CN114114490A - 一种超低应力耐久性金属反射膜及其制备方法和应用 - Google Patents

一种超低应力耐久性金属反射膜及其制备方法和应用 Download PDF

Info

Publication number
CN114114490A
CN114114490A CN202111476204.9A CN202111476204A CN114114490A CN 114114490 A CN114114490 A CN 114114490A CN 202111476204 A CN202111476204 A CN 202111476204A CN 114114490 A CN114114490 A CN 114114490A
Authority
CN
China
Prior art keywords
film
layer
proof
reflecting
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111476204.9A
Other languages
English (en)
Other versions
CN114114490B (zh
Inventor
徐旭
江传富
鲍晓静
熊涛
王航
何光宗
张天行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Jiuzhiyang Infrared System Co Ltd
Original Assignee
Hubei Jiuzhiyang Infrared System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Jiuzhiyang Infrared System Co Ltd filed Critical Hubei Jiuzhiyang Infrared System Co Ltd
Priority to CN202111476204.9A priority Critical patent/CN114114490B/zh
Publication of CN114114490A publication Critical patent/CN114114490A/zh
Application granted granted Critical
Publication of CN114114490B publication Critical patent/CN114114490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明公开了一种超低应力耐久性金属反射膜及其制备方法和应用。该金属反射膜,依次包括Cr膜层、Al或Ag反射层、介质保护层或增强层和防潮防霉憎水膜层,其中Cr膜层的厚度为10~50nm;当选择Ag膜层时,Cr膜层和Al膜层之间还包括Cu膜层。其制备为:基片进行基础清洗和离子束清洗,然后依次镀制Cr膜层、Al反射层(或Cu膜层和Ag反射层)、介质保护层或增强层、防潮防霉憎水膜,即得金属反射膜。该反射膜全膜系膜层应力低,膜层应力可调控,薄膜附着力、耐摩擦和环境稳定性优良,同时可根据光学元件的需求实现宽波段高反,且反射率高,可以广泛应用于对光学元件面形精度要求高、成像像质要求高的光学系统中。

Description

一种超低应力耐久性金属反射膜及其制备方法和应用
技术领域
本发明属于光学薄膜技术领域,具体涉及一种超低应力耐久性金属反射膜及其制备方法和应用。
背景技术
目前,光学薄膜的种类很多,如高反膜、增透膜、分色膜、分束膜和精密滤光膜等等。随着新体制光学系统的广泛应用,研究人员不仅关心光学薄膜元件的光学性能、环境稳定性,还对其元件面形格外关注。光学薄膜元件的面形质量将直接影响整体光学系统的成像质量。如果强激光发射系统输出波前存在像差,聚焦强度峰值随均方根RMS波前畸变的增加呈指数下降。衍射极限系统是指波前畸变使其聚焦峰值强度降到不低于理想最大高度的80%。制造情况的最大RMS波前畸变约为λ/14,这就是著名的Marechal判据。为了得到给定的输出光束的RMS波前畸变,必须确定光路中每块反射镜面形误差容限。光学薄膜元件的面形主要与其加工过程密切相关,工作波长处的面形由两个因素产生:光学抛光和镀膜。不幸的是,很少有人认识到后者的贡献。物理气相沉积制备光学薄膜的过程中,薄膜的生长过程发生在很高的过饱和状态下,此时杂质原子的浓度很高,而且基片的状态也不完全确定,这是一种极度的非平衡过程。一般而言,光学薄膜在沉积过程中和沉积后,薄膜都处在一种弹性应力状态中。较大的薄膜应力将会引起基片的严重变形,在光学系统中引入较大的波像差,严重时将会导致膜层脱落。
