例性實施例中,藉由使用金屬添加劑(例如,添加至該樹脂系統中)使得該複合筋可被偵測到。舉例而言,鐵黑(Fe3 O4 ,磁鐵礦)顏料可用於使該複合筋可被傳統的非專用偵測手段偵測,包括目前運作於鋼筋的偵測手段。由於該鐵黑顏料也將著色該複合筋黑色,假若這種顏色係非所欲的,可以使用其他鐵磁性添加劑。從可偵測性的觀點來看,其他添加劑可能增強鐵黑材料的有效性,諸如氧化鋅和碳黑。這些其他添加劑亦可以提供其他益處,諸如經改良的UV抗性。
如上所述,代替(或除了)將添加劑引入至該樹脂系統中,該等添加劑可以以塗層的形式或經由一些其他施用方法(諸如靜電噴髹(electrostatic painting)),施用到該複合筋上。
樹脂
該輸入的玻璃纖維係藉由樹脂黏合劑連接在一起,樹脂黏合劑當固化時(如下所述)將纖維相對於彼此固定並形成該複合筋。
聚酯(PE)樹脂、乙烯基酯(VE)樹脂和環氧(EP)樹脂係為用於形成複合筋普遍使用的基質樹脂或黏合劑(參閱圖1和2)。
因為複合筋經常用作苛刻或腐蝕性環境(諸如靠近海水)中的強化物,選擇可以在此種環境中存活的樹脂係為重要的設計考量。
因此,除了上面討論的更高的玻璃含量之外,玻璃與樹脂基質的高界面黏著,以及棒表面的經改良耐腐蝕性,對於用於在淹沒海水中混凝土強化之筋中實現更高的強度和模量保持率為重要的(參閱圖1和2)。
已經發現的是乙烯基酯樹脂的恰當配方或改性為重要的。舉例而言,添加少量胺甲酸乙酯或酚醛清漆或丙烯酸之互穿網(interpenetrating network)或用於苯乙烯的其它反應性單體改性可以進一步增強耐腐蝕性。高耐腐蝕性可能進一步改良的,藉由從該條的富含樹脂表面移除樹脂和/或施用一水合抑制劑(諸如丙烯酸酯、氯乙烯、辛基矽烷和/或矽烷化聚氮醯胺),水合抑制劑與混凝土一起運作作為一屏障,用於該筋進一步的耐腐蝕性並與混凝土交界。
其他添加劑亦可能使用。舉例而言,n,n-二甲基乙醇胺的辛酸鹽或與啉基相關的胺係為有效的表面腐蝕抑制劑,其可以作為塗層施用到該筋上以提供一經改良的混凝土黏合界面。其他遷移劑(migrating agent)也可以施用,以在混凝土裂縫萌生期間於該筋界面處運作,以阻止進一步的腐蝕。此外,某些玻璃纖維界面上漿劑組分,像丙烯酸、四氟硼酸鹽、四氟硼酸鈉或四氟硼酸銨中之一或多者,或交聯劑五糖醇或衣康酸,或高度交聯的矽烷/矽烷醇(諸如辛基矽烷),形成一安定的鈍化層或可與該玻璃聚縮合矽酸鹽表面一起運作為一界面改變層(interfacial alteration layer),以阻止或抑制水和鹼的侵入。該玻璃/改變層分介面較諸玻璃本身在防止水侵入方面係更有效的。原始和經改變玻璃中的水分流動性(Water mobility)係受與固相之化學交互作用的強烈影響。在二氧化矽飽和條件下,該重組的改變層與本體(bulk)和孔隙溶液達到平衡,且歸因於玻璃表面附近的運輸限制效應,殘餘腐蝕速率劇烈地縮小。安定鈍化層的理想條件典型地係低於90ºC且7≤pH≤9.5,二氧化矽飽和溶液,對於與該筋黏合劑界面處的混凝土水合物為最理想的。
在一些示例性實施例中,該棒可以用玻璃、聚酯或丙烯酸面紗包覆,伴隨在10gsm至50gsm範圍內之一面密度。
圖1之圖表100和圖2之圖表200顯示基於乙烯基酯和基於環氧樹脂的GFRP棒在鹼性環境中隨時間和溫度維持抗拉模量和強度,而基於聚酯樹脂的GFRP棒在鹼性條件下隨時間和溫度下降5-10%性能。表1詳述了複合筋的各種標準和建議的持久性極限(endurance limits),其中:「Cc」意指潛變破裂係數;「CE」意指環境係數;「ffu」意指設計強度;且「CL」意指信賴極限(confidence limit)。
無載重時間曝露係長達5,000小時,該者支持表1中給出之建議的0.9之環境折減(environmental knockdown)或CE,這是對該設計強度的建議折減。然而,Cc或潛變破裂持久性的較高折減因子為0.25至0.50或更高的百萬小時恆定靜載重閾值。基於乙烯基酯之筋,如圖3之圖表300所示,比聚酯條具有更高的潛變抗性。所以,玻璃組成物以及樹脂基質和配方影響該複合筋的設計強度和使用壽命。



