CN110488402A - 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法 - Google Patents

一种紫外可见红外高效反射的银基薄膜结构及镀膜方法 Download PDF

Info

Publication number
CN110488402A
CN110488402A CN201910618839.4A CN201910618839A CN110488402A CN 110488402 A CN110488402 A CN 110488402A CN 201910618839 A CN201910618839 A CN 201910618839A CN 110488402 A CN110488402 A CN 110488402A
Authority
CN
China
Prior art keywords
film
silver
silverskin
membrane stack
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910618839.4A
Other languages
English (en)
Other versions
CN110488402B (zh
Inventor
蔡清元
李耀鹏
刘定权
陈刚
王曙光
高凌山
罗海瀚
丛蕊
蒋林
马小凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910618839.4A priority Critical patent/CN110488402B/zh
Publication of CN110488402A publication Critical patent/CN110488402A/zh
Application granted granted Critical
Publication of CN110488402B publication Critical patent/CN110488402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

本发明公开了一种紫外可见红外高效反射的银基薄膜结构及镀膜方法。该银基薄膜结构采用银反射膜加上长波通的介质反射膜构成膜系主体,功能设计上,银膜高效反射可见红外波段,长波通介质反射膜反射紫外波段,同时作为银膜保护层。所述镀膜方法为采用常温蒸镀技术与原子层沉积技术的结合,常温蒸镀技术保持银膜光学性能,原子层沉积技术镀制无针孔致密膜,对银膜形成有效保护。本发明的优点在于实现了紫外可见红外高效反射、提高了银膜的耐环境特性、可有效保持镜面面形和光洁度,适用于高端光学仪器和遥感载荷的光学系统的多波段高效传递。