随着光学技术的发展,越来越多的光学系统采用多谱段共光路的设计,近年来出现了许多二光、三光甚至四光合一的光学系统。对于反射膜来说,采用金属反射的方法比较容易实现多谱段高反射率,提高金属反射膜的环境稳定性是研究的重点。镀制金属反射膜的常用材料有铝(Al)和银(Ag),Al基反射膜和Ag基反射膜都已经被广泛应用于各种光学系统中。在实际应用过程中,如卡塞格林镜头主反射镜、次反射镜和离轴三反系统主镜、次镜及三镜,零件面形精度要求高,RMS通常要求优于λ/50(λ=632.8nm)。光学元件冷加工周期长、成本高,要求镀膜后零件面形基本无变化。此外,金属反射膜的环境稳定性也是研究人员关注的问题,如何改善和延长金属膜的使用寿命仍然是一个工艺难题。
因此,本发明提出了一种添加亚层法制备超低应力、环境稳定性优良的金属反射膜制备工艺方法。
发明内容
本发明的目的在于提供一种超低应力耐久性金属反射膜及其制备方法和应用,该反射膜全膜系膜层应力低、膜层应力可调控、薄膜附着力、耐摩擦和环境稳定性优良,同时可根据光学元件的需求实现宽波段高反,且反射率高,可以广泛应用于对光学元件面形精度要求高、成像像质要求高的光学系统中。
为了解决上述技术问题,本发明提供以下技术方案:
提供一种超低应力耐久性金属反射膜,依次包括Cr膜层、Al或Ag反射层、介质保护层或增强层和防潮防霉憎水膜层,其中Cr膜层的厚度为10~50nm;当选择Ag反射层时,Cr膜层和Ag反射层之间还包括Cu膜作为过渡粘结层。
按上述方案,所述Cr膜层镀制过程中的沉积速率为0.1~0.3nm/s。
按上述方案,所述Al或Ag膜层厚度为120~200nm。
按上述方案,所述介质保护层或增强层为Al2O3、SiO2、TiO2、HfO2、Ta2O5、Nb2O5等一种或几种材料的组合。
按上述方案,所述介质保护层或增强层厚度为120~1000nm。
按上述方案,所述防潮防霉憎水膜为含氟硅的有机高分子聚合物。
按上述方案,所述防潮防霉憎水膜厚度为3~5nm。
按上述方案,所述反射膜全膜系的应力应在±10MPa以内。
按上述方案,所述过渡粘结层厚度为20~50nm。
提供一种上述超低应力耐久性金属反射膜的制备方法,包括以下步骤:
1)对基片首先进行基础清洗,然后进行离子束清洗,完成基片预处理;
2)在经过预处理后的基片待镀膜表面采用电子束蒸发离子束辅助制备Cr膜层,然后采用电子束蒸发蒸镀Al反射层;或者在Cr膜层上采用电子束蒸发离子束辅助沉积制备Cu过渡粘结层,然后再采用电子束蒸发蒸镀Ag反射层;
3)在步骤2)所得的Al或Ag反射层上采用电子束蒸发离子束辅助沉积制备介质保护层或增强层,最后电子束蒸发蒸镀一层防潮防霉憎水膜,即可得到超低应力耐久性金属反射膜。
按上述方案,所述基片为K9玻璃、微晶、融石英或铜。
按上述方案,所示步骤1)中,基础清洗工艺为:首先用调试好的超声清洗波对零件进行清洗,然后采用脱脂棉球蘸取酒精及乙醚混合液擦拭,最后用哈气法检查零件表面;离子束清洗工艺为:当真空室本底真空达到5×10-4Pa及以下,在室温下,对离子源充入纯度不低于99.99%的氩气,开启离子源对基片表进行离子束清洗。
按上述方案,所示步骤2)中,电子束蒸发蒸镀Cr膜时工艺参数为:离子辅助阳极电压为170-180V,阳极电流为2.8-3.2A,电子枪束流为30~50mA。
按上述方案,所示步骤2)中,Al膜的沉积速率为0.4-0.6nm/s,电子枪束流为200~300mA。
按上述方案,所示步骤2)中,Ag膜的沉积速率大于2nm/s,电子枪束流为200~260mA。
按上述方案,所示步骤2)中,Cu膜的离子辅助阳极电压为170-180V,阳极电流为2.8-3.2A,电子枪束流为80-120mA,沉积速率为0.2-0.3nm/s。
按上述方案,所示步骤3)中,介质保护层或增强层的沉积速率在0.1~0.6nm/s,离子辅助阳极电压为160-180V,阳极电流为2.8-3.2A。
按上述方案,所示步骤3)中,所述防潮防霉憎水膜的沉积速率为0.1-0.2nm/s,电子枪束流为3-5mA。