表1
在圖3中潛變破裂數據(作為耐久性的測量)係顯示的,(1)具有39-44GPa的抗拉模量,507MPa的抗拉強度和>35%的潛變破裂極限之傳統E-玻璃/PE樹脂筋;(2)具有46-51 GPa的抗拉模量,598 MPa的抗拉強度和>45%的潛變破裂極限之E-CR玻璃/VE樹脂筋;而(3)具有56-60GPa的抗拉模量,831MPa的抗拉強度和>60%的潛變破裂極限之E-CR玻璃/VE樹脂筋。
該基礎樹脂之化學和形態,以及與樹脂配方中成分的交互作用和纖維上漿化學,在該製程中在溫度和剪切條件下招致100-1,000 cps的初始黏度範圍。舉例而言,將黏度從700cps降低至200cps亦受到纖維之樹脂潤濕及其固結期間中的加工溫度和剪切的影響。
拉擠成型製程
本發明之該FRP筋係藉由一拉擠成型製程形成。該拉擠成型製程係藉由一拉擠成型生產線、系統或之類實行。
如圖4A和4B中所顯示,根據一示例性實施例,一拉擠成型生產線400可用於形成複合筋490。該拉擠成型生產線400包括一橫向進料模組410、一樹脂浴420、一可選的在線捲繞器430、一或多個預成型器440、一或多個模具450、一控制站460、一牽引區(pulling section)470和一切割區480。如下文進一步描述的,一表面處理站亦可以提供的(未顯示)。該表面處理可以在拉擠棒於切割區480處切割之前和/或之後發生。
該拉擠成型生產線400確保輸入材料(例如玻璃纖維)及其相關加工在纖維進料、樹脂配方、樹脂浸漬、纖維架構、對準通過該預成型器、乾燥和加熱、潤濕、濕透、固結和固化中小心地控制,以形成一連續棒。
該橫向進料模組410組織該輸入材料,舉例而言,收集位於經軸架406或之類上的玻璃纖維404之粗紗402(例如,可從俄亥俄州托利多的歐文斯康寧獲得的Type 30®粗紗),用於該拉擠成型製程。該粗紗402可以為單端粗紗和/或多端粗紗。
在該橫向進料模組410之一示例性實施例中,如圖5A和5B中所顯示,取決於所欲的棒直徑,多根粗紗402係使用。每一粗紗402的一端係以箭頭408所示的拉擠方向朝向樹脂浴420進料。
在此實施例中,纖維404係通過一籠子412或其他結構進料,使得該纖維404嚙合設置在其中的條414。當纖維被拖引過籠子412時,該等條414賦予纖維404一初始張力。籠子412還作用於在端部進料通過一引導件416之前開始將纖維404的端部彼此更靠近地定位。
該引導件416包括數個孔洞。每根纖維404的一端係通過在引導件416中的一個孔洞進料。以這種方式,當纖維404在加工方向中408拖引時,纖維404係彼此靠近定位並彼此相對平行。因此,當纖維404離開引導件416時,它們已經開始形成一繩狀構件418(下文稱為“繩索”)。
繩索418然後係拖引通過該樹脂浴420,使得樹脂浴420中的樹脂環繞繩索418並穿入形成繩索418之纖維404之間的空間。繩索418以經浸漬繩索422離開該樹脂浴420。
樹脂浴420含有乙烯基酯或斷裂伸長率大於4%的經改性熱固性樹脂。重要的是該樹脂具有低的固化收縮率(例如,3-7%,取決於配方)而沒有顯著的殘餘應力,該者造成空隙、裂紋或劈裂,導致載重環境的過早失效或耐久性問題。在一示例性實施例中,該樹脂組成物係為基於Ashland 1398乙烯基酯樹脂基質(由肯塔基州卡温顿的Ashland公司供應)或Interplastic 692或433(由明尼蘇達州聖保羅的Interplastic公司供應)的改性樹脂,其交聯密度由加入用於自由基自催化固化的苯乙烯單體的比率設定,以實現100℃至130℃範圍內之一Tg。丙烯酸、酚醛清漆或二環戊二烯(DCPD)單體取代一部分的苯乙烯(例如,10%至30%)可能改善韌度、耐濕性並滿足火-煙-毒性(FST)標準。這些樹脂組成物的設計選擇應與其成本及Tg、模量、和因為固化速率太高在棒橫截面中大於0.8mm之裂紋/開裂的影響相平衡。

表2