Description

一种紫外可见红外高效反射的银基薄膜结构及镀膜方法
技术领域
本发明属于光学薄膜的技术领域,具体涉及一种紫外可见红外高效反射的银基薄膜结构及镀膜方法。
背景技术
为了消除光学仪器中的色差影响,光学仪器常常采用反射式的光路结构,其中涉及的光学元件需要镀制反射膜。在多波段通用反射镜的镀膜,金属反射膜是最常见的,其中最常见的金属为铝、银、金。已知金膜只能高效反射红外波段的光,铝膜能反射紫外到红外波段的光,但平均反射率只有0.9左右,在追求极致能量效率的光学系统中并不可取,这极大限制了其在高端光学仪器的应用。银膜作为反射镜的镀膜选择,在可见至红外波段具有0.97以上的反射率,是可见红外波段理想的金属反射镜镀膜选择。
不带保护膜的裸银膜在近紫外350~400nm波段反射率大于0.9。然而,实际应用中,银膜反射镜都需要镀制介质保护膜以防止银膜产生划伤、腐蚀、氧化和硫化等物理化学损伤,而银膜与介质保护膜的界面在350~400nm波段存在强的表面等离子体吸收,这导致实际应用的银膜反射镜在该波段区域只有不到0.8的反射率,再加上银膜本身在小于350nm波段的反射率极低,因此,常规银反射镜在紫外几乎不能作为反射镜使用。针对紫外波段的反射元件镀膜一般只能采用铝反射膜,而这会导致光学系统在可见近红外的能量效率不高。
随着先进光学仪器对紫外可见红外全波段探测以及对光学能量效率提升的极致追求,铝反射镜已经逐渐不能满足先进光学仪器研制的需求,寻找新的反射镜膜系结构以及镀膜方法以满足光学仪器的光学全波段能量高效传递需求已成为未来反射镜镀膜的发展方向之一。
发明内容
本发明的目的是克服现有金属反射镜膜系结构及镀膜技术中不能实现紫外可见红外全波段高效反射的不足,提供一种紫外可见红外高效反射的银基薄膜结构及镀膜方法。
本发明提出的技术方案是:
采用银反射膜加上长波通的介质反射膜构成膜系主体,其功能设计上,银膜高效反射可见红外波段,长波通介质反射膜反射紫外波段,同时作为银膜保护层;
膜系结构设计为:反射镜镜体1之上依次镀制粘合层一2、银膜3、粘合层二4、匹配层膜堆一5、介质反射膜堆6及匹配层膜堆二7;
所述反射镜镜体1为玻璃、熔石英、铝、钛、表面改性碳化硅或铍镜;
所述粘合层一2为Al2O3、Ni、Cr、NiCr合金、NiCrN合金的单一膜层或多层复合膜,膜层厚度10~50nm;
所述银膜3的厚度为100~300nm;
所述粘合层二4为Al2O3,厚度为5~30nm;
所述匹配层膜堆一5为低折射率膜SiO2和高折射率膜HfO2的叠层,优选2层结构LH或4层结构LHLH,L为SiO2,H为HfO2
所述介质反射膜堆6为低折射率膜SiO2和高折射率膜HfO2构成的200~400nm波段的介质反射膜堆,膜系结构为a(LH)x、a(LH)x b(LH)y或a(LH)x b(LH)y c(LH)z,其中a、b、c表示反射膜堆的中心波长系数值,满足a>b>c,x、y、z表示叠层周期数,分别优选2~5、6~8、6~8;
所述匹配层膜堆二7为低折射率膜SiO2和高折射率膜HfO2构成的叠层,优选单层结构L或三层结构LHL。
本发明采用的镀膜技术方案为:
采用两种真空镀膜技术并用,分别为常温蒸镀技术与原子层沉积技术,按膜系沉积的不同阶段分别进行;
所述粘合层一2、银膜3、粘合层二4的镀制方式采用常温蒸镀方式,所述匹配层膜堆一5、介质反射膜堆6、匹配层膜堆二7采用原子层沉积技术镀制无针孔致密膜;
镀膜的具体步骤为:
1)采用丙酮、乙醇、去离子水依次清洗镜体,晾干,局部擦拭,放入真空室,镜体温度保持常温,抽真空至5×10-3Pa以下;
2)采用霍尔离子源对镜面进行氩离子轰击,阳极电压120~300V,阳极电流2~10A,轰击5~20分钟;
3)在镜面上蒸镀粘合层一2,优选20nm厚度,速率0.2~0.6nm/s;
4)在镜面上蒸镀银膜3,优选厚度180nm,速率2~3nm/s;
5)在镜面上蒸镀粘合层二4,优选厚度5nm,速率0.3~0.5nm/s;
6)真空室放气,取样,转移至原子层沉积反应室,加热3小时至优选温度170℃;
7)采用TMA和H2O热反应的原子层沉积方式在镜体上生长5nm厚Al2O3
8)根据理论设计膜系在镜体上采用原子层沉积技术生长SiO2和HfO2的膜系结构;
9)完成镀膜后,停止加热,等待自然冷却至室温后取样。
与现有技术相比,本发明具有如下优点:
1、本发明以银基反射镜为基础保证了可见至红外的高反射,同时银膜保护层采用长波通的介质反射堆用于提高紫外波段的反射率,减小银膜本身吸收和表面等离子体吸收,实现银基薄膜紫外可见红外的高反射率;
2、本发明的银膜保护层为几十层高低折射率膜的叠层,均为硬质耐腐蚀膜层,总厚度400~1500nm厚,可以有效防止机械划伤、水汽、氧气、硫化物、卤化物等的物理化学侵蚀;
3、本发明的银膜保护层采用的原子层沉积技术进行镀膜,可以形成无针孔致密膜层,封闭纳米孔洞,有效保护银反射膜层的同时,利用原子层沉积技术保形性和均匀性特点实现镜面面形和光洁度的保持。
附图说明
图1为本发明的膜系结构示意图。
图2为本发明实施例一、三中的银基薄膜与典型银反射膜8°入射角度反射率光谱曲线对比。
图3为本发明实施例二中的银基薄膜与典型银反射膜45°入射角度反射率光谱曲线对比。
具体实施方式
下面结合具体实例对本发明作进一步说明
实施例一
本实施例中选择空间遥感载荷应用的卡塞格林望远镜系统的主次镜反射膜镀制为例,反射光谱指标是实现300~1200nm反射率大于96%,250~300nm反射率大于90%,200~250nm反射率大于70%。所选择的基本膜系结构如图1所示,其中各个功能膜层的精细结构如下说明:
镜体材料为熔石英材料,粘合层一2为NiCr合金,粘合层二4为Al2O3,匹配层膜堆一5、介质反射膜堆6以及匹配层膜堆二7均为低折射率膜SiO2和高折射率膜HfO2构成的叠层;具体膜系结构为:
20Np 180Ap 10Mp 0.457L 1.056H 0.755L 1.328H(0.92L 0.97H)3(0.813L0.705H)6(0.666L 0.453H)6 1.746L;
其中,下标P表示膜层代号前数字为几何厚度,单位为nm,N为NiCr合金,A为Ag,M为Al2O3,H为HfO2,L为SiO2,H和L前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。各个膜层的材料参数经实测获得,具体方法为:采用相应薄膜生长工艺在硅片和熔石英上生长单层膜,然后采用椭圆偏振测量方法和光谱测量法进行生长速率以及材料折射率的标定,以标定的材料参数带入薄膜软件进行设计优化和薄膜沉积控制系统中。
图2为本实施例一的银基薄膜与典型银反射膜(银膜上依次镀30nm Al2O3和150nmSiO2的保护膜)的理论设计反射光谱对比(考虑了实测的表面等离子体吸收)。从图上可以看到,本发明提供的银基薄膜结构相较于典型银反射膜在200~400nm的紫外波段的反射率有了明显提升,且对可见红外波段的反射率损失极小,实现了紫外可见红外光的高效反射。
在镀膜方法上,具体步骤如下:
1)将熔石英镜体依次放入丙酮、乙醇、去离子水进行超声波清洗,清洗时间均为15分钟,晾干,根据表面情况用脱脂棉布蘸取酒精乙醚混合液对表面进行局部擦拭,擦拭完毕后,放入镀膜真空室,镜体温度保持常温,抽真空至5×10-3Pa以下;
2)采用霍尔离子源对镜面进行氩离子轰击,阳极电压150V,阳极电流4A,轰击10分钟;
3)采用钨丝加热预熔镍铬丝团,待镍铬丝团融成液珠状,打开挡板,加大加热功率,在镜面上蒸镀镍铬膜,沉积速率0.4nm/s,沉积20nm厚度,关闭挡板;
4)采用钼舟盛放银颗粒,施加电流加热使银融化成一团液体,打开挡板,加大加热功率,使液态银蒸发,在镜面上沉积为银膜,沉积速率2~3nm/s,生长厚度180nm,关闭挡板;
5)采用电子束蒸发方式,加热Al2O3靶材,在镜面上蒸镀5nm Al2O3薄膜,生长速率0.3~0.5nm/s,保证银反射膜在短时间曝露在大气环境不会被氧化;
6)静置半小时后,对真空室放气,取样,将镜体转移至原子层沉积反应室,抽真空至0.4mbar以下,反应腔加热3小时至优选温度170℃;
7)采用TMA和H2O热反应的原子层沉积方式在镜面上生长5nm厚Al2O3,实现对银膜的致密均匀覆盖,以确保SiO2和HfO2的原子层沉积工艺不会对银膜产生化学损伤;
8)根据理论设计膜系采用原子层沉积技术在镜面上生长SiO2和HfO2的膜系结构;
9)完成镀膜后,停止加热,等待自然冷却至室温后取样。
实施例二
本实施例中选择空间对地遥感载荷常用的指向镜或扫描镜为例,这类型镜体通常工作在45度入射角,具有尺寸大,质量重,需做减轻处理,同时需要兼顾面形精度,因此在镀反射膜的过程中需要控制膜层应力以减小镀膜后的镜面面形变化。同时,300~400nm是对地遥感常设的紫外波段,在海面溢油遥感中具有独特优势。另外,大气对200~300nm的紫外波段不透光,因此含紫外波段的对地遥感载荷的反射镜只需在大于300nm波段都有较高的反射率。在不降低可见红外反射率的情况下,采用本发明的银基薄膜结构具有很好的反射效率。所选择的基本膜系结构仍然如图1所示,其中各个功能膜层的精细结构如下说明:
镜体材料为表面改性SiC材料,粘合层一2为NiCr合金,粘合层二4为Al2O3,匹配层膜堆一5、介质反射膜堆6以及匹配层膜堆二7均为低折射率膜SiO2和高折射率膜HfO2构成的叠层;具体膜系结构为:
20Np 100Ap 10Mp 0.408L 0.947H 1.048L 0.97H(0.993L 0.834H)3 1.699L;
其中,下标P表示膜层代号前数字为几何厚度,单位为nm,N为NiCr合金,A为Ag,M为Al2O3,H为HfO2,L为SiO2,H和L前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。
与实例一相比,我们减薄了银膜3厚度,简化了介质反射膜堆6,以减小膜层应力带来的镜体面形变化,同时满足了大于300nm波长的高反射率。图3为实例二的银基薄膜与典型银反射膜的理论设计反射光谱对比。从图3上可以看到,本发明提供的银基薄膜结构在300~400nm的紫外波段的反射率有了明显提升,且对可见红外波段的反射率几乎没有损失。
实施例三
本实施例中选择地面用光谱仪器的反射镜为例,这类型反射镜对成像质量要求不高,因此对面形变化不敏感。另外,本身是在地面使用,即使要求面形控制也可以通过加厚基底来减小膜层应力影响。同时,该类型反射镜同样需要追求紫外到近红外的高反射效率,以提高仪器的信号灵敏度。
地面用的反射镜镜体表面加工并不像航空航天产品要求那么严格,在镜体表面相对会存在较多的点缺陷。为了避免这些点缺陷曝露在大气中潮气吸附以及其他腐蚀气体吸附,进而影响银反射镜的可靠性和寿命,我们考虑粘合层一2、银膜3进行加厚以保证对点缺陷的完整覆盖。该膜系结构基于实例一中的反射膜系结构,设计反射光谱仍然如图2所示,并没有发生改变。膜系结构中粘合层一2、银膜3厚度变为50nm和300nm。具体膜系结构为:
50Np 300Ap 10Mp 0.457L 1.056H 0.755L 1.328H(0.92L 0.97H)3(0.813L0.705H)6(0.666L 0.453H)6 1.746L;
其中,下标P表示膜层代号前数字为几何厚度,单位为nm,N为NiCr合金,A为Ag,M为Al2O3,H为HfO2,L为SiO2,H和L前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。

Claims (2)

1.一种紫外可见红外高效反射的银基薄膜结构,其特征在于:
所述的银基薄膜结构膜系结构为:在反射镜镜体(1)之上依次镀制粘合层一(2)、银膜(3)、粘合层二(4)、匹配层膜堆一(5)、介质反射膜堆(6)及匹配层膜堆二(7);
所述反射镜镜体(1)为玻璃、熔石英、铝、钛、表面改性碳化硅或铍镜;
所述的粘合层一(2)为Al2O3、Ni、Cr、NiCr合金或NiCrN合金的单一膜层或多层复合膜,膜层厚度为10~50nm;
所述的银膜(3)的厚度为100~300nm;
所述粘合层二(4)为Al2O3层,厚度为5~30nm;
所述的匹配层膜堆一(5)为低折射率膜SiO2和高折射率膜HfO2的叠层,采用2层结构LH或4层结构LHLH,L为SiO2,H为HfO2
所述的介质反射膜堆(6)为低折射率膜SiO2和高折射率膜HfO2构成的200~400nm波段的介质反射膜堆,膜系结构为a(LH)x、a(LH)xb(LH)y或a(LH)xb(LH)yc(LH)z,其中a、b、c表示反射膜堆的中心波长系数值,满足a>b>c,x、y、z表示叠层周期数,分别为2~5、6~8、6~8;
所述匹配层膜堆二(7)为低折射率膜SiO2和高折射率膜HfO2构成的叠层,采用单层结构L或三层结构LHL。
2.根据权利要求1所述的一种紫外可见红外高效反射的银基薄膜结构,其特征在于:
所述的匹配层膜堆一(5)、介质反射膜堆(6)、匹配层膜堆二(7)采用原子层沉积技术镀制无针孔致密膜。
CN201910618839.4A 2019-07-10 2019-07-10 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法 Active CN110488402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910618839.4A CN110488402B (zh) 2019-07-10 2019-07-10 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910618839.4A CN110488402B (zh) 2019-07-10 2019-07-10 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法

Publications (2)

Publication Number Publication Date
CN110488402A true CN110488402A (zh) 2019-11-22
CN110488402B CN110488402B (zh) 2023-07-04

Family

ID=68546899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910618839.4A Active CN110488402B (zh) 2019-07-10 2019-07-10 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法

Country Status (1)

Country Link
CN (1) CN110488402B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560602A (zh) * 2020-04-13 2020-08-21 哈尔滨工业大学 一种氧化物薄膜表面复合的优化方法
CN112666644A (zh) * 2020-12-15 2021-04-16 兰州空间技术物理研究所 一种防静电超低吸收太阳光谱反射镜及其制备方法
CN113960705A (zh) * 2021-10-21 2022-01-21 沈阳仪表科学研究院有限公司 紫外光固化用宽带高反射全介质膜紫外反射镜及其制备方法
CN114442213A (zh) * 2022-03-10 2022-05-06 江苏微导纳米科技股份有限公司 一种光学器件、裸眼3d显示装置及提升光学器件性耐性的方法
CN114719683A (zh) * 2022-04-01 2022-07-08 江苏铁锚玻璃股份有限公司 银基电磁屏蔽和电磁隐身膜系结构
CN115287617A (zh) * 2022-08-03 2022-11-04 哈尔滨工业大学 一种具有红外长波选择发射特性的复合薄膜的制备方法
CN116926487A (zh) * 2023-07-21 2023-10-24 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561613A (zh) * 2016-06-30 2018-01-09 旭硝子株式会社 紫外线透射滤波器
CN109716173A (zh) * 2016-08-09 2019-05-03 依视路国际公司 包括在近红外区(nir)中具有高反射的干涉涂层的光学制品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561613A (zh) * 2016-06-30 2018-01-09 旭硝子株式会社 紫外线透射滤波器
CN109716173A (zh) * 2016-08-09 2019-05-03 依视路国际公司 包括在近红外区(nir)中具有高反射的干涉涂层的光学制品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINGHONG YANG,ET AL.: "Optical thin films with high reflectance low thickness and low stress for the spectral range from vacuum UV to near IR" *
蔡清元: "光学薄膜与系统的偏振控制" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560602A (zh) * 2020-04-13 2020-08-21 哈尔滨工业大学 一种氧化物薄膜表面复合的优化方法
CN111560602B (zh) * 2020-04-13 2021-10-26 哈尔滨工业大学 一种氧化物薄膜表面复合的优化方法
CN112666644A (zh) * 2020-12-15 2021-04-16 兰州空间技术物理研究所 一种防静电超低吸收太阳光谱反射镜及其制备方法
CN113960705A (zh) * 2021-10-21 2022-01-21 沈阳仪表科学研究院有限公司 紫外光固化用宽带高反射全介质膜紫外反射镜及其制备方法
CN113960705B (zh) * 2021-10-21 2024-03-01 沈阳仪表科学研究院有限公司 紫外光固化用宽带高反射全介质膜紫外反射镜及制备方法
CN114442213A (zh) * 2022-03-10 2022-05-06 江苏微导纳米科技股份有限公司 一种光学器件、裸眼3d显示装置及提升光学器件性耐性的方法
CN114719683A (zh) * 2022-04-01 2022-07-08 江苏铁锚玻璃股份有限公司 银基电磁屏蔽和电磁隐身膜系结构
CN115287617A (zh) * 2022-08-03 2022-11-04 哈尔滨工业大学 一种具有红外长波选择发射特性的复合薄膜的制备方法
CN116926487A (zh) * 2023-07-21 2023-10-24 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法
CN116926487B (zh) * 2023-07-21 2024-05-14 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法

Also Published As

Publication number Publication date
CN110488402B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN110488402A (zh) 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法
JP6490810B2 (ja) 耐温度性及び耐腐食性の表面反射体
KR102360078B1 (ko) 향상된 성능의 금속계 광학 미러 기판
JPH063523A (ja) 耐久性のある低放射率日射制御薄膜コーティング
JP7280198B2 (ja) 高反射鏡のための銀コーティング積層体の反射帯域幅の拡大
DK160758B (da) Fremgangsmaade til fremstilling af en belaegning med lav emissionsevne paa et transparent substrat
Hu et al. Optical coatings of durability based on transition metal nitrides
EP2418521B1 (en) A method of making a temperature resistant highly reflective aluminium based surface for solar reflector applications and reflector parts made thereof
WO2016155407A1 (en) A spectrally selective solar absorbing coating and a method for making it
Sathiaraj et al. Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500 C
WO2011120595A1 (en) Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror
CN106291908B (zh) 用于大型天文望远镜主镜的金增强型反射膜系及制备方法
Thomas et al. UV-shifted durable silver coating for astronomical mirrors
EP2995882B1 (en) Solar-thermal conversion member, solar-thermal conversion stack, solar-thermal conversion device, and solar-thermal power generating device
CN109136840A (zh) 一种真空紫外铝反射镜的制备方法
Yoshida Antireflection coatings on metals for selective solar absorbers
CN210270237U (zh) 一种紫外可见红外高效反射的银基薄膜结构
CN113341488A (zh) 基于过渡金属膜层的可见光宽带完美吸收器及制备方法
US20110064967A1 (en) Highly durable first surface silver based optical coatings and method of making the same
US20120263885A1 (en) Method for the manufacture of a reflective layer system for back surface mirrors
EP2757176A1 (en) Multilayer coating with high absorption of solar energy and with low thermal emissivity, related cermet composite, a use thereof and processes for producing them
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
CN110128028A (zh) 一种用于真空紫外波段的铝基高反射镜的制备方法
CN115657190A (zh) 一种金属基底紫外宽带高反射滤光镜及制备方法
CN101907494B (zh) 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant