CN114097119A - 适用于电池的电极颗粒 - Google Patents

适用于电池的电极颗粒 Download PDF

Info

Publication number
CN114097119A
CN114097119A CN202080051189.0A CN202080051189A CN114097119A CN 114097119 A CN114097119 A CN 114097119A CN 202080051189 A CN202080051189 A CN 202080051189A CN 114097119 A CN114097119 A CN 114097119A
Authority
CN
China
Prior art keywords
carbide
carbon
sizing
carbon precursor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080051189.0A
Other languages
English (en)
Other versions
CN114097119B (zh
Inventor
毛振华
N·李
C·W·托普夫
D·史
C·J·拉弗兰柯伊斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ConocoPhillips Co filed Critical ConocoPhillips Co
Priority claimed from PCT/US2020/042130 external-priority patent/WO2021011647A1/en
Publication of CN114097119A publication Critical patent/CN114097119A/zh
Application granted granted Critical
Publication of CN114097119B publication Critical patent/CN114097119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本公开涉及碳基电极材料,其已石墨化以将离子保持在电池的电极中,更具体地包括保护石墨芯的碳化物或碳化物和氮化物表面。优选的电池包括金属离子电池,例如锂离子电池,其中碳基电极是阳极,但碳基电极也可用于双离子电池中,其中两个电极都可以包含石墨化碳基电极。所述电极比传统的石墨电极更无定形并包括含有碳化物或氮化物的表面处理。