如上所述,來自橫向進料模組410的玻璃纖維404穿過樹脂浴420,使得玻璃纖維404塗覆以該樹脂(即,潤濕),且相鄰纖維之間的空間係以該樹脂充分地填充(即濕透或浸漬)。更具體地,拉擠成型生產線400使用多階段預成型,其中玻璃纖維404係垂直和水平對準(參閱圖5A和5B),用於在它們穿過樹脂浴後在該預成型器440中定位。以這種方式,當纖維404穿過模具450時,拉擠成型生產線400的每個離散階段固結個別的纖維束成83重量%或更大或68體積%或更大的玻璃含量。
該(等)預成型器440有助於定位和對準包括樹脂的輸入材料。該(等)預成型器440亦有助於以避免輸入材料的聚束、纏結和其他非所欲之問題的方式將該纖維封裝在一起。
多階段預成型的使用亦使選擇性地放置不同的纖維類型(例如,玻璃和碳,不同玻璃類型的組合,不同纖維直徑的組合)成為可能,以便生產混合棒以改善彈性 模量或其他屬性。在輸入材料中使用不同的纖維直徑亦可以促進實現提高的輸入材料含量。
一在線捲繞器430,諸如一或多個被動輥 (driven rolls)可以在該拉擠成型生產線400中使用,作為張力調節裝置。舉例而言,假若在拉擠成型製程早期需要更多的拉力(例如,拖引玻璃纖維404通過樹脂浴420),捲繞器430可以使用的。此外,調節玻璃纖維404上之張力的能力可以促進玻璃纖維404在進入該(等)預成型器440之前的固結/封裝。
該拉擠成型生產線400採用連續準直粗紗的預成型、預熱和預潤濕,用於固結成具有高對準性(即貫穿該橫截面一致小於5度的定向偏離)大於83重量%的玻璃含量。
在一些示例性實施例中,先於拉擠模具452之前,一或多個剝離模具450係使用(參閱圖6A和6B)。在一些示例性實施例中,剝離模具450和拉擠模具452為同一組模具。當使用多個剝離模具450時,每一剝離模具450中的孔洞典型地將小於前面剝離模具450中的孔洞。剝離模具450從經浸漬纖維移除掉過量的樹脂並進一步固結該纖維404成正在形成的棒454。
玻璃的預熱會驅除殘留的水分,並能夠降低玻璃表面的樹脂黏度,以改善潤濕和濕透。任何適合施加熱量至玻璃的手段可以被使用。這種預熱可以沿著該拉擠成型生產線400在多個位置發生。
玻璃纖維的預潤濕係藉由直接加熱樹脂或以其他方式控制浸漬浴420(參閱圖7A和7B的示例性構形700)中樹脂的黏度而促進,或藉由在該(等)預成型器440中(參閱圖8A和8B的示例性構形800)位置施加,以在乙烯基酯樹脂凝膠化之前,藉由侷限和/或張力更佳地實現樹脂潤濕,以實現更緻密的固結。或者,該加熱可以透過間接(例如,射頻(radio-frequency))加熱而完成,該者可以允許更均勻的由內向外加熱。
不同的玻璃德士和長絲直徑組合可用於進一步改良均勻的玻璃封裝,從而使更高的玻璃纖維體積成為可能。
一旦進入最終固結點的模具450、452中,來自模具450和/或452的熱量交聯該熱固性樹脂,導致固結纖維422內的放熱,以形成一棒狀構件454(本文,「棒」)。在一些示例性實施例中,螺旋纏繞(例如,玻璃纖維)係施用到該棒454以維持在其中纖維404的固結和放置。
該拉擠成型生產線400通常將包括一控制站460,作為拉擠成型生產線400的一部分或位於其附近(例如,現場)。控制站460可以為分佈式控制系統(DCS),其允許對拉擠成型生產線400和相關的製程變量和條件電腦化和/或手動控制和管理。
該棒454離開拉擠成型模具452並朝向牽引器系統470前進。棒454在到達該牽引器系統470時冷卻,使得其在該牽引器接觸點中不變形。牽引區470有助於行使拉擠成型製程所需的拉力,即在棒454形成時維持棒454上的必要張力。
最後,棒454前進到切割區480,在那里切割成一定長度並收集用於進一步加工,例如表面處理操作。棒454可以切割成任何適合的長度,其長度通常由所意欲的應用決定。在一些示例性實施例中,棒454係切割成10英尺到75英尺的長度。在一些示例性實施例中,棒454係切割成20英尺到60英尺的長度。一旦切割,不論其有或沒有任何進一步處理,棒454係視為複合筋490。.