按上述方案,所示步骤3)中,薄膜镀制完成后,保持抽真空状态,零件在真空室静止2小时以上后,放气取件。
提供一种上述超低应力耐久性金属反射膜在卡式镜头或三波段集成一体化光电装备中的应用。
本发明提供一种超低应力耐久性金属反射膜,通过引入第一层Cr膜作为打底层,显著提高了膜层与基底的附着力;同时配合调控Cr膜的厚度,可以调控Cr膜的残余应力,进而针对不同膜系的保护性金属发射膜和增强型金属反射膜,均能使得全膜系的残余应力接近于零,使得镀膜后零件面形不发生蜕变。通过在打底层Cr膜的基础上引入过渡粘结层Cu膜,综合调控Cr膜和Cu膜的厚度比例,显著提升金属反射膜Ag膜层与Cr膜的附着力,降低Ag原子的迁移率,提升抗卤素原子的腐蚀能力;此外,本发明采用冷镀(注:基片无须加热处理)可以有效控制镀膜零件的面形,且避免金属反射层Ag膜或Al膜在高温下结晶,反射率降低。在反射膜最外层镀制一层防潮防霉憎水膜,可以有效降低水汽的侵蚀腐蚀,提升Ag基或Al基反射膜的环境耐候性,而介质保护层或增强层的存在不仅可以起到保护作用或反射增强作用,还可以增加Al或Ag反射层与防潮防霉憎水膜之间的附着力,提高整体膜层结构稳定性。
本发明的有益效果为:
1.本发明提供一种超低应力耐久性金属反射膜,全膜系膜层应力低,膜层应力可有针对性的调控,无须在零件背面镀膜进行面形修正即可实现镀膜零件的高面形精度,薄膜附着力、耐摩擦和环境稳定性优良,具有耐久性,使用寿命长,同时可根据光学元件的需求实现宽波段高反,且反射率高,可以广泛应用于如卡式镜头和三波段集成一体化光电装备这些对光学元件面形精度要求高、成像像质要求高的光学系统中。
2.本发明提供一种超低应力耐久性金属反射膜的制备方法,通过引入合适厚度Cr过渡层及调节控制其沉积速率,可以控制全膜系的应力,且增强反射层和基片的附着力;通过镀制介质保护层或增强层时引入离子辅助沉积,可以增强其致密程度,提升其环境稳定性;本发明的所有膜层厚度容差较大,制备工艺依托于普通镀膜设备,易于控制实现,工艺重复性好。在其他高面形精度镀膜工艺的研制中具有广泛的指导意义。
附图说明
图1为实施例中微晶等基片上镀制超低应力耐久性金属反射膜的结构示意图。
图2为实施例1中一种卡式镜头主镜镀膜后的面形图。
图3为实施例1中一种卡式镜头主镜镀膜后的镀膜样件1500nm~1700nm波段反射率曲线。
具体实施方式
本发明实施例中所涉及的一种超低应力耐久性金属反射膜是在LeyboldARES1110型真空镀膜机上实现的。该镀膜机配备置有MarkⅡ离子源、两套6穴电子枪蒸发系统、基片加热烘烤器、晶振膜厚监控系统、真空抽气系统(干泵、Polycold冷阱和冷泵)等。
实施例1
提供一种卡式镜头主镜镀高反射膜,基片材料为微晶,基片尺寸为Φ84mm*12.48mm。技术要求为:入射角为0°~10°;在1500nm~1700nm波段平均反射率≥95%,且镀膜后的面形RMS≤λ/50(λ=632.8nm);镀膜样片需通过GJB2485规定的附着力与中度磨擦试验、以及高低温试验,试验后光学性能仍满足技术指标要求。
首先,根据上述技术要求进行膜系结构优化设计,通过设计合适厚度的Cr膜层来匹配全膜系的应力,结果如下:
Sub|aCr/bAl/cSiO2/dH/Air
其中H为防潮防霉憎水膜,a-c分别为膜层物理厚度,具体为:a-30nm,b-120nm,c-120nm,d-3.5nm。
镀制过程具体实施如下:
1)基片清洁:首先对超声清洗设备对零件处理4分钟,然后采用脱脂棉球蘸取酒精及乙醚混合液擦拭,并采用哈气法检查基片清洁程度,一边擦拭,一边检查,直至基片表面无污染为止,擦拭过程中禁止采用CeO2等抛光液处理。
2)基片离子束清洗处理:将基片待镀膜表面朝下置于真空室中并保持抽真空状态,然后开启基片旋转系统,对离子源充入纯度不低于99.99%的氩气,并开启离子源对基片待镀膜表面进行中性粒子束处理,离子源参数为阳极电压为180V,阳极电流为3A,中和电流为17A,氩气流量为10sccm,处理时间为10分钟。
3)在基片上蒸镀第一层Cr膜:Cr膜的离子辅助阳极电压为(175±5)V,阳极电流为(3±0.2)A,电子枪束流为(40±0.2)mA,工作气体Ar流量为(10.0±0.5)sccm;沉积速率为(0.17±0.02)nm/s。
4)在Cr膜上蒸镀第二层Al反射膜:Cr膜蒸镀完毕后,关闭离子源,待真空室本底真空优于2*10-4Pa,采用电子束蒸发蒸镀,电子枪束流为(250±20)mA,沉积速率为(0.5±0.1)nm/s。
