CN101907494B - 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺 - Google Patents

基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺 Download PDF

Info

Publication number
CN101907494B
CN101907494B CN2010102348406A CN201010234840A CN101907494B CN 101907494 B CN101907494 B CN 101907494B CN 2010102348406 A CN2010102348406 A CN 2010102348406A CN 201010234840 A CN201010234840 A CN 201010234840A CN 101907494 B CN101907494 B CN 101907494B
Authority
CN
China
Prior art keywords
window
film
short wave
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102348406A
Other languages
English (en)
Other versions
CN101907494A (zh
Inventor
于天燕
梁俊华
秦杨
章卫祖
刘定权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN2010102348406A priority Critical patent/CN101907494B/zh
Publication of CN101907494A publication Critical patent/CN101907494A/zh
Application granted granted Critical
Publication of CN101907494B publication Critical patent/CN101907494B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明公开了一种用于探测器杜瓦封装焊接的宽光谱中短波红外窗口及制备工艺,该窗口以硅为基底材料,其中一个表面的边缘及侧面是由纳米量级镍铬层作为粘合层镀制一定厚度的金膜,称之为金属化层,用于探测器杜瓦的封装焊接。而该表面中间区域及另外一表面是以ZnS和YF3作为高低折射率材料,等效层采用ZnS和Si镀制而成的高低折射率交替的多层膜结构的宽光谱中短波红外减反射膜。该减反射膜采用离子源辅助、合适基底温度等特定工艺镀制而成。该窗口在1.2-4.8μm范围内平均透射率T>95%,且在2.7-3.0μm范围内未见YF3常见的水汽吸收峰。本专利产品性能稳定,适合于现代多光谱空间遥感仪器的中短波红外探测器杜瓦窗口。

Description

基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺
技术领域
本专利涉及光学薄膜元件,具体指一种基于硅基底的、具有高透射率的宽光谱中短波红外金属化窗口,该窗口适用于与探测器杜瓦窗架的密封焊接。
技术背景
光学窗口是成像光学系统的重要组成部分。要保证窗口与探测器杜瓦窗架封装的可靠性,就需要金属化层有较高的可靠性。同时,保证系统的光学效率,就需要高透射率高可靠性的减反射膜。
在已有的杜瓦窗口中,基底多为Ge和宝石片,且波段都比较窄,其金属层为300-400埃的铬层加上1um厚度的金层。这样的工艺满足不了中短波多光谱成像仪器中杜瓦窗口的使用要求。随着多光谱红外系统的发展应用,宽光谱薄膜器件也应运而生。而该发明中窗口基底为硅,对硅基底的金属化工艺以及1.2-4.8um的宽光谱减反射膜的研究都存在较大困难。首先,这一光谱波段包含了2.7-2.9um这一大多数氟化物和氧化物低折射率材料都存在的水汽吸收,而这恰恰是中短波红外成像仪的重要成像通道,不能很好地解决吸收问题将严重影响该通道的光学效率。其次,在硅基底上进行金属化,需要解决硅基底与金层间的结合牢固性问题。因此解决上述问题具有重要的现实意义。
发明内容
本发明的目的是采用不同于以往的金属化工艺,提供一种基于硅基底的具有高透射率和高可靠性的宽光谱中短波红外窗口,用于中短波多光谱红外遥感仪器的探测器杜瓦封装。
本发明的技术方案是:
1.在窗口的一个表面的四周边缘(具体尺寸根据要求而定)及侧面进行金属化镀膜。为了保证金属化层的厚度及可靠性,在镀制金膜前,在对基底进行离子轰击等预清洗后,首先在硅基底上沉积3-5nm厚度的镍铬粘合层,然后在粘合层上镀制1.5-2um厚度的金层,该金层能够经受介质减反射膜镀制时的高温考验。
2.在第一个表面的中间区域及另外一个表面镀制宽光谱(1.2-4.8um)减反射膜。由于增透区域包括了大多数材料在2.7-2.9um的水汽吸收,如何选择膜层材料及沉积工艺,尽可能减少水汽吸收对透射率的影响,是亟需解决的问题。经过大量的材料试验和工艺摸索试验,最终选用ZnS和YF3作为高低折射率材料,考虑到透射区的最短波长为1.2um,因此等效层选用ZnS和Si。为了解决与基底的折射率匹配问题,膜系设计时采用了非对称等效层结构;为了展宽透射带宽,采用了缓冲层,具体为:
ns/0.5N 0.808H 1.092N 0.388H 0.369N 0.529L 0.829N 1.679L 0.2N/n0各符号的含义分别为:ns为基底;n0为空气;N表示光学厚度为λ0/4的硫化锌膜层;H表示光学厚度为λ0/4的硅膜层;L表示光学厚度为λ0/4的氟化釔膜层;λ0为中心波长,N、H和L前的数字是λ0/4光学厚度的比例系数乘数。
ZnS与YF3的搭配,对于减少短波区的水汽吸收比选用氧化物具有很大的优势,水汽吸收影响集中在YF3,因此,合适的工艺控制将起关键性作用。多次的材料试验结果表明,减小吸收增加透射率的合适工艺为:
A.Si和YF3采用电子束沉积,沉积速率分别为2-3nm/s和1-2nm/S;ZnS采用电阻加热方式沉积,沉积速率为3-5nm/s。
B.基底温度为200℃。
C.所有膜层均采用低能高密度离子束辅助沉积,参数为:阳极电压180-200V,阴极电流12-14A。
这些工艺对于减小水汽吸收影响,提高短、中波红外的透射率起了重要作用。
本发明的有益效果如下:
1.本发明提供了一种基于Si基底的宽光谱中短波杜瓦窗口,金属化层厚度大于1.5um,满足探测器杜瓦封装的焊接要求;1.2-4.8um的宽光谱透射区内,平均透射率大于95%。
2.本发明的技术方案合理可行,产品性能稳定,满足使用要求。
3.本发明采用了新的金属化工艺,提高了金层的可靠性,满足了与杜瓦窗架焊接的要求;特定的光学镀膜工艺,消除了氟化物材料在2.7-2.9um的水汽吸收影响,保证了中长波区域的高透过率。
附图说明
图1是杜瓦窗口的膜层结构示意图,图中:
1——基底(Si);
2——镍铬(Ni-Cr)层;
3——金(Au)层;
4——短、中波红外减反射膜。
图2是窗口实测短中波红外透射率曲线。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
本发明实施例的具体技术指标要求为:
1.2-4.8um,平均透射率大于93%;金属化层厚度大于1um;基底材料为硅。
根据技术要求及各种薄膜的物理特性,首先确定各部分的研制顺序。由于金属化过程需要进行掩模保护及去除掩模的过程,为防止对红外介质膜的性能产生影响,需先进行金属化。金属化结束后待金层充分老化进行下一步的介质增透膜的研制。
考虑到2.7-2.9um的水汽吸收对透射率的影响,在膜系设计时充分考虑各种薄膜材料的可用优势,充分比较后进行遴选,然后进行相关的材料试验,确定最佳工艺条件,同时对所用材料的光学常数进行拟合,得出最佳工艺条件下高低折射率材料的光学常数,将拟合得到的光学常数应用于膜系设计中。为了达到与基底的折射率匹配,设计时使用了非对称等效层的理论,最终的膜系结构为:
ns/0.5N 0.808H 1.092N 0.388H 0.369N 0.529L 0.829N 1.679L 0.2N/n0
为消除氟化物在2.7-2.9um的水汽吸收,采用了A.高能离子束辅助镀膜,参数为:阳极电压200V,阴极电流14A;B.基底温度为200℃;C.YF3采用电子束沉积,沉积速率为20nm/s等合适的工艺。
从图2中可以看出,所研制的窗口透射区平均透射率大于95%。同时金层厚度大于1.5um,完全能够满足杜瓦封装焊接的要求。因此本专利所研制的窗口达到空间多光谱遥感仪器中探测器杜瓦的使用需求。

Claims (1)

1.一种具有高透射率的、用于探测器杜瓦封装焊接的宽光谱中短波红外窗口,它由硅基底(1)、镍铬薄膜层(2)、金层(3)、双面减反射膜(4)构成,其主要特征在于:
所述窗口的其中一面的四周边缘和侧面是用于保证探测器杜瓦的密封焊接的,由硅基底(1)、厚度为3~5nm的镍铬合金薄膜(2)和厚度为1~1.5um的金膜(3)构成的金属化层;所述的金属化层制备方法为:首先在硅基底上沉积3-5nm厚度的镍铬粘合层,然后在粘合层上镀制1.5-2um厚度的金层,该金层能够经受介质减反射膜镀制时的高温考验;
该面的中间区域以及另外一面镀有宽光谱减反射膜(4),膜系结构为:
ns/0.5N 0.808H 1.092N 0.388H 0.369N 0.529L 0.829N 1.679L 0.2N/n0式中各符号的含义分别为:ns为基底;n0为空气;N表示光学厚度为λ0/4的硫化锌ZnS膜层;H表示光学厚度为λ0/4的硅Si膜层;L表示光学厚度为λ0/4的氟化釔YF3膜层;λ0为中心波长;N、H、L前的数字为λ0/4光学厚度比例系数乘数;
所述的宽光谱减反射膜(4)中膜层均采用低能高密度离子辅助沉积工艺制备而成,参数为阳极电压为180~220V,阴极电流为12-14A;其中Si和YF3采用电子束沉积,沉积速率分别为2-3nm/s和1-2nm/S;ZnS采用电阻加热方式沉积,沉积速率为3-5nm/s;基底温度为200℃。
CN2010102348406A 2010-07-23 2010-07-23 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺 Expired - Fee Related CN101907494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102348406A CN101907494B (zh) 2010-07-23 2010-07-23 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102348406A CN101907494B (zh) 2010-07-23 2010-07-23 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺

Publications (2)

Publication Number Publication Date
CN101907494A CN101907494A (zh) 2010-12-08
CN101907494B true CN101907494B (zh) 2011-11-02

Family

ID=43263017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102348406A Expired - Fee Related CN101907494B (zh) 2010-07-23 2010-07-23 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺

Country Status (1)

Country Link
CN (1) CN101907494B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035146B (zh) * 2014-06-12 2015-11-25 中国科学院上海技术物理研究所 二氧化碲基底上的一种中短波红外增透膜
CN108627889B (zh) * 2018-04-11 2021-01-15 上海欧菲尔光电技术有限公司 一种锗基底宽光谱红外增透光学窗口
CN115201941B (zh) * 2021-04-13 2023-09-12 中国科学院上海技术物理研究所 一种适用于空间环境的高效红外宽光谱减反射膜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403806A (zh) * 2008-11-05 2009-04-08 中国科学院上海技术物理研究所 基于锗基底的可见/红外宽光谱分色片

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403806A (zh) * 2008-11-05 2009-04-08 中国科学院上海技术物理研究所 基于锗基底的可见/红外宽光谱分色片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于天燕 等.硫化锌透镜中长波红外宽带增透膜的研制.《光学学报》.2005,第25卷(第2期),270-274. *
于天燕 等.锗窗口红外宽光谱增透膜的研制.《光学学报》.2010,第30卷(第4期),1197-1200. *

Also Published As

Publication number Publication date
CN101907494A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
US8555871B2 (en) Radiation-selective absorber coating and absorber tube with said radiation-selective absorber coating
CN101876490B (zh) 一种太阳能中高温选择性吸热涂层
JP4565105B2 (ja) 太陽電池用の光学薄膜およびその製造方法
Farooq et al. High performance sputtered Ni: SiO2 composite solar absorber surfaces
CN101514853A (zh) 选择性吸收辐射涂层、吸收管及其制造方法
CN103029371A (zh) 一种太阳能选择性吸收膜及其制备方法
CN107314559B (zh) 光热转换涂层及其制备方法
AU2010202064A1 (en) Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
US9857099B2 (en) Solar energy absorptive coating, arrangement of the coating on a substrate, method for manufacturing the arrangement and use of the arrangement
CN101907494B (zh) 基于硅基底的宽光谱中短波红外杜瓦窗口及制备工艺
CN110441845A (zh) 渐变界面纳米薄层提升HfO2/Al2O3/SiO2紫外反射膜激光损伤阈值的方法
CN104006560A (zh) 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
CN104279779A (zh) 一种金属氮化物太阳光谱选择性吸收涂层
CN106884145A (zh) 一种太阳光谱选择性吸收涂层及其制备方法
CN103808048A (zh) 一种高温太阳光谱选择性吸收涂层
EP2995882B1 (en) Solar-thermal conversion member, solar-thermal conversion stack, solar-thermal conversion device, and solar-thermal power generating device
CN104949362A (zh) 一种太阳光谱选择性吸收涂层
CN105929471B (zh) 一种低成本太阳能薄膜反射镜材料
CN103032977A (zh) 一种中温太阳能选择性吸收涂层及其制备方法
CN102615878A (zh) 一种中高温太阳能选择性吸收涂层及其制备方法
CN104279780B (zh) 一种过渡金属氮化物吸热涂层
CN205941960U (zh) 一种低成本太阳能薄膜反射镜材料
Welser et al. Ultra-high transmittance through nanostructure-coated glass for solar cell applications
CN102734961A (zh) 一种太阳能中高温选择性吸收涂层
CN105483632B (zh) 具有双陶瓷结构的高温太阳能选择性吸收涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111102

Termination date: 20200723

CF01 Termination of patent right due to non-payment of annual fee