因此,該拉擠成型生產線400使用連續準直粗紗的預成型、預熱和預潤濕,用於固結成大於83重量%的玻璃含量,貫穿該橫截面具一致小於5度定向偏離的高對準,結合較高模量(例如,大於81GPa)的玻璃組成物或較高模量的混合物如玻璃-碳,以實現提高的界面剪切強度(例如,45MPa或更大)和應變能釋放率(例如, 1,000J/g或更高),就複合筋490而言。
除了控制玻璃纖維的放置和輸送(經由預成型器440),用於更均勻的封裝、提高纖維體積、及更佳地整體纖維對準,以改良拉擠棒的性質(例如彈性模量),還有機會使用單獨具有較高模量的玻璃組成物,較佳地與該核心或外殼混合,或其它纖維選擇性放置。此外,本發明的一般概念設想除了玻璃纖維之外或代替玻璃纖維,其他纖維類型可以使用的,諸如有機纖維如碳、玄武岩和芳族聚醯胺,或其他無機纖維。舉例而言,如圖6B中所顯示,兩組相鄰的剝離模具450可以接收不同的纖維流,用於最終輸送到一共同的拉擠成型模具452。
在一些示例性實施例中,該棒橫截面的至少一部分可以為中空的或發泡核心而不是實心的,諸如藉由使用適合的模具構造和/或構形或其他加工技術。
表面處理
一旦該拉擠棒(具有經改良的性質)形成,其可以進行進一步加工。此進一步加工可以在線或下游(例如,在不同時間,在不同位置)發生。這種進一步加工之一實例係為對棒施加一表面處理,以提高該棒和其嵌入之混凝土基質之間的黏著力。
當設計到混凝土的破碎閾值時,筋表面處理使得在張力、壓縮、彎曲或局部剪切載重下,適當的滑移應變和機械剪切黏著以在剪切壓縮下放置混凝土獲得最佳的內聚力。
在一些示例性實施例中,該表面處理涉及變化(例如,研磨)該筋的外表面以改變其表面特徵。在一些示例性實施例中,該經機器加工表面係未塗覆,以便促使混凝土與該機器加工表面的接觸,該機器加工表面的總表面積可高於傳統表面處理,用於改良穿透、潤濕和黏合。
典型地,經機器加工表面處理的筋滿足在混凝土筋拔出試驗中ACI440.3R B.3之閾值8MPa黏合強度,及ACI440.3R B.4之閾值180MPa橫向剪切強度。
在一些示例性實施例中,該表面處理涉及使用來自該拉擠棒離開模具450的殘餘放熱,以幫助從流化床以黏沙(sand sticking)施加到表面的熱固性塗層固化以形成一經沙塗覆之筋。這種類型的表面處理可能比表面研磨更適合用於在線加工。
除了如上所述本發明複合筋中的各種性質(和相關改良)之外,就ACI440.3R B.6和B.8分別而言,耐久性試驗滿足耐鹼性和潛變破裂試驗。
此外,本發明複合筋的生產能夠維持0.005英吋或更小的加工直徑範圍容許偏差。
此外,本發明複合筋的生產能夠維持小於0.002英吋的不圓度(out-of-round)容許偏差。
此外,當在60英吋的棒長度上測量時,本發明複合筋的生產能夠維持具有0.015英吋最大彎曲度(最大撓曲)的翹曲容許偏差。
在一些示例性實施例中,本發明複合筋將具有在55GPa至80GPa範圍內之一彈性模量。
本發明之複合筋具有如本文所述的特性/屬性,其允許混凝土的內部強化。這些特性/屬性包括但不限於:無腐蝕-針對高腐蝕性環境(包括鹽水噴霧曝露和海水淹沒式子結構);高抗拉強度 - 比鋼高兩倍;重量輕(鋼重量的1/4) - 用於更快、更安全的現場處理;成本效益的鋼材替代品(節省高達60%的成本);可縮減的(cuttable)隧道鑽掘機(TBM)設備- 用於TBM隧道開發和穿越區(soft-eyes);不導電 - 用於冶煉廠和發電站的開發;低導熱性 – 用於降低預鑄三明治牆的能源成本;非磁性 - 用於醫院和實驗室應用;和節能 - 低碳足跡。舉例而言,圖10之圖表1000顯示該複合筋在持續載重下和/或經受一段鹼性曝露時的抗拉強度保持率。
一般地,本發明複合筋使得更高的模量、良好的強度和/或經改良的耐久性性能成為可能,且同時支持工業中常見的偶合和安裝方案,用於混凝土現場灌注內部加固的有效施工實踐,和預鑄混凝土應用中25-50%的預抗拉預應力。
其將為體會的是,本發明一般概念之範圍係不意欲受限於本文所顯示和描述之該等特定示例性實施例。從給出的揭露內容,熟習該項技藝者不僅將理解本發明一般概念和其伴隨的優點,而且還將發現所揭露之方法和系統的明顯各種改變和改型。所以,其係尋求含蓋落入如本文所描述和主張之本發明一般概念之精神和範圍內的所有這些改變和改型,及其任何等同物。舉例而言,雖然所描述的複合筋之「進一步加工」集中於處理該筋的表面,但是本發明的一般概念係不限於此,且將含括在該複合筋上的其他形式的加工,諸如在其上施用一後塗層(例如,改良該筋的疏水性)。
100、200、300、900、1000‧‧‧圖表
400‧‧‧拉擠成型生產線
402‧‧‧粗紗
404‧‧‧纖維
406‧‧‧經軸架
408‧‧‧箭頭(加工方向)
410‧‧‧橫向進料模組
412‧‧‧籠子
414‧‧‧條
416‧‧‧引導件
418‧‧‧繩索
420‧‧‧樹脂浴
422‧‧‧經浸漬繩索
430‧‧‧在線捲繞器
440‧‧‧預成型器
450‧‧‧剝離模具
452‧‧‧拉擠成型模具
454‧‧‧棒
460‧‧‧控制站
470‧‧‧牽引區
480‧‧‧切割區
490‧‧‧複合筋
600、700、800‧‧‧示例性構形
本發明的一般概念以及其實施例和優點係借助於實例,伴隨參照該等圖式於下文更詳細地說明,該等圖式中:
圖1係為顯示在22℃、40℃和60℃每一者下曝露於鹼性溶液1,000小時、3,000小時和5,000小時的異聚酯、乙烯基酯和環氧FRP樣本之彈性模量保持率的圖表。
圖2係為顯示在22℃、40℃和60℃每一者下曝露於鹼性溶液1,000小時、3,000小時和5,000小時的異聚酯、乙烯基酯和環氧FRP樣本之抗拉強度保持率的圖表。
圖3係為顯示聚酯和乙烯基酯樹脂之FRP筋的潛變破裂(creep rupture)數據(作為耐久性的測量)之圖表。
圖4A和4B係為根據一示例性實施例用於製造複合筋棒的拉擠成型生產線的圖示。
圖5A和5B係為具有水平和垂直張力對準以控制粗紗通過預成型器和表面封裝(packing)之拉力(例如,橫向進料模組(infeed module))的經軸架(creel)的圖示。圖5A係為該經軸架的側立面圖。圖5B係為該經軸架的上俯視圖。
圖6A和6B係為例示使用位於拉擠成型模具之前的一系列剝離模具的圖示。
圖7A和7B係為顯示通過一浸漬浴的樹脂浸漬之圖示。圖7A係為該樹脂浴的側立面圖。圖7B係為該樹脂浴的上俯視圖。
圖8A和8B係為顯示藉由直接計量之樹脂浸漬的圖示。圖8A係為該施用器之側立面圖。圖8B係為該施用器的上俯視圖。
圖9係為顯示該複合筋相對於樹脂系統中填充劑含量,在71%玻璃纖維體積下的抗拉強度之圖表。
圖10係為顯示該複合筋在持續載重下和/或經受一段鹼性曝露時的抗拉強度保持率之圖表。

Claims (45)

  1. 一種複合強化構件,其包含數個藉由固化的乙烯基酯樹脂連接在一起的纖維, 其中該等纖維基本上彼此平行,且 其中該乙烯基酯樹脂係調配以提高該強化構件的耐腐蝕性。
  2. 如請求項1之該複合強化構件,其中胺甲酸乙酯係加入至該乙烯基酯樹脂中。
  3. 如請求項1之該複合強化構件,其中酚醛清漆係加入至該乙烯基酯樹脂中。
  4. 如請求項1之該複合強化構件,其中一丙烯酸酯係加入至該乙烯基酯樹脂中。
  5. 如請求項1之該複合強化構件,其中環氧樹脂係加入至該乙烯基酯樹脂中。
  6. 如請求項1之該複合強化構件,其中氯乙烯係加入至該乙烯基酯樹脂中。
  7. 如請求項1之該複合強化構件,其中辛基矽烷係加入至該乙烯基酯樹脂中。
  8. 如請求項1之該複合強化構件,其中矽烷化的聚氮醯胺(polyazamide)係加入至該乙烯基酯樹脂中。
  9. 如請求項1之該複合強化構件,其中n,n-二甲基乙醇胺的辛酸鹽係加入至該乙烯基酯樹脂中。
  10. 如請求項1之該複合強化構件,其中一與啉基相關的胺係加入至該乙烯基酯樹脂中。
  11. 如請求項1之該複合強化構件,其中該複合強化構件係為一圓柱形棒。
  12. 如請求項11之該複合強化構件,其中該棒具有在0.25英吋至3.0英吋範圍內之一直徑。
  13. 如請求項11之該複合強化構件,其中該棒具有在0.375英吋至1.5英吋範圍內之一直徑。
  14. 如請求項11之該複合強化構件,其中該棒具有在10英尺至75英尺範圍內之一長度。
  15. 如請求項11之該複合強化構件,其中該棒具有在20英尺至60英尺範圍內之一長度。
  16. 如請求項11之該複合強化構件,其中該棒為直的。
  17. 如請求項16之該複合強化構件,其中該纖維距該棒的中軸線的定向偏離係小於5度。
  18. 如請求項11之該複合強化構件,其中該棒具有至少一個大於45度的彎曲。
  19. 如請求項11之該複合強化構件,其中一面紗(veil)係圍繞著該棒包覆。
  20. 如請求項19之該複合強化構件,其中該面紗係為玻璃面紗、聚酯面紗和丙烯酸面紗之一。
  21. 如請求項19之該複合強化構件,其中該面紗具有在10g/m2 至50g/m2 範圍內之一面密度(areal density)。
  22. 如請求項1之該複合強化構件,其中該乙烯基酯樹脂具有大於4%之一斷裂伸長率。
  23. 如請求項1之該複合強化構件,其中該乙烯基酯樹脂具有在3%至7%範圍內之一固化收縮率。
  24. 如請求項1之該複合強化構件,其中該乙烯基酯樹脂具有在100ºC至130ºC範圍內之一玻璃轉化溫度。
  25. 如請求項1之該複合強化構件,其中該纖維係由玻璃纖維組成。
  26. 如請求項25之該複合強化構件,其中該玻璃纖維構成該複合強化構件之至少重量83%。
  27. 如請求項25之該複合強化構件,其中該乙烯基酯樹脂包括一金屬添加劑。
  28. 如請求項27之該複合強化構件,其中該金屬添加劑為鐵墨(iron black)顏料。
  29. 如請求項1之該複合強化構件,其中該纖維包含玻璃纖維。
  30. 如請求項29之該複合強化構件,其中該玻璃纖維的直徑係在13μm至35μm範圍內。
  31. 如請求項29之該複合強化構件,其中該玻璃纖維的直徑係在17μm至32μm範圍內。
  32. 如請求項29之該複合強化構件,其中該玻璃纖維的線性質量密度係在1,200德士(tex)至19,200德士範圍內。
  33. 如請求項29之該複合強化構件,其中該玻璃纖維的線性質量密度係在2,400德士至8,800德士範圍內。
  34. 如請求項1之該複合強化構件,其中該纖維包含第一玻璃纖維和第二玻璃纖維。
  35. 如請求項34之該複合強化構件,其中該第一玻璃纖維和該第二玻璃纖維彼此的玻璃組成不同。
  36. 如請求項34之該複合強化構件,其中該第一玻璃纖維和該第二玻璃纖維彼此的纖維直徑不同。
  37. 如請求項1之該複合強化構件,其中該纖維包含玻璃纖維和碳纖維。
  38. 如請求項1之該複合強化構件,其中該纖維具有大於81 GPa的彈性模量。
  39. 如請求項1之該複合強化構件,其中該纖維具有大於88 GPa的彈性模量。
  40. 如請求項1之該複合強化構件,其中該纖維具有大於95 GPa的彈性模量。
  41. 如請求項1之該複合強化構件,其中該纖維構成該複合強化構件之65重量%至88重量%。
  42. 如請求項1之該複合強化構件,其中該纖維構成該複合強化構件之80重量%至86重量%。
  43. 如請求項1之該複合強化構件,其中該複合強化構件具有在60 GPa至80 GPa範圍內之一彈性模量。
  44. 如請求項1之該複合強化構件,其中該複合強化構件具有至少45 MPa之一界面剪切強度。
  45. 如請求項1之該複合強化構件,其中該複合強化構件具有至少1,000 J/g之一應變能釋放率(strain energy release rate)。
TW108114149A 2018-04-23 2019-04-23 Frp筋及其製造方法 TW201945442A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862661455P 2018-04-23 2018-04-23
US62/661,455 2018-04-23

Publications (1)

Publication Number Publication Date
TW201945442A true TW201945442A (zh) 2019-12-01

Family

ID=66655430

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114149A TW201945442A (zh) 2018-04-23 2019-04-23 Frp筋及其製造方法

Country Status (7)

Country Link
US (1) US20210017766A1 (zh)
EP (1) EP3784844A1 (zh)
CN (1) CN112384665B (zh)
CA (1) CA3095768A1 (zh)
MX (1) MX2020010989A (zh)
TW (1) TW201945442A (zh)
WO (1) WO2019209763A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4041538A1 (en) 2019-11-12 2022-08-17 Neuvokas Corporation Method of manufacturing a composite material
US20230065267A1 (en) * 2020-02-26 2023-03-02 Owens Corning Intellectual Capital, Llc Composite parts with improved modulus
KR102356328B1 (ko) * 2021-06-29 2022-02-08 (주)케이지알 리바 액체 제거장치
DE102022105682A1 (de) 2022-03-10 2023-09-14 Solidian Gmbh Verfahren zur Herstellung wenigstens eines teilgehärteten Bewehrungselements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227207B1 (en) * 1985-12-26 1992-12-23 SHIMIZU CONSTRUCTION Co. LTD. Concrete reinforcing unit
US5182064A (en) * 1990-10-17 1993-01-26 Nippon Petrochemicals Company, Limited Method for producing fiber reinforced plastic rods having helical ribs
US5763042A (en) * 1994-06-28 1998-06-09 Reichhold Chemicals, Inc. Reinforcing structural rebar and method of making the same
JP2000510783A (ja) * 1996-10-07 2000-08-22 マーシャル・インダストリーズ・コンポジッツ 強化複合製品およびその製造装置と製造方法
CN1916327A (zh) * 2006-08-11 2007-02-21 中材科技股份有限公司 纤维增强塑料筋材
JP2013541443A (ja) * 2010-09-17 2013-11-14 スリーエム イノベイティブ プロパティズ カンパニー 繊維強化ナノ粒子装填熱硬化性ポリマー複合体ワイヤ及びケーブル、並びに方法
KR20120040529A (ko) * 2010-10-19 2012-04-27 고려대학교 산학협력단 Frp 바와 철근을 이용한 하이브리드 보강 콘크리트 구조물
US8511038B2 (en) 2011-02-15 2013-08-20 Randel Brandstrom Concrete panel with fiber reinforced rebar
WO2016044669A1 (en) 2014-09-17 2016-03-24 Composite Rebar Technologies, Inc. Hollow, composite rebar structure, associated fabrication methodolgy, and apparatus
KR101764693B1 (ko) * 2015-07-15 2017-08-07 한국건설기술연구원 가이드섬유를 이용한 돌기사 위치 고정 구성의 섬유보강폴리머 보강근 제작방법과 제작장치
CN106481026B (zh) * 2016-12-15 2019-07-23 济南大学 Sma-gfrp超弹性复合筋及其制备方法

Also Published As

Publication number Publication date
WO2019209763A1 (en) 2019-10-31
CN112384665B (zh) 2023-01-17
US20210017766A1 (en) 2021-01-21
CA3095768A1 (en) 2019-10-31
MX2020010989A (es) 2020-11-09
EP3784844A1 (en) 2021-03-03
CN112384665A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
TW201945442A (zh) Frp筋及其製造方法
JP7129098B2 (ja) 複合繊維および繊維を生成する方法
WO1984000216A1 (en) Coated optical fiber
CN103225369B (zh) 一种表面具有螺纹结构的纤维复合筋及其制备方法
CN102344573A (zh) 一种绞合型纤维增强复合芯预浸料法生产工艺
ES2905275T3 (es) Fibra compuesta revestida con sílice para el refuerzo de hormigón
JP2020509946A5 (zh)
CN102345236A (zh) 一种多芯绞合型纤维加强芯材湿法生产工艺
Liu et al. Synergistic effect of acidic environmental exposure and fatigue loads on FRP tendons
US11555310B2 (en) Composite rebar
US20210245456A1 (en) Composite fibers
US20230065267A1 (en) Composite parts with improved modulus
AU2021104691A4 (en) FRP reinforcement bar with improved recycled glass coating
US20210245455A1 (en) Method of producing improved composite fibers
CN116066160A (zh) 矿用高性能非金属复合材料锚杆及其制备方法
Rolston Process and Economic Factors for Pultrusion
RU159026U1 (ru) Композитная арматура
CN114193798A (zh) 一种frp拉挤型材的连续制备方法和锚固方法
BR102016011927A2 (pt) Method for the manufacture of a liquid composite made of resin and glass fiber and a liquid composite made by the method