Description

适用于电池的电极颗粒
相关申请的交叉引用
这是一项PCT国际申请,要求2019年7月17日提交的美国临时专利申请序列号62/875,299、62/875,315和62/875,318以及2020年7月15日提交的美国专利申请序列号16/929,222、16/929,233和16/929,248的优先权,均名为“适用于电池的电极颗粒”,其全部内容并入本文。
关于联邦资助的研究或开发的声明
没有。
发明领域
本发明涉及电池,尤其涉及可用于制造电池阳极的材料,更特别是可用于金属离子电池中的阳极的材料。
发明背景
可充电锂离子电池已广泛应用于许多便携式系统和设备中,例如手机、平板电脑、计算机、手持便携式工具和正在开发的依赖锂离子电池的功率和重量优势的新设备。优点是重量轻、电压高、电化学当量高、导电性好。锂离子电池的广泛用途和接受度来自于许多进步和发展。锂离子电池的一个发展领域一直集中在锂离子电池的阳极或负极上,这方面已经取得了很大的成就。
用于锂离子电池的阳极,尤其是用于便携式设备的阳极的关键考虑因素是高体积和重量比容量以及经许多多次充电和放电循环的长电池寿命。在之前的工作中,由涂覆和石墨化的碳前体材料生产出具有接近95%的初始库仑效率和长寿命的阳极材料。这在Mao等人的US 7,323,120中有所描述,其中石油焦被研磨至优选的尺寸,经受溶剂涂覆工艺,使涂层在高温下氧化稳定,然后整个颗粒在惰性环境中在更高的温度下碳化和石墨化。这些颗粒形成高度石墨结构,表面有保护涂层,保护下面的石墨片不受电池电解质的影响。保护涂层保护石墨片的边缘,石墨片被认为对电池中的电解质具有催化活性。电解质因此在充电循环期间分解石墨片,从而迅速而急剧地降低阳极中锂离子的效率和存储容量。在阳极颗粒上形成的涂层包含一层可石墨化差的材料,当与颗粒的其余部分一起石墨化时,形成了相对于电解质的催化分解来说更稳定的石墨,但其本身不适合嵌入锂离子。但是锂离子能够容易地穿过涂层并嵌入到更有组织的石墨片中。事实上,这是一种非常好的材料,具有良好的性能和良好的循环寿命。然而,其生产需要使用大量溶剂以及在不同气氛中进行多次连续单独的热处理,所有这些加起来是昂贵的。但是,对于高价值用途(其中在紧凑空间中需要高比容量且最小重量是重要的),这种阳极目前是最有利的。
锂离子电池用石墨负极材料最重要的参数是初始库仑效率和比容量。众所周知,高度结晶的石墨粉末具有高比容量和非常差的初始库仑效率,不能用作锂离子电池的负极材料。通过多年的广泛研究和开发,已经开发出复杂的工艺来缓解与比容量和初始库仑效率相关的问题;主要的解决方案集中在高温石墨化和在石墨化之前用可石墨化差的碳涂覆颗粒,以保护颗粒中下面的石墨片不受电解质影响。由于石墨负极材料的平均粒度小于30μm,且单个颗粒必须均匀地涂有可石墨化差的碳,目前石墨负极材料通过复杂的工艺步骤制造。结果,生产成本高,并且对于某些涂覆工艺,产品收率低。
对于所有材料,以更低的成本获得更高的性能是持续的驱动力,性能或成本方面的任何进步都是非常理想的。
发明内容
本发明涉及一种形成用于金属离子电池的石墨阳极材料的方法,其中选择碳前体材料并将其定尺寸为具有所需平均粒度的颗粒。定好尺寸的前体材料以共混物的0.01%-10%的比与碳化物形成元素组合,在氩气、氦气或氮气中在约2500℃-3000℃的温度下将该组合石墨化,从而产生颗粒,其沿着表面和石墨芯具有碳化物。
附图的简要说明
通过参考以下结合附图的描述可以获得对本发明及其益处的更完整的理解,其中:
图1是假设电路中的电池单元的示意图,示出了阳极、阴极、电解质和电路。
发明详述
现在转向对本发明的一个或多个优选布置的详细描述,应当理解,本发明的特征和概念可以在其他布置中体现并且本发明的范围不限于所描述或图解的实施方案。本发明的范围仅旨在由所附权利要求的范围限制。
首先,转向图1,示意性电池由箭头10表示。电池包含多个阴极材料颗粒20和多个阳极材料颗粒,位于电解质隔膜40的相对侧。阴极颗粒20和阳极颗粒30保持在导电浆料(未具体示出)中到相应的金属电极。用50表示的电负载,例如灯或电动机,可以用51所示的线与电池10连接。当电池10充电时,正离子存储在阳极颗粒30中。由于阴极和阳极材料的电化学性质,正离子被推动(分别被吸引和排斥)以从阳极30移动通过电解质隔膜40并进入阴极。当离子移动通过电解质时,电子传送通过金属电极31并通过线51和负载50到达阴极以平衡电荷。电子传送通过负载的过程会导致完成电气工作,例如点亮灯泡或转动电动机。对于锂离子电池,阴极通常由含锂化学结构形成,该化学结构在电池充电期间形成锂离子,锂离子穿过隔膜40并嵌入阳极中。阳极材料的化学复杂性较低,高性能的阳极材料可以密集地储存锂离子,使其易于完全释放回阴极,而不会永久结合在阳极中。本发明关注于像图1所示的电池中使用的阳极材料的构成。
虽然碳涂覆的阳极材料已证明对于高价值电池(其中重量轻和尺寸紧凑是重要的)具有非常有吸引力的特性,但相反,对于重量和尺寸不那么关键的电池,具有较低价值用途。这种较低价值用途包括需要非常高的能量容量的固定位置储能设备,例如配电网的备用电源。
在研究满足这些需求的电池时,已经进行了研究以开发使用更大体积的未涂覆的石墨化石油焦材料以抵消阳极性能经多个充电和放电循环的预期衰变的电池设计。在探索电池最佳石墨化水平的过程中,添加了一些石墨成核剂以加速在较低温度下形成石墨结构。然而,最终结果是一种相当高性能的阳极材料,进一步的开发工作很快转向了解新阳极产品的性质以及为什么它的性能比预期的更高。
认为在这些测试中发生的是,成核剂不是使成核石墨形成,而是与颗粒的碳表面反应形成碳化物,或与氮气反应在颗粒表面形成氮化物。碳化物和氮化物似乎不会在颗粒深处形成,从而将颗粒的本体保留为用于离子嵌入的结晶石墨。碳化物和氮化物明显保护石墨结构免受金属离子电池中的电解质的影响,从而防止电解质与石墨相互作用。众所周知,电解质会分解阳极中的石墨,而本发明中小厚度的这种改性表面保护了石墨片。
最初的研究始于硼作为成核剂。由于石墨化必须在无氧环境中进行,或者碳燃烧后主要形成二氧化碳,因此通常在无氧保护气体下进行石墨化。在氮气保护气体下,也可能在表面上形成氮化物。然而,对于一些成核剂,氮化物形式可能会蒸发掉而不留在表面上。当石墨化温度高于稳定的碳化物或氮化物分子的熔点但低于它们的沸点时,最好看到稳定的氮化物和/或碳化物形成。对于形成在石墨化温度以下沸腾的稳定氮化物的成核剂,可以选择惰性的其他保护气体。氩气已成功用于这些情况。参考表1,显示了潜在的成核剂与石墨化过程中可能形成的代表性碳化物和氮化物。参考表2,分别显示了使用硼作为碳化物或氮化物形成剂制成的代表性电池的库仑效率和比容量。
表1
Figure BDA0003470120960000051
碳化物和氮化物形成材料以约0.1重量%至约5重量%与粉状焦炭混合。认为,碳化物和氮化物在颗粒表面形成,下面的碳在其中形成石墨结构。因此,制造阳极粉末的本发明方法包括通过研磨或其他已知方法将石墨前体制备成所需尺寸,并通过混合在一起而添加适量的碳化物或氮化物形成元素,然后使混合的混合物经受石墨形成温度足以形成表面化学和下面石墨结构的持续时间。对于一些焦炭材料,可优选在通过煅烧而石墨化之前将它们碳化以驱除杂原子和其他非碳原子。碳化通常是一种热处理工艺,其温度低于石墨温度,但温度很高,例如为900℃-1500℃,通常在煅烧炉中将焦炭的碳含量增加到至少92%或更高的含量,例如95%或至少97%。
优选地,颗粒的表面在碳化物或碳化物和氮化物的混合物中是连续的,没有石墨暴露于电解质。还优选的是,表面相对于粗糙或锯齿状优选是更光滑的到可获得的程度。大多数石墨材料具有锯齿状表面,当颗粒被定尺寸时,石墨片更容易破裂。光滑的表面被认为更能抵抗本体石墨结构上的电解质侵蚀,这在现有技术中通过涂覆实现。碳化物表面可以几个原子厚不等,导致几纳米厚的改性表面,并且可以更厚(取决于所选的一种或多种碳化物形成化合物),但不会将锯齿状表面改变为更理想的光滑表面。石墨化粉末中这种碳化物形成表面或元素的重量含量可以为约50ppm至约5000ppm,也取决于所选择的一种或多种化合物。
发现焦炭和碳化物形成化合物的类型在形成所需的石墨阳极材料中也起重要作用。所选焦炭优选在石墨化之前在500-2000℃的温度下煅烧或至少部分煅烧。生焦(greencoke),特别是具有高挥发性物质的那些,可与选定的碳化物形成化合物反应形成挥发性化合物,导致这些元素在石墨化温度下形成稳定碳化物之前蒸发。另一方面,在2000℃以上的温度下碳化或石墨化的焦炭具有更高的化学稳定性,并且不会与选定的碳化物形成化合物如盐和氧化物发生化学反应,导致这些添加的盐或氧化物在石墨化温度升高期间蒸发。
焦炭和碳化物形成化合物的混合物被石墨化的气氛是选择这种碳化物形成化合物的一个因素。非氧化性气体如氩气、氦气和氮气优选用于石墨化。然而,在氮气气氛的情况下,一些碳化物形成元素也可能与氮反应形成不需要的氮化物,特别是那些稀释或减少碳化物含量的挥发性氮化物。因此,碳化物形成化合物的选择限于形成高温碳化物和/或氮化物的那些元素。对于在氩气或其他非反应性气体中的石墨化,优选的碳化物形成元素在2000℃以上的温度下形成稳定的碳化物。换句话说,最好的结果是生成的碳化物的熔点在2500℃以上,优选在2700℃以上。
此外,这种形式的阳极材料没有涂覆石墨前体(或不同于本体的碳层)。本发明改变了现有表面,使表面上形成碳化物或碳化物和氮化物,保护颗粒的芯通过许多充电和放电循环。因此,在表面没有与电解质化学反应的高石墨结晶度,表面处的氮化物或碳化物或两者导致本体石墨材料的衰变显著减少或消除,从而减少了电池失活的一种模式。
这表明包含来自石油或煤焦油的焦炭的阳极材料可以通过多种方法中的任何一种来定尺寸以得到平均粒度,使得大多数颗粒在约3μm和至多约30μm之间,然后可以在至多约3100℃的惰性气氛中石墨化。
测量粒度受到许多观点的影响。在优选的发明中,粒度可以根据电池用途或电池制造商的规格进行调整。理想情况下,考虑到研磨、筛分和其他定尺寸技术的差异,颗粒的大小基本相似。颗粒不太可能是球形的事实增加了额外的复杂性。幸运的是,粒度测量不需要复杂化。一般而言,使用由Malvern或Horiba制造的激光衍射或成像系统,使用基于体积的计算可提供合理的准确性,以提供用于锂离子电池的此类阳极粉末。并且通过这些测量,有用粉末内的平均粒度通常为1-50μm,更通常在更窄的范围内。
因此,本发明提供了一种用于锂离子电池的新型石墨电极材料,还提供了一种用于制造这种电极材料的更简单的方法。在与石墨阳极材料相关的一个实施方案中,石墨颗粒在颗粒表面上含有金属或非金属碳化物和氮化物组分,这种碳化物或氮化物的含量为5ppm-1重量%,优选50ppm-2000ppm,但更优选小于约1500ppm,甚至更优选为约100ppm-约1000ppm。碳化物和氮化物可以是单一元素或不同元素的混合物。与碳前体共混的量为约500ppm-10重量%,但更优选1000ppm-3重量%。阳极颗粒的平均粒度为3-30μm,优选3-25μm。
生产石墨材料的方法包括两个主要步骤:将可石墨化的碳前体研磨至指定的粒度,然后在特定温度范围内使所得粉末与碳化物和氮化物形成材料一起石墨化。更详细地说,碳前体选自石油和煤焦油焦炭。优选生焦。根据特定的电池要求,通过任何机械研磨方法如球磨、刀磨、冲击研磨和喷射研磨将选定的碳前体研磨成平均粒度小于30μm的粉末。典型的平均粒度范围为3μm-25μm。任选地,研磨的粉末在非氧化环境中碳化以消除非碳元素。应该注意的是,在石墨化之前定尺寸是优选的,因为石墨化会使颗粒更脆,产生更多锯齿状和不规则形状的颗粒,这些颗粒更容易发生石墨片结构的催化分解。
研磨的粉末(碳化的或生的)与碳化物和氮化物形成化合物组合,并在惰性环境如氮气、氩气、氦气或其组合中在高于2650℃,优选在2800℃和3000℃之间的温度下石墨化。碳化物和氮化物形成化合物可以是过渡金属、非金属、稀土金属及其组合。所用碳化物或氮化物形成化合物的量为总质量的100ppm至10重量%,优选0.05重量%-2重量%。
实施例
这样生产的材料作为纽扣电池中的负极材料(锂嵌入)而评价有用性,在纽扣电池中以锂金属作为对电极。制备过程描述如下:
电极制备——每个电极通过以下步骤制造:步骤1)将约2g石墨化粉末和0.043g炭黑、0.13g聚偏二氟乙烯(PVDF)(在10重量%溶液(在N-甲基吡咯烷酮(NMP)中)中放入25-ml塑料小瓶中,并在研磨机中与约3g1/8"钢球一起摇动10分钟以形成均匀的浆料。添加额外的NMP以使混合物根据需要更易流动。步骤2)使用刮刀涂布机在铜箔或铝箔上浇铸所得浆料的薄膜。所得膜在120℃的热板上干燥至少2小时。步骤3)将干燥的膜修整成5厘米宽的条,并通过辊压机致密化。步骤4)每个膜用模切机冲出三个圆盘(直径1.5厘米)作为电极。电极重量由每个圆盘的总重量减去圆盘基片的重量确定,电极组成为92重量%石墨、6重量%PVDF和2重量%炭黑,质量负载量为约10mg/cm2
对每个纽扣电池进行电化学测试。每个纽扣由底罐、作为对电极的锂金属、隔膜、圆盘电极、不锈钢圆盘垫片、波形弹簧和顶罐组成。这些元件依次放置在底罐中。在堆叠圆盘电极之前向隔膜添加电解质。使用在40vol%碳酸亚乙酯、30vol%碳酸二甲酯和30vol%碳酸二亚乙酯混合物中的1M LiPF6电解质。在顶罐落到堆上之后,将组件转移到纽扣电池压接机(crimper)并压接在一起。
电化学测试在电化学测试站进行,分别对负极和正极材料使用不同的充电/放电测试程序,如下所示:
作为锂离子电池的负极材料-A)以-1.0mA的恒定电流充电至0.0V,B)进一步以0.0V充电1小时,C)以1mA放电直至电压达到2.0伏特,和D)重复步骤A到C 5次或5个循环。记录每个循环的充电和放电过程中通过的电荷,用于计算比容量和库仑效率。所有测试均在环境温度下进行,电池在氧气和水分含量在3ppm以下的手套箱中进行测试。
碳化物和氮化物形成元素含量的分析
在石墨化之后,将粉末溶解在酸溶液中并通过标准电感耦合等离子体质谱分析元素含量。
实施例组1
从不同来源获得两个石油生焦样品,并干燥、压碎和研磨至平均粒度为5μm。第一个样品来自俄克拉荷马州庞卡城(Ponca City,Oklahoma)的Phillips 66炼油厂,第二个样品是来自路易斯安那州查尔斯湖(Lake Charles,Louisiana)的第二家Phillips 66炼油厂的LXP。将每种粉末与1重量%和2重量%单质硼(<1μm平均粒度)混合,并与不含硼的粉末样品进行比较。混合物在2900℃的氩气环境中石墨化,随后作为锂离子电池的负极材料评价。为了比较,这些阳极粉末在相同条件下石墨化。表2列出了此类石墨化粉末的放电比容量和初始库仑效率。在没有硼的情况下,初始库仑效率非常低(<40%),放电容量也很低(-300mAh/g)。这种材料不适合用作锂离子电池的负极材料。在有硼的情况下,石墨化粉末作为锂离子电池负极材料表现出优异的性能(>350mAh/g的高容量,>91%的初始库仑效率)。
表2
Figure BDA0003470120960000091
实施例组2
来自实施例组1的焦炭样品1的另外焦炭样品粉末用硼及其他碳化物和氮化物形成元素的几种共混物石墨化。创建了六个实施例,每个实施例具有1.5重量%的共混物。共混物包含硼和铈,硼与铈的三种不同比例分别为1:10、10:1和1:1。这些碳化物和氮化物形成化合物选自金属和非金属化学品,并在2900℃的氮气气氛中石墨化。以与实施例组1中相同的方式评价石墨化粉末。表3列出了这种石墨化粉末的放电比容量和初始库仑效率。第四和第五列显示石墨化后粉末中碳化物和氮化物形成元素的元素含量。前三个样品表现出大于91%的初始库仑效率和大于335mAh/g的比容量,这表明根据本发明可以经济地生产高性能阳极石墨粉末。
参考下表3,很明显,在2900℃的石墨化温度下,碳化物形成元素会在所得电极中产生物理差异,从而极大地提高初始库伦效率。碳化物形成元素具有高熔点,似乎会导致表面的碳形成碳化物晶体或在表面接受(容纳)氮化物晶体,这两者都允许离子轻松进出石墨,同时保护石墨免受电解质影响。
表3
Figure BDA0003470120960000101
实施例组3
将通常在制造用于铝熔炼的阳极中使用的阳极级生石油焦样品在100℃下干燥,在辊磨机中粉碎,并用实验室喷射磨机粉碎至平均粒度为5μm。该焦炭样品的挥发物含量为12重量%,并被分成六个单独的样品。前三个样品是硼和铈的混合物,后三个样品是硅、锰和钇,重量百分比为约1.5%。在单独的小坩埚中的每组被放置在大石墨容器中并在氩气环境中在2900℃下石墨化15分钟。
石墨化粉末作为如上所述纽扣电池中锂离子电池的阳极材料评价。关键参数为比放电容量和初始库仑效率,结果列于表4。石墨化样品中碳化物形成元素的含量列于表9。碳化物形成元素含量显著的石墨化样品产生了优异的初始库伦效率(>92%)和比容量,而无法检测到碳化物形成元素含量的那些则显示出差的初始库伦效率(<60%)和低比容量。
表4
Figure BDA0003470120960000102
实施例组4
与实施例组3中的那些相同组的混合物在2900℃的温度下但在氮气环境中以相同的方式石墨化。以与实施例组3相同的方式评价所得石墨粉末。这些样品的所得比容量和初始库仑效率列于下表5中。测得的性质与实施例组3中的类似,不同之处在于钇在初始库仑效率方面表现出降低的性能。碳化物形成材料还与氮气形成氮化物,该氮化物在低于石墨化温度的温度下蒸发并且认为表面处理没有停留在颗粒上,使得它们不适合作为金属离子电池中的阳极材料。
表5
Figure BDA0003470120960000111
这些实施例表明,存在碳化物形成元素的石墨化粉末作为锂离子电池阳极材料表现出优异性能,不含有这种碳化物形成元素的石墨化粉末不具有所需的性能(低库仑效率)。
实施例组5
对于实施例组5,将三个等级的生石油焦在100℃下干燥,在辊磨机中粉碎,并用实验室喷射磨机粉碎至平均粒度分别为5、8、11和15μm。将所得焦炭粉末在氮气中在950℃下加热2小时以除去挥发物。这些焦炭粉末在下面描述的实施例中标记为A、B和C,其中A是铝阳极级石油焦,B是用于制造再生钢的电弧炉中的阳极的优质石油焦,C是一种较低等级的优质石油焦,它已被用作制造具有高挥发物含量的金属离子电池中的阳极的前体。
混合各种焦炭颗粒的样品,包括11μm的焦炭粉末A、5和8μm的焦炭粉末B和15μm的焦炭粉末C以及重量含量为0.5%和1.5%的两种碳化物形成化合物(元素硼和铈氧化物)。所得混合物在与实施例组4相同的条件下石墨化并作为锂离子电池的阳极材料进行测试。在本实施例中,石墨化样品分别标记为A5、B5、B8和C15。测试结果列于下表6中。
表6
Figure BDA0003470120960000121
对比例组1
在与实施例组4相同的条件下,在没有任何碳化物形成元素的氮气环境中使5μm的焦炭粉末A及5和8μm的焦炭粉末B石墨化。石墨化粉末作为用于锂离子电池的阳极材料以与上述实施例相同的方式评价。在本实施例中,这些样品分别标记为A5、B5和B8。测试结果也列在下面的对比例1的表7中。
表7
Figure BDA0003470120960000122
对比例组2
使用美国专利7,323,120中描述的溶液相沉淀法,用8重量%和6重量%的沥青涂覆5和8μm的焦炭粉末B。沥青涂覆工艺涉及几个步骤,包括a)将焦炭粉末分散在有机溶剂中,b)将选定的沥青溶解在有机溶剂中,c)将焦炭和沥青溶液加热到高温,d)混合两种溶液并在连续搅拌下冷却混合物,使得溶解的沥青的某一重部分在焦炭颗粒上以固体膜的形式沉淀出来,e)通过过滤将沥青涂覆的焦炭颗粒从溶液中分离出来,f)使用额外的有机溶剂将涂覆的焦炭颗粒上残留的沥青溶液洗去,最后干燥沥青涂覆的颗粒。沥青涂覆的粉末通过在高温(350℃以下)下在空气中氧化而进一步处理,使所得颗粒变得不熔,涂覆的沥青变得比本体焦炭芯更不易石墨化。这个过程通常被称为稳定化。在沥青涂覆和稳定化后,在与实施例组4相同的条件下将粉末石墨化。将石墨化粉末作为锂离子电池的阳极材料以与之前相同的方式评价,并将结果列于下面对比例2的表8中。
表8
Figure BDA0003470120960000131
对样品组3和4进行分析测试以确定其石墨化后的成分。测试后阳极材料中碳化物和氮化物形成元素的量如表9所示。考虑到固有的低水平和内部测试设备的能力,并非所有元素都可以测量。
表9
Figure BDA0003470120960000132
在样品组5中,阳极样品由8μm优质焦炭通过在氮气中在2900℃下石墨化并在氮气环境中15分钟而制成,其中硼和另一种碳化物或氮化物形成元素以1:3的比组合。在石墨化之前测量重量。结果如表10所示。
表10
Figure BDA0003470120960000141
上述实施例表明,与通过现有技术方法制造的石墨粉末相比,根据本发明生产的石墨粉末表现出优异的比容量和优异的初始库仑效率,并且工艺简单且所得石墨粉末在颗粒表面或本体上具有与由现有技术方法制成的那些不同的化学组成。
最后,应当注意,任何参考文献的讨论并不承认它是本发明的现有技术,尤其是任何可能具有在本申请的优先权日期之后的公布日期的参考文献。同时,以下每个权利要求都作为本发明的附加实施方案并入该发明详述或说明书中。
尽管已经详细描述了这里描述的系统和方法,但是应当理解的是,在不背离由所附权利要求限定的本发明的精神和范围的情况下,可以进行各种改变、替换和变更。本领域技术人员能够研究优选实施方案并确定不完全如本文所述的实施本发明的其他方式。本发明人的意图是本发明的变化和等同物在权利要求的范围内,而说明书、摘要和附图不用于限制本发明的范围。本发明特别旨在与以下权利要求及其等同物一样宽泛。

Claims (17)

1.形成金属离子电池用石墨阳极材料的方法,包括:
选择碳前体材料并将其定尺寸为具有所需平均粒度的颗粒;
将前体材料与碳化物形成元素以混合物的0.01%-10%的比组合;和
在约2500℃-3000℃的温度下,在氩气、氦气或氮气中将所述组合石墨化,从而产生沿着表面和石墨芯具有碳化物的颗粒。
2.根据权利要求1所述的方法,其中碳化物形成元素选自Ti、Y、Zr、Nb、Mo、La、Ce、B及其组合。
3.根据权利要求1所述的方法,其中选择碳前体和定尺寸的步骤更具体地包括将颗粒定尺寸为约1-50μm的平均粒度。
4.根据权利要求3所述的方法,其中选择碳前体和定尺寸的步骤更具体地包括将颗粒定尺寸为约3-约30μm的平均粒度。
5.根据权利要求4所述的方法,其中选择碳前体和定尺寸的步骤更具体地包括将颗粒定尺寸为约3-约25μm的平均粒度。
6.根据权利要求1所述的方法,其中将碳前体定尺寸的步骤更具体地包括研磨碳前体。
7.根据权利要求6所述的方法,其中研磨步骤包括在球磨机、刀磨机、冲击磨机和喷射磨机之一或其组合中进行研磨。
8.根据权利要求1的方法,其中选择碳前体的步骤更具体地包括从煅烧针状石油焦、未煅烧针状石油焦、煅烧阳极石油焦、未煅烧阳极石油焦、煅烧煤焦油沥青、未煅烧煤焦油沥青及其组合中选择前体。
9.根据权利要求1所述的方法,其中石墨化步骤还包括在2750℃-2950℃的温度下石墨化5分钟-90分钟的时间。
10.根据权利要求9所述的方法,其中石墨化步骤还包括石墨化10分钟-45分钟的时间。
11.根据权利要求1所述的方法,其中将前体材料与碳化物形成元素组合的步骤还包括以碳前体的50ppm-10重量%的比率组合碳化物形成元素。
12.根据权利要求1所述的方法,其中将前体材料与碳化物形成元素组合的步骤还包括以碳前体的500ppm-3重量%组合碳化物形成元素。
13.根据权利要求1所述的方法,其中使碳化物形成材料的组合石墨化的步骤还包括在气态氮环境中石墨化,其中碳化物和氮化物均在颗粒表面形成。
14.根据权利要求1所述的方法,其中使碳化物形成材料的组合石墨化的步骤还包括在气态氩气、氦气或氩气和氦气的组合中石墨化。
15.根据权利要求1所述的方法,其中选择碳前体材料并将其定尺寸的步骤还包括选择碳前体材料,然后煅烧碳前体材料以将碳含量增加到至少约92%的碳,然后定尺寸为平均粒度3-30μm的颗粒。
16.根据权利要求1所述的方法,其中选择碳前体材料并将其定尺寸的步骤还包括选择碳前体材料,然后煅烧碳前体材料以将碳含量增加到至少约95%的碳,然后定尺寸为平均粒度3-30μm的颗粒。
17.根据权利要求1所述的方法,其中选择碳前体材料并将其定尺寸的步骤还包括选择碳前体材料,然后煅烧碳前体材料以将碳含量增加到至少约97%的碳,然后定尺寸至平均粒度3-30μm。
CN202080051189.0A 2019-07-17 2020-07-15 适用于电池的电极颗粒 Active CN114097119B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962875299P 2019-07-17 2019-07-17
US201962875318P 2019-07-17 2019-07-17
US201962875315P 2019-07-17 2019-07-17
US62/875,299 2019-07-17
US62/875,315 2019-07-17
US62/875,318 2019-07-17
PCT/US2020/042130 WO2021011647A1 (en) 2019-07-17 2020-07-15 Electrode particles suitable for batteries

Publications (2)

Publication Number Publication Date
CN114097119A true CN114097119A (zh) 2022-02-25
CN114097119B CN114097119B (zh) 2024-07-23

Family

ID=74344171

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080051189.0A Active CN114097119B (zh) 2019-07-17 2020-07-15 适用于电池的电极颗粒
CN202080051188.6A Pending CN114097118A (zh) 2019-07-17 2020-07-15 适用于电池的电极颗粒

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202080051188.6A Pending CN114097118A (zh) 2019-07-17 2020-07-15 适用于电池的电极颗粒

Country Status (3)

Country Link
US (3) US20210020904A1 (zh)
EP (2) EP4000115A1 (zh)
CN (2) CN114097119B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975868A (zh) * 2022-06-06 2022-08-30 同济大学 双离子电池正极、制备方法及包含其的双离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076586A (ko) * 2000-01-26 2001-08-16 김순택 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
CN1947283A (zh) * 2004-04-23 2007-04-11 株式会社Lg化学 电化学特性改善的负极活性材料和包括该材料的电化学装置
WO2007143388A1 (en) * 2006-06-07 2007-12-13 Conocophillips Company Method of preparing carbonaceous anode materials and using same
CN101371383A (zh) * 2006-01-30 2009-02-18 东海碳素株式会社 锂离子二次电池用负极材料及其制造方法
WO2013058348A1 (ja) * 2011-10-21 2013-04-25 昭和電工株式会社 リチウムイオン電池用電極材料の製造方法
KR20140137718A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 무기 코팅층을 포함하는 전극의 제조방법, 상기 방법에 의해 제조된 전극, 및 상기 전극을 포함하는 이차전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945029B2 (ja) * 2001-03-06 2012-06-06 新日鐵化学株式会社 リチウム二次電池負極用材料とその製造方法およびリチウム二次電池
US20030160215A1 (en) * 2002-01-31 2003-08-28 Zhenhua Mao Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
KR20140002628A (ko) * 2010-09-14 2014-01-08 바스프 에스이 탄소-함유 지지체의 제조 방법
US9034519B2 (en) * 2013-01-18 2015-05-19 GM Global Technology Operations LLC Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076586A (ko) * 2000-01-26 2001-08-16 김순택 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
CN1947283A (zh) * 2004-04-23 2007-04-11 株式会社Lg化学 电化学特性改善的负极活性材料和包括该材料的电化学装置
CN101371383A (zh) * 2006-01-30 2009-02-18 东海碳素株式会社 锂离子二次电池用负极材料及其制造方法
WO2007143388A1 (en) * 2006-06-07 2007-12-13 Conocophillips Company Method of preparing carbonaceous anode materials and using same
WO2013058348A1 (ja) * 2011-10-21 2013-04-25 昭和電工株式会社 リチウムイオン電池用電極材料の製造方法
KR20140137718A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 무기 코팅층을 포함하는 전극의 제조방법, 상기 방법에 의해 제조된 전극, 및 상기 전극을 포함하는 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢婷婷: "新型二氧化铅电极电解处理有机废水研究", 《中国优秀硕士学位论文全文数据库》, 28 February 2018 (2018-02-28), pages 014 - 1124 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975868A (zh) * 2022-06-06 2022-08-30 同济大学 双离子电池正极、制备方法及包含其的双离子电池

Also Published As

Publication number Publication date
CN114097119B (zh) 2024-07-23
US20210020904A1 (en) 2021-01-21
US20210020903A1 (en) 2021-01-21
US20210020915A1 (en) 2021-01-21
EP4000114A4 (en) 2024-08-28
US11600812B2 (en) 2023-03-07
EP4000115A1 (en) 2022-05-25
EP4000114A1 (en) 2022-05-25
US11594721B2 (en) 2023-02-28
CN114097118A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
EP3719881B1 (en) Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
KR101513819B1 (ko) 리튬 이온 2차 전지 음극재용 분말, 이를 이용한 리튬 이온 2차 전지 음극 및 캐패시터 음극, 및 리튬 이온 2차 전지 및 캐패시터
JP5196149B2 (ja) 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
US9077044B2 (en) Anode material
JP5245592B2 (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
EP2268574B1 (en) Anode powders for batteries
JP5949194B2 (ja) 非水電解質二次電池用負極活物質の製造方法
KR19990083322A (ko) 리튬이온이차전지의음극재료에적합한흑연분말
JPH07315822A (ja) 炭素質挿入化合物および再充電可能電池用の負極
JP2009301935A (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
CN1981393A (zh) 锂二次电池用负极材料及其制备方法和使用该材料的锂二次电池用负极和锂二次电池
KR102128796B1 (ko) 규소 산화물 입자 및 그 제조방법, 부극, 및 리튬 이온 2차 전지 및 전기화학 커패시터
US20070092429A1 (en) Methods of preparing carbon-coated particles and using same
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
CN114097119B (zh) 适用于电池的电极颗粒
KR20130128330A (ko) 규소 산화물 입자 및 그 제조 방법과 리튬 이온 이차전지 및 전기화학 커패시터
JP2016106358A (ja) 非水電解質二次電池用負極活物質の製造方法
KR20130055668A (ko) 리튬 이온 이차 전지 음극재용 분말, 이를 이용한 리튬 이온 이차 전지 음극 및 커패시터 음극과, 리튬 이온 이차 전지 및 커패시터
KR20220035436A (ko) 배터리에 적합한 전극 입자
JP3725662B2 (ja) リチウム二次電池負極用高黒鉛化炭素粉末
US20210020939A1 (en) Anode particles suitable for batteries
JP2002373657A (ja) 非水電解質二次電池用負極の製造方法及び非水電解質二次電池
Wang et al. Nano-Porous Self-Supporting Ta2O5 Thin Film Electrode for Highly Reversible Li Ion Storage
JP2002015770A (ja) 負極用炭素材料、その製造方法およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant