CN114114055A - 快速评估锂离子软包电池体系循环性能的方法 - Google Patents

快速评估锂离子软包电池体系循环性能的方法 Download PDF

Info

Publication number
CN114114055A
CN114114055A CN202210082982.8A CN202210082982A CN114114055A CN 114114055 A CN114114055 A CN 114114055A CN 202210082982 A CN202210082982 A CN 202210082982A CN 114114055 A CN114114055 A CN 114114055A
Authority
CN
China
Prior art keywords
lithium ion
soft package
ion soft
battery
thickness expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210082982.8A
Other languages
English (en)
Inventor
邹广建
马洪运
黄铃
许刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Lishen Battery JSCL
Original Assignee
Tianjin Lishen Battery JSCL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Lishen Battery JSCL filed Critical Tianjin Lishen Battery JSCL
Priority to CN202210082982.8A priority Critical patent/CN114114055A/zh
Publication of CN114114055A publication Critical patent/CN114114055A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂电池领域,具体涉及一种快速评估锂离子软包电池体系循环性能的方法,包括下述步骤:第一步,采用不同的正极材料制备得到系列不同的锂离子软包电池;第二步,在预设温度环境下,进行充放电循环;第三步,按照第二步的步骤重复进行循环N周,循环N周后对电池进行厚度膨胀检测,得到系列不同的锂离子软包电池循环后的厚度膨胀率;第四步,当不同的锂离子软包电池循环后的厚度膨胀率之间的差值大于预设膨胀率时,通过对循环后电池厚度膨胀率的测量,评估不同的锂离子软包电池循环性能的优劣;本专利以锂离子软包电池鼓胀程度判断锂离子电池中活性锂离子的损失程度,从而快速评价锂离子软包电池的循环性能。

Description

快速评估锂离子软包电池体系循环性能的方法
技术领域
本发明属于锂电池领域,具体涉及一种快速评估锂离子软包电池体系循环性能的方法。
背景技术
锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作,具有高比能量密度、高使用电压、长循环寿命等优点。锂离子电池的用途也越来越广,在消费类产品、电动车和储能等领域得到了广泛应用。虽然锂离子电池在使用过程中有自身的限制,随着相关技术的不断进步,锂离子电池的性能也得到了显著的改善。
循环性能作为锂离子电池关键电性能之一,其性能情况一直备受关注。因此一个快速评估锂离子电池循环性能的方法,将具有很重要的意义和可观的现实使用价值。
发明内容
本发明的目的在于,提供一种快速评估锂离子软包电池体系循环性能的方法。
为实现上述目的,本发明采用的技术方案为:
一种快速评估锂离子软包电池体系循环性能的方法,包括下述步骤:
第一步,采用不同的正极材料制备得到不同的锂离子软包电池;
第二步,在预设温度环境下,以预设恒电流I1,对第一步中得到的不同的锂离子软包电池进行恒流充电,直至充电到预设电压U1,然后以电压U1进行恒压充电,截止电流为I2,然后以电流I3进行放电,放电深度X% DOD,此为一个完整循环;
第三步,按照第二步的步骤重复进行循环N圈,循环N圈后对电池的厚度膨胀率进行检测,得到不同的锂离子软包电池循环后的厚度膨胀率;
第四步,当不同的锂离子软包电池循环后的厚度膨胀率之间的差值大于预设膨胀率时,比较不同的锂离子软包电池的厚度膨胀率的大小,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则电池的循环性能越好;
若循环后不同的锂离子软包电池的厚度膨胀率之间的差值小于预设膨胀率,则继续循环,每循环M圈后继续对不同的锂离子软包电池的厚度膨胀率进行检测,直至不同的锂离子软包电池的厚度膨胀率之间的差值大于预设膨胀率;此时,比较不同的锂离子软包电池的厚度膨胀率的大小,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则锂离子软包电池的循环性能越好。
第二步中预设温度为20-70℃;预设恒电流I1的取值范围为大于0小于2C,预设电压U1的取值范围为大于等于4.45V小于4.6V;截止电流I2的取值范围为大于0小于0.1C;电流I3的取值范围为大于0小于2C;放电深度X% DOD中X的取值范围大于等于1小于等于10。
第三步中,所述N的取值范围为大于等于100小于等于1000,M的取值范围为大于等于10小于等于200。
第四步中,预设膨胀率为2-5%,预设膨胀率的设定是为了使不同材料制得的锂离子软包电池循环后的厚度循环率之间的差值足够明显,从而能够区分不同的材料制备的锂离子软包电池的性能。
与现有技术相比,本发明的有益效果是:
随着锂离子电池电压和所处环境温度的升高,锂离子电池中的副反应速率增加,随之产生气体量也会随之增加,造成锂离子软包电池发生鼓胀现象,主要由以下三方面所引起:1.正极金属离子氧化电解液:高电压下正极金属离子氧化性增强,易与电解液发生氧化反应,产生CO2和CO等气体,造成锂离子电池鼓胀。2.电解液在高温下发生热分解:电解液中部分溶剂和添加剂在高温下结构不稳定,自身发生分解反应,产生气体。3. 高温下负极SEI膜破坏及修复:
负极SEI膜在高温下发生分解和修复,该副反应过程中会产生H2和烷烃等气体。
上述三种副反应都会消耗锂离子电池中的活性锂离子,活性锂离子的消耗会造成锂离子电池放电容量的降低,也就是锂离子电池循环性能的劣化。
常规锂离子电池循环性能需要以100%DOD进行测试,以放电容量保持率进行表征,整个循环测试周期需要4-8个月,循环测试周期过长,严重影响锂离子电池的开发效率。
本专利中通过改变锂离子软包电池所处环境温度和保持锂离子电池在一个相对较高的电压区间内进行脉冲循环,以锂离子软包电池鼓胀程度判断锂离子电池中活性锂离子的损失程度,从而快速评价锂离子软包电池的循环性能,循环测试周期时间为5-20天,可以大幅度缩短循环测试周期,对比出不同材料的锂离子软包电池循环性能的差别,加快锂离子电池的评测效率。
附图说明
图1为基于本发明提供的一种快速评估锂离子电池体系循环性能的方法,在实施例1中,不同型号钴酸锂软包电池按照实施例1中方法得到的厚度膨胀率-循环圈数变化曲线示意图;
图2为基于常规测试中不同型号钴酸锂软包电池在45℃温度下的循环性能测试曲线示意图;
图3为基于本发明提供的一种快速评估锂离子电池体系循环性能的方法,在实施例2中,不同型号钴酸锂软包电池按照实施例2中方法得到的厚度膨胀率-循环圈数变化曲线示意图;
图4为常规测试中,不同型号钴酸锂软包电池在45℃温度下的循环性能测试曲线示意图;
图5为基于对比例1提供的一种快速评估锂离子电池体系循环性能的方法,不同型号钴酸锂软包电池基于厚度膨胀率-循环天数变化曲线示意图。
具体实施方式
为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。
实施例1: 一种快速评估锂离子电池体系循环性能的方法,具体包括下述步骤:
第一步,采用不同制备方法得到的钴酸锂材料(LiCoO2)材料A、材料B和材料C,匹配石墨负极进完成系列不同3Ah锂离子软包电池的制作。
第二步,在45℃环境下,以预设恒电流1.6A,对锂离子软包电池进行恒流充电,直至充电到预设电压4.45V,然后以4.45V进行恒压充电,截止电流为100mA,然后以电流1A进行放电,放电深度5% DOD,此为一个完整循环。
第三步,重复上述循环200圈,循环200圈后对电池的厚度膨胀率进行检测,得到不同材料制备的锂离子软包电池循环后的厚度膨胀率。
第四步,循环200圈后测试不同的锂离子软包电池循环后的厚度膨胀率之间的差值小于预设膨胀率4%,继续循环,每循环200圈继续对厚度膨胀率进行检测,直至检测第5次时,即循环至1000圈时,不同材料制得的锂离子软包电池厚度膨胀率之间的差值大于预设膨胀率4%,此时,对不同材料制得的锂离子软包电池的循环性能进行评价,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则锂离子软包电池的循环性能越好。
图1为三种不同制备方法得到的钴酸锂材料按照此循环制式得到的电池厚度膨胀率和循环圈数的变化曲线,参见图1可知,三种钴酸锂材料在此循环制式下厚度膨胀率随着循环圈数差异明显,循环1000圈后,三种钴酸锂材料电池的厚度膨胀率为材料A>材料B>材料C,说明材料C在此循环制式下产气程度低于材料A和材料B,材料A和材料B在此循环过程中稳定性不足。材料A和材料B与电解液发生副反应速率更快,产生了更多的气体,从而导致电池厚度膨胀率更大,因此,分别使用材料A、B、C制备的锂离子软包电池的性能关系为:电池A<电池B<电池C。
图2是钴酸锂电池体系45℃循环性能的测试曲线。该循环测试方法为0.8C充电至额定电压,以0.05C的电流截止,然后0.5C放电至3V,此为一个循环周期。对三个钴酸锂材料A、材料B和材料C的锂离子软包电池分别进行0.5C循环测试。循环性能越好,即循环放电容量保持率下降越缓慢。从图2可知,材料C制备的锂离子软包电池的容量保持率优于材料A和材料B的制备的锂离子软包电池容量保持率,三种钴酸锂材料制备的锂离子软包电池循环性能的关系为电池A<电池B<电池C。这与图1得到的规律结果一致。
实施例2
第一步,采用不同的制备方法得到的钴酸锂材料(LiCoO2)材料D、材料E和材料F,匹配石墨负极进完成系列不同2.5Ah锂离子软包电池的制作。
第二步,在50℃环境下,以预设恒电流3A,对锂离子软包电池进行恒流充电,直至充电到预设电压4.5V,然后以4.5V进行恒压充电,截止电流为125mA,然后以电流1.25A进行放电,放电深度2% DOD,此为一个完整循环。
第三步,重复上述循环200圈,循环200圈后对电池进行厚度膨胀检测,得到锂离子软包电池循环后的厚度膨胀率。
第四步,循环后不同的锂离子软包电池循环后的厚度膨胀率之间的差值小于预设膨胀率2%,继续循环,每循环200圈对厚度膨胀率进行检测,直至检测第4次,即循环至800圈时,不同材料制得的锂离子软包电池厚度膨胀率之间的差值大于预设膨胀率2%;
此时,对不同材料制得的锂离子软包电池的循环性能进行评价,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则锂离子软包电池的循环性能越好。
图3为三种不同制备方法得到的钴酸锂材料按照此循环制式得到的电池厚度膨胀率和循环圈数的变化曲线,参见图3可知,三种钴酸锂材料在此循环制式下厚度膨胀率随着循环圈数差异明显,循环800圈后,三种钴酸锂材料电池的厚度膨胀率为材料E>材料D>材料F,说明材料F在此循环制式下产气程度低于材料D和材料E,材料D和材料E在此循环过程中稳定性不足。材料D和材料E与电解液发生副反应速率更快,产生了更多的气体,从而导致电池厚度膨胀率更大,因此,分别使用材料A、B、C制备的锂离子软包电池的性能的关系为:电池E<电池D<电池F。
图4是钴酸锂电池体系45℃循环性能的测试曲线。循环测试方法为0.8C充电至额定电压,以0.05C的电流截止,然后0.5C放电至3V,此为一个循环周期。对三个钴酸锂材料D、材料E和材料F的电池分别进行0.5C循环测试。循环性能越好,即循环放电容量保持率下降越缓慢。从图4可知,材料F制备的锂离子软包电池的容量保持率优于材料D和材料E制备的锂离子软包电池的容量保持率,三种钴酸锂材料制备的锂离子软包电池的循环性能的关系为:电池E<电池D<电池F。这与图3得到的规律结果一致,表明此专利涉及的快速评估方法具有快速有效的评估能力。
对比例1:一种评估锂离子电池体系循环性能的方法,具体包括下述步骤:
第一步,采用不能制备方法得到的钴酸锂材料(LiCoO2)材料B和材料C(同实施例1),匹配石墨负极进完成系列不同3Ah锂离子软包电池的制作。
第二步,在45℃环境下,以预设恒电流1.6A,对锂离子软包电池进行恒流充电,直至充电到预设电压4.45V,然后以4.45V进行恒压充电。
第三步,每7天后对电池的厚度膨胀率进行检测,得到锂离子软包电池循环后的厚度膨胀率。
第四步,当不同的锂离子软包电池厚度膨胀率之间的差值小于预设膨胀率4%时,则每隔7天对厚度膨胀率进行检测,直至不同材料制得的锂离子软包电池厚度膨胀率之间的差值大于预设膨胀率4%;
此时,对不同材料制得的锂离子软包电池的循环性能进行评价,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差;反之,锂离子软包电池的厚度膨胀率越小,则锂离子软包电池的循环性能越好。
图5为两种钴酸锂材料按照此测试制式得到的电池厚度膨胀率和测试时间的变化曲线,参见图5可知,两种钴酸锂材料在此测试制式下厚度膨胀率随着测试时间逐渐增加,测试98天后,两种钴酸锂材料电池的厚度膨胀率为材料B>材料C,说明材料C在此循环制式下产气程度低于材料B,材料B在此循环过程中稳定性不足,但是该方法的测试时间长,按照实施例1完成1000周循环测试需要时间为20天,而按照对比例1中测试方法,测试时间为98天,按照常规的测试方法(图2的方法),测试1000周需要167天;因此,通过本专利方法可以更加快速有效的评估锂离子电池体系循环性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种快速评估锂离子软包电池体系循环性能的方法,其特征在于,包括下述步骤:
第一步,采用不同的正极材料制备得到不同的锂离子软包电池;
第二步,在预设温度环境下,以预设恒电流I1,对第一步中得到的不同的锂离子软包电池进行恒流充电,直至充电到预设电压U1,然后以预设电压U1进行恒压充电,截止电流为I2,然后以电流I3进行放电,放电深度X% DOD,此为一个完整循环;
第三步,按照第二步的步骤重复进行循环N圈,循环N圈后对电池的厚度膨胀率进行检测,得到不同的锂离子软包电池循环后的厚度膨胀率;
第四步,当不同的锂离子软包电池循环后的厚度膨胀率之间的差值大于预设膨胀率时,比较不同的锂离子软包电池的厚度膨胀率的大小,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则电池的循环性能越好;
若循环后不同的锂离子软包电池的厚度膨胀率之间的差值小于预设膨胀率,则继续循环,每循环M圈后继续对不同的锂离子软包电池的厚度膨胀率进行检测,直至不同的锂离子软包电池的厚度膨胀率之间的差值大于预设膨胀率;此时,比较不同的锂离子软包电池的厚度膨胀率的大小,锂离子软包电池的厚度膨胀率越大,则锂离子软包电池的循环性能越差,反之,锂离子软包电池的厚度膨胀率越小,则锂离子软包电池的循环性能越好。
2.根据权利要求1所述的快速评估锂离子软包电池体系循环性能的方法,其特征在于,第二步中预设温度为20-70℃;预设恒电流I1的取值范围为大于0小于2C,预设电压U1的取值范围为大于等于4.45V小于4.6V;截止电流I2的取值范围为大于0小于0.1C;电流I3的取值范围为大于0小于2C;放电深度X% DOD中X的取值范围大于等于1小于等于10。
3.根据权利要求1所述的快速评估锂离子软包电池体系循环性能的方法,其特征在于,第三步中,所述N的取值范围为大于等于100小于等于1000,M的取值范围为大于等于10小于等于200。
4.根据权利要求1所述的快速评估锂离子软包电池体系循环性能的方法,其特征在于,第四步中,预设膨胀率为2-5%。
CN202210082982.8A 2022-01-25 2022-01-25 快速评估锂离子软包电池体系循环性能的方法 Pending CN114114055A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210082982.8A CN114114055A (zh) 2022-01-25 2022-01-25 快速评估锂离子软包电池体系循环性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210082982.8A CN114114055A (zh) 2022-01-25 2022-01-25 快速评估锂离子软包电池体系循环性能的方法

Publications (1)

Publication Number Publication Date
CN114114055A true CN114114055A (zh) 2022-03-01

Family

ID=80360922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210082982.8A Pending CN114114055A (zh) 2022-01-25 2022-01-25 快速评估锂离子软包电池体系循环性能的方法

Country Status (1)

Country Link
CN (1) CN114114055A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032235A (zh) * 2022-06-22 2022-09-09 天津力神电池股份有限公司 快速筛选高电压钴酸锂材料循环性能的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398469A (zh) * 2008-09-28 2009-04-01 广州丰江电池新技术有限公司 评估锂二次电池的寿命和安全性的方法
CN102593510A (zh) * 2011-01-06 2012-07-18 深圳市比克电池有限公司 一种电解液及锂离子电池
CN103018683A (zh) * 2012-12-24 2013-04-03 天津力神电池股份有限公司 一种电池循环性能加速评估方法
CN103091639A (zh) * 2013-01-11 2013-05-08 中兴通讯股份有限公司 一种电池寿命检测方法及装置
CN107024662A (zh) * 2017-03-10 2017-08-08 天津轻工职业技术学院 一种锂电池充放电性能与充放电机理的分析测试方法
CN107632262A (zh) * 2017-08-07 2018-01-26 北京长城华冠汽车科技股份有限公司 一种动力电池组循环寿命的检测方法及装置
CN111380996A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料循环寿命的快速检测方法
CN112557920A (zh) * 2020-11-20 2021-03-26 天津力神电池股份有限公司 一种快速评测高电压锂离子电池体系稳定性的方法
CN112684356A (zh) * 2020-10-31 2021-04-20 浙江锋锂新能源科技有限公司 一种锂离子电池的循环测试方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398469A (zh) * 2008-09-28 2009-04-01 广州丰江电池新技术有限公司 评估锂二次电池的寿命和安全性的方法
CN102593510A (zh) * 2011-01-06 2012-07-18 深圳市比克电池有限公司 一种电解液及锂离子电池
CN103018683A (zh) * 2012-12-24 2013-04-03 天津力神电池股份有限公司 一种电池循环性能加速评估方法
CN103091639A (zh) * 2013-01-11 2013-05-08 中兴通讯股份有限公司 一种电池寿命检测方法及装置
CN107024662A (zh) * 2017-03-10 2017-08-08 天津轻工职业技术学院 一种锂电池充放电性能与充放电机理的分析测试方法
CN107632262A (zh) * 2017-08-07 2018-01-26 北京长城华冠汽车科技股份有限公司 一种动力电池组循环寿命的检测方法及装置
CN111380996A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料循环寿命的快速检测方法
CN112684356A (zh) * 2020-10-31 2021-04-20 浙江锋锂新能源科技有限公司 一种锂离子电池的循环测试方法
CN112557920A (zh) * 2020-11-20 2021-03-26 天津力神电池股份有限公司 一种快速评测高电压锂离子电池体系稳定性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谭晓军: "《电池管理系统深度理论研究:面向大功率电池的应用技术》", 30 April 2014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032235A (zh) * 2022-06-22 2022-09-09 天津力神电池股份有限公司 快速筛选高电压钴酸锂材料循环性能的方法

Similar Documents

Publication Publication Date Title
JP7076495B2 (ja) 使用済み電池の迅速なグループ化と修復方法
CN109839598B (zh) 一种无损检测锂离子电池正极可逆锂损失方法
CN106908737B (zh) 一种基于电化学反应机理仿真的锂离子电池寿命预测方法
CN108511710B (zh) 富锂锰基锂离子电池正极材料及其制备方法
CN105048014B (zh) 一种带温度补偿的锂离子动力电池快速充电方法
CN110854458B (zh) 一种高压软包锂离子电池的化成方法
CN112684356A (zh) 一种锂离子电池的循环测试方法
CN112540297B (zh) 一种研究锂离子电池过充安全冗余边界的方法
CN109841915B (zh) 一种高存储性能的锂离子电池的化成方法
CN108614221B (zh) 一种锂离子电池化成工序的评价方法
CN109004288B (zh) 一种锂电池高soc附近小电流扰动循环化成方法
CN111366863B (zh) 一种基于低温循环的锂离子电池寿命加速预判方法
CN112557920A (zh) 一种快速评测高电压锂离子电池体系稳定性的方法
CN110034336B (zh) 一种形成稳定sei膜的电池化成方法
CN109818095B (zh) 一种电池的充放电预处理方法和电池及其制备方法
CN114114055A (zh) 快速评估锂离子软包电池体系循环性能的方法
CN111722120A (zh) 一种锂离子电池可逆锂消耗量的评价方法及系统
CN109713358B (zh) 一种电池化成方法及电池
CN110658473B (zh) 一种锂离子电池正极材料存储性能评估方法
CN112946506B (zh) 一种快速测试锂离子电池循环寿命的方法
CN110707389B (zh) 一种具有镍钴锰酸锂正极的锂离子电池的化成方法
CN109786874B (zh) 一种锂离子电池的分容方法
CN111710914A (zh) 一种提高高容量锂电池电压一致性的方法
An et al. Study on aging and external short circuit mechanisms of Li-ion cells with different electrode thicknesses
CN113161636B (zh) 一种磷酸铁锂电池的低温充电技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220301

RJ01 Rejection of invention patent application after publication