5)在Al膜上蒸镀第三层SiO2保护膜:在第二层Al膜镀制完成后,镀制第三层SiO2保护膜,采用电子束蒸发离子辅助沉积,电子枪束流为(90±10)mA,离子辅助阳极电压为(165±5)V,阳极电流为(3±0.2)A,沉积速率为(0.5±0.1)nm/s。
6)在SiO2膜上蒸镀第四层防潮防霉憎水膜:防潮防霉憎水膜采用电子束蒸发蒸镀,电子枪束流为(4±1)mA,沉积速率为(0.15±0.02)nm/s,厚度3.5nm,所述防潮防霉憎水膜为含氟硅的有机高分子聚合物。
7)降温取件:在第四层防潮防霉憎水膜镀制结束后,关闭电子枪,保持抽真空状态,静置2小时后可开门取件。
实施例1所得镀膜样片满足上述技术要求,其中图2和图3分别为本实施例所得卡式镜头主镜镀膜后的面形图和反射率曲线图,图中显示:
图2显示其面形RMS为0.015λ,优于λ/50。
图3显示样件在1500nm~1700nm平均反射率高于95%。
实施例2
提供一种离轴反射光学系统主镜镀高反射膜,基片材料为微晶,基片尺寸为Φ157mm*26.53mm。技术要求为:入射角为12°~15°;在700nm~1000nm波段平均反射率≥97%,在1064nm+-15nm波段平均反射率≥99%,中波红外3.7μm~4.8μm的平均反射率≥98.5%,且镀膜后的面形RMS≤λ/50(λ=632.8nm);镀膜样片需通过GJB2485规定的附着力与中度磨擦试验、以及高低温试验,试验后光学性能仍满足技术指标要求。
首先,根据上述技术要求进行膜系结构优化设计,通过设计合适厚度的Cr膜层来匹配全膜系的应力,设计以Al2O3和SiO2作为低折射率材料、TiO2作为高折射率材料的非规则介质增强膜堆,结果如下:
Sub|aCr/bCu/cAg/dAl2O3/eSiO2/fTiO2/gSiO2/hH/Air
其中H为防潮防霉憎水膜,a-h分别为膜层物理厚度,具体为:a-23nm;b-20nm;c-120nm;d-30nm;e-79nm;f-155nm;g-10nm;h-3.5nm。
镀制过程具体实施如下:
1)基片清洁:首先对超声清洗设备对零件处理4分钟,然后采用脱脂棉球蘸取酒精及乙醚混合液擦拭,并采用哈气法检查基片清洁程度,一边擦拭,一边检查,直至基片表面无污染为止,擦拭过程中禁止采用CeO2等抛光液处理。
2)基片离子束清洗处理:将基片待镀膜表面朝下置于真空室中并保持抽真空状态,然后开启基片旋转系统,对离子源充入纯度不低于99.99%的氩气,并开启离子源对基片待镀膜表面进行中性粒子束处理,离子源参数为阳极电压为180V,阳极电流为3A,中和电流为17A,氩气流量为10sccm,处理时间为10分钟。
3)在基片上蒸镀第一层Cr膜:Cr膜的离子辅助阳极电压为(175±5)V,阳极电流为(3±0.2)A,电子枪束流为(42±0.2)mA,工作气体Ar流量为(10.0±0.5)sccm;沉积速率为(0.20±0.02)nm/s。
4)在Cr膜上蒸镀第二层Cu膜:Cu膜的离子辅助阳极电压为(175±5)V,阳极电流为(3±0.2)A,电子枪束流为(100±10)mA,工作气体Ar流量为(10.0±0.5)sccm;沉积速率为(0.27±0.02)nm/s。
5)在Cu膜上蒸镀第三层Ag膜:关离子源及工作气体,待真空室本底真空抽至2.0*10-6Pa及以上时,对Ag膜料进行充分预融,待其蓝色熔池打开后,开启电子枪挡板,使其快速蒸发,物理厚度约120nm。
6)在Ag膜上蒸镀第四层Al2O3膜:Al2O3膜的离子辅助阳极电压为(170±5)V,阳极电流为(3±0.2)A,工作气体Ar流量为(10.0±0.5)sccm;电子枪束流为(145±10)mA,沉积速率为(0.20±0.02)nm/s。
7)在Al2O3膜上蒸镀第五层SiO2膜:SiO2膜的离子辅助阳极电压为(170±5)V,阳极电流为(3±0.2)A,工作气体Ar流量为(10.0±0.5)sccm;电子枪束流为(90±10)mA,沉积速率为(0.5±0.05)nm/s。
8)在SiO2膜上蒸镀第六层TiO2膜:TiO2膜的离子辅助阳极电压为(170±5)V,阳极电流为(3±0.2)A,工作气体Ar流量为(10.0±0.5)sccm;电子枪束流为(240±10)mA,沉积速率为(0.24±0.02)nm/s。
9)在TiO2膜上蒸镀第七层SiO2膜:SiO2膜的离子辅助阳极电压为(170±5)V,阳极电流为(3±0.2)A,工作气体Ar流量为(10.0±0.5)sccm;电子枪束流为(90±10)mA,沉积速率为(0.5±0.05)nm/s。
10)在SiO2膜上蒸镀第八层防潮防霉憎水膜:防潮防霉憎水膜镀制过程中不采用离子辅助,电子枪束流为(4±1)mA,沉积速率为(0.15±0.02)nm/s,所述防潮防霉憎水膜为含氟硅的有机高分子聚合物。
11)降温取件:在最后一层防潮防霉憎水膜镀制结束后,关闭电子枪,保持抽真空状态,静置2小时后开门取件。
实施例2所得镀膜样件光谱满足上述技术要求,其面形RMS为0.0185λ,样件通过上述加速环境实验。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种超低应力耐久性金属反射膜,其特征在于,依次包括Cr膜层、Al或Ag反射层、介质保护层或增强层和防潮防霉憎水膜层,其中Cr膜层的厚度为10~50nm;当选择Ag反射层时,Cr膜层和Ag反射层之间还包括Cu膜作为过渡粘结层。
2.根据权利要求1所述的金属反射膜,其特征在于,所述Cr膜层镀制过程中的沉积速率为0.1~0.3nm/s。
3.根据权利要求1所述的金属反射膜,其特征在于,所述Al或Ag膜层厚度为120~200nm,所述介质保护层或增强层厚度为120~1000nm,所述防潮防霉憎水膜厚度为3~5nm;所述过渡粘结层厚度为20~50nm。
4.根据权利要求1所述的金属反射膜,其特征在于,按上述方案,所述介质保护层或增强层为Al2O3、SiO2、TiO2、HfO2、Ta2O5、Nb2O5一种或几种材料的组合;所述防潮防霉憎水膜为含氟硅的有机高分子聚合物。
5.一种权利要求1-4任一项所述的超低应力耐久性金属反射膜的制备方法,其特征在于,包括以下步骤:
1)对基片首先进行基础清洗,然后进行离子束清洗,完成基片预处理;
2)在经过预处理的基片待镀膜表面采用电子束蒸发离子束辅助制备Cr膜层,然后采用电子束蒸发蒸镀Al反射层;或者在Cr膜层上采用电子束蒸发离子束辅助沉积制备Cu过渡粘结层,然后再采用电子束蒸发蒸镀Ag反射层;
3)在步骤2)所得的Al或Ag反射层上采用电子束蒸发离子束辅助沉积制备介质保护层或增强层,最后电子束蒸发蒸镀一层防潮防霉憎水膜,即可得到超低应力耐久性金属反射膜。
6.根据权利要求5所述的制备方法,其特征在于,所述基片为K9玻璃、微晶、融石英或铜。
7.根据权利要求5所述的制备方法,其特征在于,所示步骤1)中,基础清洗工艺为:首先用调试好的超声清洗波对零件进行清洗,然后采用脱脂棉球蘸取酒精及乙醚混合液擦拭,最后用哈气法检查零件表面;离子束清洗工艺为:当真空室本底真空达到5×10-4Pa及以下,在室温下,对离子源充入纯度不低于99.99%的氩气,开启离子源对基片表进行离子束清洗。
8.根据权利要求5所述的制备方法,其特征在于,所示步骤2)中,电子束蒸发蒸镀Cr膜时工艺参数为:离子辅助阳极电压为170-180V,阳极电流为2.8-3.2A,电子枪束流为30~50mA,沉积速率为0.1~0.3nm/s;Al膜的沉积速率为0.4-0.6nm/s,电子枪束流为200~300mA;Ag膜的沉积速率大于2nm/s,电子枪束流为200~260mA;Cu膜的离子辅助阳极电压为170~180V,阳极电流为2.8~3.2A,电子枪束流为80~120mA,沉积速率为0.2~0.3nm/s。
9.根据权利要求5所述的制备方法,其特征在于,所示步骤3)中,介质保护层或增强层的沉积速率在0.1~0.6nm/s,离子辅助阳极电压为160-180V,阳极电流为2.8-3.2A;所述的防潮防霉憎水沉积速率为0.1~0.2nm/s,电子枪束流为3~5mA。
10.一种权利要求1-4任一项所述的超低应力耐久性金属反射膜在卡式镜头或三波段集成一体化光电装备中的应用。
CN202111476204.9A 2021-12-06 2021-12-06 一种超低应力耐久性金属反射膜及其制备方法和应用 Active CN114114490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111476204.9A CN114114490B (zh) 2021-12-06 2021-12-06 一种超低应力耐久性金属反射膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111476204.9A CN114114490B (zh) 2021-12-06 2021-12-06 一种超低应力耐久性金属反射膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114114490A true CN114114490A (zh) 2022-03-01
CN114114490B CN114114490B (zh) 2024-07-09

Family

ID=80366964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111476204.9A Active CN114114490B (zh) 2021-12-06 2021-12-06 一种超低应力耐久性金属反射膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114114490B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116148960A (zh) * 2023-01-31 2023-05-23 宁波启朴芯微系统技术有限公司 一种光学介质反射膜及其制备方法和应用
CN116904946A (zh) * 2023-09-12 2023-10-20 江苏天凯光电有限公司 一种紫外激光反射镜的制备方法及制备的紫外激光反射镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134049A (en) * 1998-09-25 2000-10-17 The Regents Of The University Of California Method to adjust multilayer film stress induced deformation of optics
CN103412350A (zh) * 2013-08-16 2013-11-27 中国船舶重工集团公司第七一七研究所 一种多波段增强型金属反射膜及其制备方法
CN104090312A (zh) * 2014-07-30 2014-10-08 中国船舶重工集团公司第七一七研究所 一种高附着力红外金属反射膜及其制备方法
WO2018188072A1 (en) * 2017-04-14 2018-10-18 South China University Of Technology OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME
CN110484869A (zh) * 2019-07-11 2019-11-22 湖北久之洋红外系统股份有限公司 一种防霉防潮光学薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134049A (en) * 1998-09-25 2000-10-17 The Regents Of The University Of California Method to adjust multilayer film stress induced deformation of optics
CN103412350A (zh) * 2013-08-16 2013-11-27 中国船舶重工集团公司第七一七研究所 一种多波段增强型金属反射膜及其制备方法
CN104090312A (zh) * 2014-07-30 2014-10-08 中国船舶重工集团公司第七一七研究所 一种高附着力红外金属反射膜及其制备方法
WO2018188072A1 (en) * 2017-04-14 2018-10-18 South China University Of Technology OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME
CN110484869A (zh) * 2019-07-11 2019-11-22 湖北久之洋红外系统股份有限公司 一种防霉防潮光学薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116148960A (zh) * 2023-01-31 2023-05-23 宁波启朴芯微系统技术有限公司 一种光学介质反射膜及其制备方法和应用
CN116904946A (zh) * 2023-09-12 2023-10-20 江苏天凯光电有限公司 一种紫外激光反射镜的制备方法及制备的紫外激光反射镜
CN116904946B (zh) * 2023-09-12 2023-12-08 江苏天凯光电有限公司 一种紫外激光反射镜的制备方法及制备的紫外激光反射镜

Also Published As

Publication number Publication date
CN114114490B (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
CN114114490A (zh) 一种超低应力耐久性金属反射膜及其制备方法和应用
CN104090312B (zh) 一种高附着力红外金属反射膜及其制备方法
JP6490810B2 (ja) 耐温度性及び耐腐食性の表面反射体
US20060177638A1 (en) Optical component and method for manufacturing the same
US20100328605A1 (en) Optical article including a layer siox as main component and manufacturing method of the same
US6358440B1 (en) Process for producing thin film, thin film and optical instrument including the same
JP4462273B2 (ja) 光学物品およびその製造方法
CN110488402A (zh) 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法
TWI817073B (zh) 極紫外光遮罩坯體硬遮罩材料
US20130122252A1 (en) Ion beam deposition of fluorine-based optical films
JP2006267561A (ja) 光学素子およびその製造方法
JP2020523642A (ja) 高反射鏡のための銀コーティング積層体の反射帯域幅の拡大
CN108330440A (zh) 一种3-12μmZnS基底光学红外增透膜及其制备方法
CN113862616B (zh) 一种增透抗uv车载显示面板的一次镀膜成型方法
CN106291908B (zh) 用于大型天文望远镜主镜的金增强型反射膜系及制备方法
CN114114475B (zh) 一种用于硒化锌基片的高附着力高表面质量的增透膜及其制备方法和应用
US6878243B2 (en) Method and apparatus for producing an optically effective system of layers on both sides of a substrate
US20120263885A1 (en) Method for the manufacture of a reflective layer system for back surface mirrors
JP2008101916A (ja) 多層膜光学素子
Wolfe et al. Deposition of durable wideband silver mirror coatings using long-throw low-pressure DC-pulsed magnetron sputtering
RU2420607C1 (ru) Способ нанесения теплозащитного покрытия на полимерный материал
CN115657190A (zh) 一种金属基底紫外宽带高反射滤光镜及制备方法
KR101918768B1 (ko) 하프늄 산화물 또는 지르코늄 산화물 코팅
CN101359061A (zh) 一种光学镀膜方法以及使用该方法的光学镀膜机
JP2019066600A (ja) プラスチックレンズ及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant