CN114093997B - Large-opening-angle light-emitting diode chip and manufacturing method thereof - Google Patents

Large-opening-angle light-emitting diode chip and manufacturing method thereof Download PDF

Info

Publication number
CN114093997B
CN114093997B CN202111111348.4A CN202111111348A CN114093997B CN 114093997 B CN114093997 B CN 114093997B CN 202111111348 A CN202111111348 A CN 202111111348A CN 114093997 B CN114093997 B CN 114093997B
Authority
CN
China
Prior art keywords
layer
light
type semiconductor
groove
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111111348.4A
Other languages
Chinese (zh)
Other versions
CN114093997A (en
Inventor
兰叶
王江波
朱广敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Semitek Zhejiang Co Ltd
Original Assignee
HC Semitek Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Zhejiang Co Ltd filed Critical HC Semitek Zhejiang Co Ltd
Priority to CN202111111348.4A priority Critical patent/CN114093997B/en
Publication of CN114093997A publication Critical patent/CN114093997A/en
Application granted granted Critical
Publication of CN114093997B publication Critical patent/CN114093997B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/034Manufacture or treatment of coatings

Landscapes

  • Led Devices (AREA)

Abstract

The present disclosure provides a large-aperture light emitting diode chip and a manufacturing method thereof, which belong to the technical field of semiconductors. The insulating layer of the large-aperture LED chip comprises a passivation layer and a distributed Bragg reflection layer which are sequentially laminated, wherein the passivation layer is a silicon oxide layer, and the distributed Bragg reflection layer comprises a silicon oxide layer and a titanium oxide layer which are alternately laminated; the passivation layer is provided with a plurality of grooves on one surface contacted with the distributed Bragg reflection layer, the bottom surface of each groove is an inclined surface, and the inclined angle of the inclined surface is alpha which is more than or equal to 20 degrees and less than or equal to 40 degrees. The large-opening-angle light-emitting diode chip can improve the proportion of lateral light, increase the opening angle of the LED chip and obtain good light shape.

Description

大张角发光二极管芯片及其制造方法Large-angle light-emitting diode chip and manufacturing method thereof

技术领域technical field

本公开涉及半导体技术领域,特别涉及一种大张角发光二极管芯片及其制造方法。The present disclosure relates to the technical field of semiconductors, in particular to a large-angle light-emitting diode chip and a manufacturing method thereof.

背景技术Background technique

发光二极管(英文:Light Emitting Diode,简称:LED)是一种能发光的半导体器件。通过采用不同的半导体材料和结构,LED能够覆盖从紫外到红外的全色范围,已经被广泛地应用在显示、装饰、通讯等经济生活中。A light emitting diode (English: Light Emitting Diode, referred to as: LED) is a semiconductor device that can emit light. By using different semiconductor materials and structures, LEDs can cover a full color range from ultraviolet to infrared, and have been widely used in economic life such as display, decoration, and communication.

芯片是LED的核心器件,相关技术中,LED芯片包括衬底、N型半导体层、有源层、P型半导体层、N型电极、P型电极、绝缘层和保护层;N型半导体层、有源层和P型半导体层依次层叠在衬底的第一表面上;P型半导体层上设有延伸至N型半导体层的凹槽,N型电极设置在凹槽内的N型半导体层上,P型电极设置在P型半导体层上;绝缘层铺设在凹槽内和N型电极上,以及P型半导体层和P型电极上,保护层铺设在绝缘层上。其中,绝缘层包括依次层叠的钝化层和分布式布拉格反射(Distributed Bragg Reflection,DBR)层。N型半导体层提供的电子和P型半导体层提供的空穴在有源层进行辐射复合发光。有源层发出的部分光会从P型半导体层射出,DBR层可以将该部分光反射回有源层,以使得该部分光线最终从衬底方向射出,从而可以提高LED的出光效率。The chip is the core device of the LED. In related technologies, the LED chip includes a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, an N-type electrode, a P-type electrode, an insulating layer, and a protective layer; the N-type semiconductor layer, The active layer and the P-type semiconductor layer are sequentially stacked on the first surface of the substrate; the P-type semiconductor layer is provided with a groove extending to the N-type semiconductor layer, and the N-type electrode is arranged on the N-type semiconductor layer in the groove , the P-type electrode is set on the P-type semiconductor layer; the insulating layer is laid on the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, and the protective layer is laid on the insulating layer. Wherein, the insulating layer includes a passivation layer and a distributed Bragg reflection (Distributed Bragg Reflection, DBR) layer stacked in sequence. The electrons provided by the N-type semiconductor layer and the holes provided by the P-type semiconductor layer undergo radiative recombination in the active layer to emit light. Part of the light emitted by the active layer will be emitted from the P-type semiconductor layer, and the DBR layer can reflect the part of the light back to the active layer, so that the part of the light is finally emitted from the direction of the substrate, thereby improving the light extraction efficiency of the LED.

然而,现有的LED芯片结构存在轴向光较强的问题,即LED芯片在垂直方向上的发光强度较强,而在远离垂直方向时,发光强度明显下降,LED侧面的发光偏弱,导致显示屏可视角度变得有限。However, the existing LED chip structure has the problem of strong axial light, that is, the LED chip has a strong luminous intensity in the vertical direction, and when it is far away from the vertical direction, the luminous intensity decreases significantly, and the luminous intensity of the LED side is weak, resulting in Display viewing angle becomes limited.

发明内容Contents of the invention

本公开实施例提供了一种大张角发光二极管芯片及其制造方法,可以提高侧向光的比例,增大LED芯片的张角并获得良好的光形。所述技术方案如下:Embodiments of the present disclosure provide a large-angle light-emitting diode chip and a manufacturing method thereof, which can increase the ratio of side light, increase the aperture angle of the LED chip, and obtain a good light shape. Described technical scheme is as follows:

一方面,提供了一种大张角发光二极管芯片,所述大张角发光二极管芯片包括衬底、N型半导体层、有源层、P型半导体层、N型电极、P型电极、绝缘层和保护层;所述N型半导体层、所述有源层和所述P型半导体层依次层叠在所述衬底的第一表面上;所述P型半导体层上设有延伸至所述N型半导体层的凹槽,所述N型电极设置在凹槽内的所述N型半导体层上,所述P型电极设置在所述P型半导体层上;所述绝缘层铺设在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上,所述保护层铺设在所述绝缘层上,On the one hand, a large-angle light-emitting diode chip is provided, and the large-angle light-emitting diode chip includes a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, an N-type electrode, a P-type electrode, and an insulating layer. and a protective layer; the N-type semiconductor layer, the active layer and the P-type semiconductor layer are sequentially stacked on the first surface of the substrate; the P-type semiconductor layer is provided with a The groove of the semiconductor layer, the N-type electrode is arranged on the N-type semiconductor layer in the groove, the P-type electrode is arranged on the P-type semiconductor layer; the insulating layer is laid on the groove In the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, the protective layer is laid on the insulating layer,

所述绝缘层包括依次层叠的钝化层和分布式布拉格反射层,所述钝化层为氧化硅层,所述分布式布拉格反射层包括交替层叠的氧化硅层和氧化钛层;所述钝化层的与所述分布式布拉格反射层接触的一面上具有多个光线反射槽,每个所述光线反射槽的槽底均为斜面,且所述斜面的倾斜角度为α,20°≤α≤40°,所述分布式布拉格反射层位于所述钝化层的表面和所述多个光线反射槽内。The insulating layer includes a passivation layer and a distributed Bragg reflection layer stacked in sequence, the passivation layer is a silicon oxide layer, and the distributed Bragg reflection layer includes alternately stacked silicon oxide layers and titanium oxide layers; There are a plurality of light reflection grooves on the surface of the layer in contact with the distributed Bragg reflection layer, the groove bottom of each light reflection groove is a slope, and the slope angle of the slope is α, 20°≤α ≤40°, the distributed Bragg reflection layer is located on the surface of the passivation layer and in the plurality of light reflection grooves.

可选地,从所述钝化层的中部至所述钝化层的边缘,所述斜面的倾斜角度逐渐减小。Optionally, from the middle of the passivation layer to the edge of the passivation layer, the inclination angle of the slope decreases gradually.

可选地,所述多个光线反射槽的底面的倾斜角度分别为α1、α2和α3,α1=20°,α2=30°,α3=40°。Optionally, the inclination angles of the bottom surfaces of the plurality of light reflection grooves are α1, α2 and α3 respectively, α1=20°, α2=30°, α3=40°.

可选地,所述多个光线反射槽之间间隔布置,相邻两个所述光线反射槽之间的最小间隔为2~3um。Optionally, the plurality of light reflection grooves are arranged at intervals, and the minimum interval between two adjacent light reflection grooves is 2-3 um.

可选地,每个所述光线反射槽在所述钝化层上的正投影均为圆形或者椭圆形。Optionally, the orthographic projection of each of the light reflection grooves on the passivation layer is circular or elliptical.

可选地,每个所述光线反射槽的长度均为2~3um,宽度为1~2um。Optionally, each of the light reflecting grooves has a length of 2-3um and a width of 1-2um.

可选地,每个所述光线反射槽的深度均为0.5~2.5um。Optionally, the depth of each light reflection groove is 0.5-2.5um.

另一方面,提供了一种大张角发光二极管芯片的制造方法,所述制造方法包括:In another aspect, a method for manufacturing a large-angle light-emitting diode chip is provided, and the method includes:

提供一衬底,所述衬底包括相对的第一表面和第二表面;providing a substrate comprising opposing first and second surfaces;

在所述衬底的所述第一表面上依次生长N型半导体层、有源层和P型半导体层;growing an N-type semiconductor layer, an active layer, and a P-type semiconductor layer in sequence on the first surface of the substrate;

在所述P型半导体层上开设延伸至所述N型半导体层的凹槽;opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer;

在所述P型半导体层上形成P型电极;forming a P-type electrode on the P-type semiconductor layer;

在所述凹槽内的所述N型半导体层上形成N型电极;forming an N-type electrode on the N-type semiconductor layer in the groove;

所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成绝缘层,所述绝缘层包括依次层叠的钝化层和分布式布拉格反射层,所述钝化层为氧化硅层,所述分布式布拉格反射层包括交替层叠的氧化硅层和氧化钛层;所述钝化层的与所述分布式布拉格反射层接触的一面上具有多个光线反射槽,每个所述光线反射槽的槽底均为斜面,且所述斜面的倾斜角度为α,20°≤α≤40°,所述分布式布拉格反射层位于所述钝化层的表面和所述多个光线反射槽内;An insulating layer is formed in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, and the insulating layer includes a passivation layer and a distributed Bragg reflection layer stacked in sequence, so The passivation layer is a silicon oxide layer, and the distributed Bragg reflection layer includes alternately stacked silicon oxide layers and titanium oxide layers; the side of the passivation layer in contact with the distributed Bragg reflection layer has a plurality of light rays Reflecting grooves, the groove bottom of each of the light reflecting grooves is a slope, and the slope angle of the slope is α, 20°≤α≤40°, and the distributed Bragg reflection layer is located on the surface of the passivation layer and in the plurality of light reflecting grooves;

在所述绝缘层上形成保护层。A protective layer is formed on the insulating layer.

可选地,所述在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成绝缘层,包括:Optionally, the forming an insulating layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode includes:

在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成所述钝化层;forming the passivation layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode;

采用光刻技术在所述钝化层的表面形成所述多个光线反射槽;forming the plurality of light reflection grooves on the surface of the passivation layer by photolithography;

在所述钝化层的形成有所述多个光线反射槽的一面上、以及所述多个光线反射槽内形成所述分布式布拉格反射层。The distributed Bragg reflection layer is formed on the side of the passivation layer on which the plurality of light reflection grooves are formed and in the plurality of light reflection grooves.

可选地,所述采用光刻技术在所述钝化层的表面形成所述多个光线反射槽,包括:Optionally, forming the plurality of light reflection grooves on the surface of the passivation layer using photolithography technology includes:

在所述钝化层的表面涂覆一层光刻胶;Coating a layer of photoresist on the surface of the passivation layer;

提供一厚度不均的掩模版,使得所述掩模版的透光度形成差异;providing a reticle with uneven thickness, so that the light transmittance of the reticle is different;

在表面涂有所述光刻胶的所述钝化层上铺设所述掩模版;laying the mask plate on the passivation layer coated with the photoresist;

对所述钝化层进行光刻处理,使得所述钝化层表面的光刻胶厚度不均;Carrying out photolithography treatment to the passivation layer, so that the thickness of the photoresist on the surface of the passivation layer is uneven;

去除所述光刻胶,以在所述钝化层的表面形成多个槽底为斜面的光线反射槽。The photoresist is removed to form a plurality of light reflection grooves with slope bottoms on the surface of the passivation layer.

本公开实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solutions provided by the embodiments of the present disclosure are:

通过在钝化层的表面设置多个凹槽,且多个凹槽的槽底均为斜面,多个斜面相当于形成了多个微型的反射结构。电子和空穴在有源层进行复合发光之后,部分轴向光会被钝化层表面的凹槽底部的斜面反射,变为侧向光,从而可以降低轴向光的比例,提高侧向光的比例,中间区域轴向光占比较多,因此斜角较大,可以增大芯片的张角并获得良好的光形,同时也不会造成亮度损失。By arranging multiple grooves on the surface of the passivation layer, and the groove bottoms of the multiple grooves are slopes, the multiple slopes are equivalent to forming multiple micro reflection structures. After the electrons and holes recombine and emit light in the active layer, part of the axial light will be reflected by the slope at the bottom of the groove on the surface of the passivation layer and become side light, which can reduce the proportion of axial light and increase the side light. The proportion of axial light in the middle area is more, so the bevel angle is larger, which can increase the opening angle of the chip and obtain a good light shape without causing brightness loss.

附图说明Description of drawings

为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present disclosure. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.

图1是本公开实施例提供的一种大张角发光二极管芯片的结构示意图;FIG. 1 is a schematic structural diagram of a large-angle light-emitting diode chip provided by an embodiment of the present disclosure;

图2是本公开实施例提供的一种光线反射槽的结构示意图;Fig. 2 is a schematic structural view of a light reflection groove provided by an embodiment of the present disclosure;

图3是本公开实施例提供的一种钝化层的俯视图;Fig. 3 is a top view of a passivation layer provided by an embodiment of the present disclosure;

图4是本公开实施例提供的P型焊盘和N型焊盘的分布示意图;4 is a schematic diagram of the distribution of P-type pads and N-type pads provided by an embodiment of the present disclosure;

图5是本公开实施例提供的一种大张角发光二极管芯片的制造方法流程图;Fig. 5 is a flow chart of a method for manufacturing a large-angle light-emitting diode chip provided by an embodiment of the present disclosure;

图6是本公开实施例提供的另一种大张角发光二极管芯片的制造方法流程图。FIG. 6 is a flowchart of another method for manufacturing a large-angle light-emitting diode chip provided by an embodiment of the present disclosure.

具体实施方式Detailed ways

为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present disclosure clearer, the implementation manners of the present disclosure will be further described in detail below in conjunction with the accompanying drawings.

图1是本公开实施例提供的一种大张角发光二极管芯片的结构示意图,如图1所示,大张角发光二极管芯片包括衬底1、N型半导体层2、有源层3、P型半导体层4、N型电极5、P型电极6、绝缘层7和保护层8。N型半导体层2、有源层3和P型半导体层4依次层叠在衬底1的第一表面1a上。P型半导体层4上设有延伸至N型半导体层2的凹槽,N型电极5设置在凹槽内的N型半导体层上2,P型电极5设置在P型半导体层4上。绝缘层7铺设在凹槽内和N型电极5上,以及P型半导体层4和P型电极6上,保护层8铺设在绝缘层7上。Fig. 1 is a schematic structural diagram of a large-angle light-emitting diode chip provided by an embodiment of the present disclosure. As shown in Fig. 1 , the large-angle light-emitting diode chip includes a substrate 1, an N-type semiconductor layer 2, an active layer 3, a P type semiconductor layer 4, N-type electrode 5, P-type electrode 6, insulating layer 7 and protective layer 8. The N-type semiconductor layer 2 , the active layer 3 and the P-type semiconductor layer 4 are sequentially stacked on the first surface 1 a of the substrate 1 . The P-type semiconductor layer 4 is provided with a groove extending to the N-type semiconductor layer 2 , the N-type electrode 5 is arranged on the N-type semiconductor layer 2 in the groove, and the P-type electrode 5 is arranged on the P-type semiconductor layer 4 . The insulating layer 7 is laid in the groove and on the N-type electrode 5 , and on the P-type semiconductor layer 4 and the P-type electrode 6 , and the protective layer 8 is laid on the insulating layer 7 .

绝缘层7包括依次层叠的钝化层71和DBR层72。钝化层71为氧化硅层,DBR层72包括交替层叠的氧化硅层和氧化钛层。The insulating layer 7 includes a passivation layer 71 and a DBR layer 72 stacked in sequence. The passivation layer 71 is a silicon oxide layer, and the DBR layer 72 includes alternately stacked silicon oxide layers and titanium oxide layers.

图2是本公开实施例提供的一种光线反射槽的结构示意图,如图2所示,结合图1,钝化层71的与DBR层72接触的一面上具有多个光线反射槽71a,每个光线反射槽71a的槽底均为斜面,且斜面的倾斜角度为α,20°≤α≤40°。DBR层72位于钝化层71的表面和多个光线反射槽71a内。FIG. 2 is a schematic structural view of a light reflection groove provided by an embodiment of the present disclosure. As shown in FIG. 2 , in combination with FIG. The groove bottoms of the light reflecting grooves 71a are all slopes, and the slope angle of the slopes is α, 20°≤α≤40°. The DBR layer 72 is located on the surface of the passivation layer 71 and inside the plurality of light reflection grooves 71a.

本公开实施例通过在钝化层的表面设置多个凹槽,且多个凹槽的槽底均为斜面,多个斜面相当于形成了多个微型的反射结构。电子和空穴在有源层进行复合发光之后,部分轴向光会被钝化层表面的凹槽底部的斜面反射,变为侧向光,从而可以降低轴向光的比例,提高侧向光的比例,中间区域轴向光占比较多,因此斜角较大,可以增大芯片的张角并获得良好的光形,同时也不会造成亮度损失。In the embodiment of the present disclosure, a plurality of grooves are arranged on the surface of the passivation layer, and the groove bottoms of the plurality of grooves are inclined surfaces, and the plurality of inclined surfaces are equivalent to forming a plurality of miniature reflective structures. After the electrons and holes recombine and emit light in the active layer, part of the axial light will be reflected by the slope at the bottom of the groove on the surface of the passivation layer and become side light, which can reduce the proportion of axial light and increase the side light. The proportion of axial light in the middle area is more, so the bevel angle is larger, which can increase the opening angle of the chip and obtain a good light shape without causing brightness loss.

如图2所示,在本公开实施例中,光线反射槽71a的槽底斜面的倾斜角度为光线反射槽71a的槽底与水平面(与钝化层71的表面平行的面)之间的锐角夹角。As shown in FIG. 2, in the embodiment of the present disclosure, the inclination angle of the groove bottom slope of the light reflection groove 71a is an acute angle between the bottom of the light reflection groove 71a and the horizontal plane (the surface parallel to the surface of the passivation layer 71). angle.

可选地,从钝化层71的中部至钝化层71的边缘,光线反射槽71a的槽底斜面的倾斜角度逐渐减小。Optionally, from the middle of the passivation layer 71 to the edge of the passivation layer 71 , the inclination angle of the groove bottom slope of the light reflection groove 71 a gradually decreases.

由于芯片中部的轴向光较强,因此,将位于钝化层71中部的光线反射槽71a的槽底斜面的倾斜角度设置为最大,则对应的反射角也越大,有利于将轴向光更多的反射至芯片侧面,从而可以增大芯片张角。且从芯片中部至芯片边缘,轴向光的比例逐渐减小,因此,将斜面的倾斜角度也对应的设置为逐渐减小,可以进一步保证侧向光的出光强度,获得良好的出光光形。Since the axial light in the middle of the chip is relatively strong, setting the inclination angle of the groove bottom slope of the light reflection groove 71a located in the middle of the passivation layer 71 to the maximum will result in a larger corresponding reflection angle, which is beneficial for axial light. More reflection to the side of the chip, which can increase the chip angle. And from the middle of the chip to the edge of the chip, the proportion of axial light gradually decreases. Therefore, setting the inclination angle of the inclined surface to gradually decrease can further ensure the light intensity of the side light and obtain a good light shape.

可选地,多个光线反射槽71a的底面的倾斜角度分别为α1、α2和α3,α1=20°,α2=30°,α3=40°。这样有利于提高LED芯片的出光均匀性。若倾斜角度的种类过多,又会增加制造成本和制造难度。Optionally, the inclination angles of the bottom surfaces of the plurality of light reflecting grooves 71a are α1, α2 and α3 respectively, α1=20°, α2=30°, α3=40°. This is beneficial to improving the uniformity of light output from the LED chip. If there are too many types of inclination angles, the manufacturing cost and difficulty will be increased.

示例性地,在本公开实施例中,钝化层71表面的光线反射槽71a即可分为三类,且从钝化层71的中部至钝化层的边缘,多个光线反射槽的底面的倾斜角度逐渐减小,分别为40°、30°和20°。Exemplarily, in the embodiment of the present disclosure, the light reflection grooves 71a on the surface of the passivation layer 71 can be divided into three types, and from the middle of the passivation layer 71 to the edge of the passivation layer, the bottom surfaces of the multiple light reflection grooves The angles of inclination gradually decrease to 40°, 30° and 20° respectively.

图3是本公开实施例提供的一种钝化层的俯视图,如图3所示,多个光线反射槽71a之间间隔布置,相邻两个光线反射槽71a之间的间隔d为2~3um。FIG. 3 is a top view of a passivation layer provided by an embodiment of the present disclosure. As shown in FIG. 3 , a plurality of light reflection grooves 71a are arranged at intervals, and the interval d between two adjacent light reflection grooves 71a is 2-2. 3um.

若相邻两个光线反射槽71a之间的间隔d过大,会导致增角效果不明显;若相邻两个光线反射槽71a之间的间隔过小,又会导致加工难度上升。If the distance d between two adjacent light reflecting grooves 71a is too large, the effect of increasing the angle will not be obvious; if the distance between two adjacent light reflecting grooves 71a is too small, the processing difficulty will increase.

可选地,每个光线反射槽71a在钝化层71上的正投影均为圆形或者椭圆形。Optionally, the orthographic projection of each light reflection groove 71 a on the passivation layer 71 is circular or elliptical.

在本公开实施例中,可以采用光刻技术在钝化层71上形成光线反射槽71a,而光刻过程中容易形成正投影为圆形或者椭圆形的光线反射槽71a。In the embodiment of the present disclosure, the light reflection groove 71 a can be formed on the passivation layer 71 by using photolithography technology, and the light reflection groove 71 a whose orthographic projection is circular or elliptical can be easily formed during the photolithography process.

在本公开实施例的其它实现方式中,每个光线反射槽71a在钝化层71上的正投影还可以为矩形、多边形等其它形状。本公开实施例对此不作限制。In other implementations of the embodiments of the present disclosure, the orthographic projection of each light reflection groove 71 a on the passivation layer 71 may also be in other shapes such as rectangles and polygons. Embodiments of the present disclosure do not limit this.

可选地,每个光线反射槽71a的长度L均为2~3um,宽度D为1~2um。Optionally, the length L of each light reflecting groove 71 a is 2-3 um, and the width D is 1-2 um.

若每个光线反射槽71a的长度或宽度过大,则每个光线反射槽71a所占的面积过大,会导致增角效果不明显;若每个光线反射槽71a的长度或宽度过小,则每个光线反射槽71a所占的面积过小,又会增加制造难度。If the length or width of each light reflection groove 71a is too large, the area occupied by each light reflection groove 71a is too large, which will cause the angle increase effect to be insignificant; if the length or width of each light reflection groove 71a is too small, Then the area occupied by each light reflection groove 71a is too small, which will increase the manufacturing difficulty.

可选地,参见图3,每个光线反射槽71a的深度H均为0.5~2.5um。Optionally, referring to FIG. 3 , the depth H of each light reflecting groove 71a is 0.5-2.5um.

若每个光线反射槽71a的深度H过深,会导致膜层太厚,应力太大;若每个光线反射槽71a的深度H过浅,又无法形成完整的反射小单元。If the depth H of each light reflection groove 71a is too deep, the film layer will be too thick and the stress will be too large; if the depth H of each light reflection groove 71a is too shallow, a complete reflection unit cannot be formed.

可选地,钝化层71为厚度为3000~4000nm的氧化硅层,如3500nm。氧化硅的硬度较大,可以对芯片进行有效保护。Optionally, the passivation layer 71 is a silicon oxide layer with a thickness of 3000-4000 nm, such as 3500 nm. The hardness of silicon oxide is relatively high, which can effectively protect the chip.

DBR层72中氧化硅层和氧化钛层的数量可以为30个~40个,如36个。反射波长可以按照465nm设置。The number of silicon oxide layers and titanium oxide layers in the DBR layer 72 may be 30-40, such as 36. The reflection wavelength can be set according to 465nm.

可选地,衬底1为图形化蓝宝石衬底。图形化蓝宝石衬底的表面具有多个间隔均布的锥形凸起,每个锥形凸起的底部直径均为1.3~1.7um,每个锥形凸起12的高度均为0.8~1.2um。小尺寸的图形能够提高光线漫反射的效果,进一步改善光线射出的角度,从而提高芯片的出光效率。Optionally, the substrate 1 is a patterned sapphire substrate. The surface of the patterned sapphire substrate has a plurality of evenly spaced conical protrusions, the bottom diameter of each conical protrusion is 1.3-1.7um, and the height of each conical protrusion 12 is 0.8-1.2um . Small-sized graphics can improve the effect of diffuse reflection of light, and further improve the angle of light emission, thereby improving the light extraction efficiency of the chip.

示例性地,任意相邻两个锥形凸起之间的间隔为0.3~0.5um。Exemplarily, the interval between any two adjacent conical protrusions is 0.3-0.5um.

可选地,N型半导体层2为N型掺杂的GaN,有源层3包括交替层叠的InGaN层和GaN层,P型半导体层4为P型掺杂的GaN。Optionally, the N-type semiconductor layer 2 is N-type doped GaN, the active layer 3 includes alternately stacked InGaN layers and GaN layers, and the P-type semiconductor layer 4 is P-type doped GaN.

可选地,N型电极5和P型电极6均包括依次层叠的Cr层、Al层、Cr层、Ti层和Al层。Optionally, both the N-type electrode 5 and the P-type electrode 6 include a Cr layer, an Al layer, a Cr layer, a Ti layer and an Al layer stacked in sequence.

可选地,保护层8可以为氧化硅层。厚度为400~600nm,如500nm。通过设置保护层可以避免外延片被空气中的氧气和水蒸气腐蚀。Optionally, the protection layer 8 may be a silicon oxide layer. The thickness is 400-600nm, such as 500nm. The epitaxial wafer can be prevented from being corroded by oxygen and water vapor in the air by setting a protective layer.

可选地,发光二极管芯片还包括N型焊盘9和P型焊盘10。绝缘层7上开设有延伸至N型电极5的N型连通孔7a和延伸至P型电极6的P型连通孔7b。N型焊盘9位于N型连通孔7a以及N型连通孔7a周围的绝缘层7上,P型焊盘10位于P型连通孔7b以及P型连通孔7b周围的绝缘层7上。Optionally, the LED chip further includes N-type pads 9 and P-type pads 10 . An N-type via hole 7 a extending to the N-type electrode 5 and a P-type via hole 7 b extending to the P-type electrode 6 are opened on the insulating layer 7 . The N-type pad 9 is located on the N-type via hole 7a and the insulating layer 7 around the N-type via hole 7a, and the P-type pad 10 is located on the P-type via hole 7b and the insulating layer 7 around the P-type via hole 7b.

示例性地,N型焊盘9和P型焊盘10均为Ti/Al/Ti/Al/Ti/Au层叠结构。其中,第一层Ti层和第三层Ti层的厚度均为20nm,第二层Al层和第四层Al层的厚度均为1000nm,第五层Ti层的厚度为100nm,第六层Au层的厚度为300nm。Ti层可以起到黏附作用,Al层可以起到反射作用,以对射向P型焊盘或者N型焊盘的光线进行反射,增加芯片从透明基板射出的光线。Au层作为焊接层,可以通过焊料将芯片固定在电路板上。Exemplarily, both the N-type pad 9 and the P-type pad 10 have a stacked structure of Ti/Al/Ti/Al/Ti/Au. Among them, the thickness of the first Ti layer and the third Ti layer are both 20nm, the thickness of the second Al layer and the fourth Al layer are both 1000nm, the thickness of the fifth Ti layer is 100nm, and the sixth layer of Au The thickness of the layer is 300 nm. The Ti layer can play the role of adhesion, and the Al layer can play the role of reflection, so as to reflect the light directed to the P-type pad or the N-type pad, so as to increase the light emitted by the chip from the transparent substrate. The Au layer acts as a solder layer, which can fix the chip on the circuit board through solder.

需要说明的是,在本公开实施例中,如图1所示,部分保护层8还包覆在N型焊盘9和P型焊盘10的侧壁上。It should be noted that, in the embodiment of the present disclosure, as shown in FIG. 1 , part of the protective layer 8 is also coated on the sidewalls of the N-type pad 9 and the P-type pad 10 .

图4是本公开实施例提供的P型焊盘和N型焊盘的分布示意图,参见图4,N型焊盘9和P型焊盘10间隔设置在绝缘层7上,且N型焊盘9和P型焊盘10在绝缘层7上的设置区域大小相同,方便与电路板形成稳定的电连接。FIG. 4 is a schematic diagram of the distribution of P-type pads and N-type pads provided by an embodiment of the present disclosure. Referring to FIG. 9 and the P-type pad 10 have the same size on the insulating layer 7, which is convenient for forming a stable electrical connection with the circuit board.

本公开实施例提供了一种大张角发光二极管芯片的制造方法,适用于制作图1所示的大张角发光二极管芯片。图5是本公开实施例提供的一种大张角发光二极管芯片的制造方法流程图,参见图5,该制造方法包括:An embodiment of the present disclosure provides a method for manufacturing a large-angle light-emitting diode chip, which is suitable for manufacturing the large-angle light-emitting diode chip shown in FIG. 1 . Fig. 5 is a flow chart of a method for manufacturing a large-angle light-emitting diode chip provided by an embodiment of the present disclosure. Referring to Fig. 5 , the manufacturing method includes:

步骤501、提供一衬底。Step 501, providing a substrate.

其中,衬底可以为蓝宝石衬底。Wherein, the substrate may be a sapphire substrate.

步骤502、在衬底上依次生长N型半导体层、有源层和P型半导体层。Step 502 , growing an N-type semiconductor layer, an active layer, and a P-type semiconductor layer sequentially on the substrate.

可选地,该步骤502可以包括:Optionally, step 502 may include:

采用金属有机化合物化学气相沉淀(英文:Metal-organic Chemical VaporDeposition,简称:MOCVD)技术在衬底上依次生长N型半导体层、有源层和P型半导体层。The metal-organic chemical vapor deposition (English: Metal-organic Chemical Vapor Deposition, MOCVD for short) technique is used to sequentially grow an N-type semiconductor layer, an active layer and a P-type semiconductor layer on the substrate.

步骤503、在P型半导体层上开设延伸至N型半导体层的凹槽。Step 503 , opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

可选地,该步骤503可以包括:Optionally, this step 503 may include:

采用光刻技术在P型半导体层上形成图形化光刻胶;Forming a patterned photoresist on the P-type semiconductor layer by photolithography;

采用感应耦合等离子体刻蚀(英文:Inductively Coupled Plasma,简称:ICP)技术在P型半导体层上开设延伸至N型半导体层的凹槽;其中,刻蚀深度可以为5um。Using an inductively coupled plasma etching (English: Inductively Coupled Plasma, ICP for short) technology is used to open a groove extending to the N-type semiconductor layer on the P-type semiconductor layer; wherein, the etching depth may be 5um.

步骤504、在P型半导体层上形成P型电极。Step 504, forming a P-type electrode on the P-type semiconductor layer.

可选地,该步骤504可以包括:Optionally, this step 504 may include:

采用光刻技术在P型半导体层上形成负性光刻胶;Form a negative photoresist on the P-type semiconductor layer by photolithography;

采用蒸发技术在负性光刻胶、P型半导体层上形成电极材料;Evaporation technology is used to form electrode materials on negative photoresist and P-type semiconductor layer;

去除负性光刻胶、以及负性光刻胶上的电极材料,P型半导体层上的电极材料形成P型电极。The negative photoresist and the electrode material on the negative photoresist are removed, and the electrode material on the P-type semiconductor layer forms a P-type electrode.

其中,P型电极包括依次层叠的Cr层、Al层、Cr层、Ti层和Al层。Wherein, the P-type electrode includes a Cr layer, an Al layer, a Cr layer, a Ti layer and an Al layer stacked in sequence.

步骤505、在凹槽内的N型半导体层上形成N型电极。Step 505 , forming an N-type electrode on the N-type semiconductor layer in the groove.

可选地,该步骤505可以包括:Optionally, this step 505 may include:

采用光刻技术在凹槽内的N型半导体层上形成负性光刻胶;Using photolithography technology to form a negative photoresist on the N-type semiconductor layer in the groove;

采用蒸发技术在负性光刻胶、凹槽内的N型半导体层上形成电极材料;Using evaporation technology to form electrode materials on the negative photoresist and the N-type semiconductor layer in the groove;

去除负性光刻胶、以及负性光刻胶上的电极材料,凹槽内的N型半导体层上的电极材料形成N型电极。The negative photoresist and the electrode material on the negative photoresist are removed, and the electrode material on the N-type semiconductor layer in the groove forms an N-type electrode.

其中,N型电极包括依次层叠的Cr层、Al层、Cr层、Ti层和Al层。Wherein, the N-type electrode includes a Cr layer, an Al layer, a Cr layer, a Ti layer and an Al layer stacked in sequence.

步骤506、在凹槽内和N型电极上,以及P型半导体层和P型电极上形成绝缘层。Step 506 , forming an insulating layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode.

在本公开实施例中,绝缘层包括依次层叠的钝化层和DBR层。钝化层为氧化硅层,DBR层包括交替层叠的氧化硅层和氧化钛层;钝化层的与分布式布拉格反射层接触的一面上具有多个光线反射槽,每个光线反射槽的槽底均为斜面,且斜面的倾斜角度为α,20°≤α≤40°,分布式布拉格反射层位于钝化层的表面和多个光线反射槽内。其中,光线反射槽的具体结构可以参见上述实施例所述,本公开实施例在此不再赘述。In an embodiment of the present disclosure, the insulating layer includes a passivation layer and a DBR layer stacked in sequence. The passivation layer is a silicon oxide layer, and the DBR layer includes alternately stacked silicon oxide layers and titanium oxide layers; there are multiple light reflection grooves on the side of the passivation layer that is in contact with the distributed Bragg reflection layer, and the grooves of each light reflection groove The bottoms are slopes, and the slope angle is α, 20°≤α≤40°, and the distributed Bragg reflection layer is located on the surface of the passivation layer and in multiple light reflection grooves. Wherein, the specific structure of the light reflection groove can refer to the above-mentioned embodiments, and the embodiments of the present disclosure will not be repeated here.

可选地,钝化层为厚度为3000~4000nm的氧化硅层,如3500nm。氧化硅的硬度较大,可以对芯片进行有效保护。Optionally, the passivation layer is a silicon oxide layer with a thickness of 3000-4000 nm, such as 3500 nm. The hardness of silicon oxide is relatively high, which can effectively protect the chip.

DBR层中氧化硅层和氧化钛层的数量可以为30个~40个,如36个。反射波长可以按照465nm设置。The number of silicon oxide layers and titanium oxide layers in the DBR layer may be 30-40, such as 36. The reflection wavelength can be set according to 465nm.

示例性地,步骤506可以包括:Exemplarily, step 506 may include:

第一步、在凹槽内和N型电极上,以及P型半导体层和P型电极上形成钝化层;The first step, forming a passivation layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode;

第二步、采用光刻技术在钝化层的表面形成多个光线反射槽。In the second step, a plurality of light reflection grooves are formed on the surface of the passivation layer by photolithography technology.

示例性地,第二步可以包括:Exemplarily, the second step may include:

采用光刻技术在钝化层的表面形成图形化光刻胶,图形化光刻胶的厚度不均;A patterned photoresist is formed on the surface of the passivation layer by photolithography, and the thickness of the patterned photoresist is uneven;

采用干法刻蚀技术在钝化层表面形成多个槽底为斜面的光线反射槽;Using dry etching technology to form a plurality of light reflection grooves with slope bottoms on the surface of the passivation layer;

去除图形化光刻胶。Remove the patterned photoresist.

在本公开实施例中,可以采用挡光层厚度不均的掩模版设置在光刻胶表面,以用于形成厚度不均的图形化光刻胶。掩模版的挡光层厚度越薄,透光率越高,对应的光刻胶的厚度越薄。而光刻胶的厚度越薄,最终形成的光线反射槽的深度越浅。In the embodiments of the present disclosure, a mask plate with an uneven thickness of the light-shielding layer may be disposed on the surface of the photoresist to form a patterned photoresist with an uneven thickness. The thinner the thickness of the light-blocking layer of the mask plate, the higher the light transmittance, and the thinner the thickness of the corresponding photoresist. The thinner the thickness of the photoresist, the shallower the depth of the finally formed light reflection groove.

第三步、在钝化层的形成有多个光线反射槽的一面上、以及多个光线反射槽内形成分布式布拉格反射层。The third step is to form a distributed Bragg reflection layer on the side of the passivation layer formed with a plurality of light reflection grooves and in the plurality of light reflection grooves.

示例性地,可以采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积)法形成钝化层和DBR层。Exemplarily, the passivation layer and the DBR layer may be formed by using a PECVD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition) method.

步骤507、在绝缘层上形成保护层。Step 507, forming a protective layer on the insulating layer.

其中,保护层为氧化硅层,厚度为400~600nm,如500nm。Wherein, the protective layer is a silicon oxide layer with a thickness of 400-600 nm, such as 500 nm.

示例性地,可以采用PECVD法形成保护层。Exemplarily, the protective layer can be formed by PECVD.

本公开实施例通过在钝化层的表面设置多个凹槽,且多个凹槽的槽底均为斜面,多个斜面相当于形成了多个微型的反射结构。电子和空穴在有源层进行复合发光之后,部分轴向光会被钝化层表面的凹槽底部的斜面反射,变为侧向光,从而可以降低轴向光的比例,提高侧向光的比例,中间区域轴向光占比较多,因此斜角较大,可以增大芯片的张角并获得良好的光形,同时也不会造成亮度损失。In the embodiment of the present disclosure, a plurality of grooves are arranged on the surface of the passivation layer, and the groove bottoms of the plurality of grooves are inclined surfaces, and the plurality of inclined surfaces are equivalent to forming a plurality of miniature reflective structures. After the electrons and holes recombine and emit light in the active layer, part of the axial light will be reflected by the slope at the bottom of the groove on the surface of the passivation layer and become side light, which can reduce the proportion of axial light and increase the side light. The proportion of axial light in the middle area is more, so the bevel angle is larger, which can increase the opening angle of the chip and obtain a good light shape without causing brightness loss.

本公开实施例提供了另一种大张角发光二极管芯片的制造方法,适用于制作图1所示的大张角发光二极管芯片。图6是本公开实施例提供的另一种大张角发光二极管芯片的制造方法流程图,参见图6,该制造方法包括:The embodiment of the present disclosure provides another method for manufacturing a large-angle LED chip, which is suitable for manufacturing the large-angle LED chip shown in FIG. 1 . Fig. 6 is a flow chart of another method for manufacturing a large-angle light-emitting diode chip provided by an embodiment of the present disclosure. Referring to Fig. 6 , the manufacturing method includes:

步骤601、提供一衬底。Step 601, providing a substrate.

其中,衬底可以为蓝宝石衬底。Wherein, the substrate may be a sapphire substrate.

步骤602、对衬底进行图形化处理。Step 602, patterning the substrate.

其中,图形化蓝宝石衬底的表面具有多个间隔均布的锥形凸起,每个锥形凸起的底部直径均为1.3~1.7um,每个锥形凸起的高度均为0.8~1.2um。Among them, the surface of the patterned sapphire substrate has a plurality of evenly spaced conical protrusions, the bottom diameter of each conical protrusion is 1.3-1.7um, and the height of each conical protrusion is 0.8-1.2um. um.

步骤603、在衬底上依次生长N型半导体层、有源层和P型半导体层。Step 603 , growing an N-type semiconductor layer, an active layer, and a P-type semiconductor layer sequentially on the substrate.

可选地,该步骤603可以与步骤502相同,在此不再详述。Optionally, step 603 may be the same as step 502, which will not be described in detail here.

步骤604、在P型半导体层上开设延伸至N型半导体层的凹槽。Step 604, opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

可选地,该步骤604可以与步骤503相同,在此不再详述。Optionally, step 604 may be the same as step 503, which will not be described in detail here.

可选地,该制造方法还包括:Optionally, the manufacturing method also includes:

在外延层沉积氧化铟锡(Indium Tin Oxide,ITO)透明导电材料;Depositing indium tin oxide (Indium Tin Oxide, ITO) transparent conductive material on the epitaxial layer;

采用光刻技术在透明导电材料上形成图形化光刻胶;Use photolithography to form patterned photoresist on transparent conductive materials;

湿法腐蚀透明导电材料,形成透明导电层;Wet etching of transparent conductive materials to form a transparent conductive layer;

去除图形化光刻胶。Remove the patterned photoresist.

其中,腐蚀溶液可以使用盐酸溶液。Among them, hydrochloric acid solution can be used as the etching solution.

步骤605、在P型半导体层上形成P型电极。Step 605, forming a P-type electrode on the P-type semiconductor layer.

可选地,该步骤605可以与步骤504相同,在此不再详述。Optionally, this step 605 may be the same as step 504, which will not be described in detail here.

步骤606、在凹槽内的N型半导体层上形成N型电极。Step 606, forming an N-type electrode on the N-type semiconductor layer in the groove.

可选地,该步骤606可以与步骤505相同,在此不再详述。Optionally, this step 606 may be the same as step 505, which will not be described in detail here.

步骤607、在凹槽内和N型电极上,以及P型半导体层和P型电极上形成绝缘层。Step 607 , forming an insulating layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode.

可选地,该步骤607可以与步骤506相同,在此不再详述。Optionally, this step 607 may be the same as step 506, which will not be described in detail here.

步骤608、在绝缘层上开设延伸至N型电极的N型连通孔和延伸至P型电极的P型连通孔。Step 608 , opening an N-type via hole extending to the N-type electrode and a P-type via hole extending to the P-type electrode on the insulating layer.

可选地,步骤608可以包括:Optionally, step 608 may include:

采用光刻技术在绝缘层上形成图形化光刻胶;Forming a patterned photoresist on the insulating layer by photolithography;

采用干法刻蚀技术在绝缘层内开设延伸至N型电极的N型连通孔和延伸至P型电极的P型连通孔;Opening N-type via holes extending to N-type electrodes and P-type via holes extending to P-type electrodes in the insulating layer by dry etching technology;

去除图形化光刻胶。Remove the patterned photoresist.

步骤609、在P型连通孔内P型连通孔周围的绝缘层上形成P型焊盘,在N型连通孔内和N型连通孔周围的绝缘层上形成N型焊盘。Step 609 , forming a P-type pad in the P-type via hole on the insulating layer around the P-type via hole, and forming an N-type pad in the N-type via hole and on the insulating layer around the N-type via hole.

示例性地,N型焊盘和P型焊盘均为Ti/Al/Ti/Al/Ti/Au层叠结构。其中,第一层Ti层和第三层Ti层的厚度均为20nm,第二层Al层和第四层Al层的厚度均为1000nm,第五层Ti层的厚度为100nm,第六层Au层的厚度为300nm。Exemplarily, both the N-type pad and the P-type pad have a stacked structure of Ti/Al/Ti/Al/Ti/Au. Among them, the thickness of the first Ti layer and the third Ti layer are both 20nm, the thickness of the second Al layer and the fourth Al layer are both 1000nm, the thickness of the fifth Ti layer is 100nm, and the sixth layer of Au The thickness of the layer is 300 nm.

示例性地,步骤609可以包括:Exemplarily, step 609 may include:

采用光刻技术在绝缘层上形成负性光刻胶;Form a negative photoresist on the insulating layer by photolithography;

采用蒸发技术在N型连通孔内、P型连通孔内、以及负性光刻胶上形成焊盘材料;Using evaporation technology to form a pad material in the N-type through hole, in the P-type through hole, and on the negative photoresist;

去除负性光刻胶、以及负性光刻胶上的焊盘材料,N型连通孔内和N型连通孔周围的绝缘层上的焊盘材料形成N型焊盘,N型连通孔内和N型连通孔周围的绝缘层上的焊盘材料形成P型焊盘。Remove the negative photoresist and the pad material on the negative photoresist, the pad material in the N-type via hole and on the insulating layer around the N-type via hole forms an N-type pad, and in the N-type via hole and The pad material on the insulating layer around the N-type via hole forms a P-type pad.

步骤610、在绝缘层上形成保护层。Step 610, forming a protective layer on the insulating layer.

可选地,该步骤610可以与步骤507相同,在此不再详述。Optionally, this step 610 may be the same as step 507, which will not be described in detail here.

步骤611、减薄衬底。Step 611 , thinning the substrate.

在本公开实施例中,减薄后的衬底的最终厚度约为60~120um,例如100um。在保证支撑强度的情况下,减少光线在衬底内的损失。In an embodiment of the present disclosure, the final thickness of the thinned substrate is about 60-120 um, for example 100 um. In the case of ensuring the support strength, the loss of light in the substrate is reduced.

步骤612、对衬底进行隐形切割划裂。Step 612 , performing stealth dicing on the substrate.

在本公开实施例中,可以先利用隐形切割机在靠近衬底表面一半深度内切出5道划痕,然后再粗化芯片侧面。接着再使用紫外表切划片机切出约40um的深度,最后裂片并测试得到本发明的芯片。这样有利于进一步改善改善芯片的整体张角。In the embodiment of the present disclosure, a stealth dicing machine may be used to cut 5 scratches within half the depth of the surface of the substrate, and then roughen the side of the chip. Then use an ultraviolet surface cutting and dicing machine to cut out a depth of about 40um, and finally split and test to obtain the chip of the present invention. This is conducive to further improving the overall opening angle of the chip.

本公开实施例通过在钝化层的表面设置多个凹槽,且多个凹槽的槽底均为斜面,多个斜面相当于形成了多个微型的反射结构。电子和空穴在有源层进行复合发光之后,部分轴向光会被钝化层表面的凹槽底部的斜面反射,变为侧向光,从而可以降低轴向光的比例,提高侧向光的比例,中间区域轴向光占比较多,因此斜角较大,可以增大芯片的张角并获得良好的光形,同时也不会造成亮度损失。In the embodiment of the present disclosure, a plurality of grooves are arranged on the surface of the passivation layer, and the groove bottoms of the plurality of grooves are inclined surfaces, and the plurality of inclined surfaces are equivalent to forming a plurality of miniature reflective structures. After the electrons and holes recombine and emit light in the active layer, part of the axial light will be reflected by the slope at the bottom of the groove on the surface of the passivation layer and become side light, which can reduce the proportion of axial light and increase the side light. The proportion of axial light in the middle area is more, so the bevel angle is larger, which can increase the opening angle of the chip and obtain a good light shape without causing brightness loss.

以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The above descriptions are only optional embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present disclosure shall be included in the protection of the present disclosure. within range.

Claims (10)

1.一种大张角发光二极管芯片,所述大张角发光二极管芯片包括衬底、N型半导体层、有源层、P型半导体层、N型电极、P型电极、绝缘层和保护层;所述N型半导体层、所述有源层和所述P型半导体层依次层叠在所述衬底的第一表面上;所述P型半导体层上设有延伸至所述N型半导体层的凹槽,所述N型电极设置在凹槽内的所述N型半导体层上,所述P型电极设置在所述P型半导体层上;所述绝缘层铺设在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上,所述保护层铺设在所述绝缘层上,其特征在于:1. A large-angle light-emitting diode chip, said large-angle light-emitting diode chip comprising a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, an N-type electrode, a P-type electrode, an insulating layer and a protective layer ; The N-type semiconductor layer, the active layer and the P-type semiconductor layer are sequentially stacked on the first surface of the substrate; the P-type semiconductor layer is provided with a groove, the N-type electrode is arranged on the N-type semiconductor layer in the groove, the P-type electrode is arranged on the P-type semiconductor layer; the insulating layer is laid in the groove and On the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, the protective layer is laid on the insulating layer, characterized in that: 所述绝缘层包括依次层叠的钝化层和分布式布拉格反射层,所述钝化层为氧化硅层,所述分布式布拉格反射层包括交替层叠的氧化硅层和氧化钛层;所述钝化层的与所述分布式布拉格反射层接触的一面上具有多个光线反射槽,每个所述光线反射槽的槽底均为斜面,且所述斜面的倾斜角度为α,20°≤α≤40°,所述分布式布拉格反射层位于所述钝化层的表面和所述多个光线反射槽内。The insulating layer includes a passivation layer and a distributed Bragg reflection layer stacked in sequence, the passivation layer is a silicon oxide layer, and the distributed Bragg reflection layer includes alternately stacked silicon oxide layers and titanium oxide layers; There are a plurality of light reflection grooves on the surface of the layer in contact with the distributed Bragg reflection layer, the groove bottom of each light reflection groove is a slope, and the slope angle of the slope is α, 20°≤α ≤40°, the distributed Bragg reflection layer is located on the surface of the passivation layer and in the plurality of light reflection grooves. 2.根据权利要求1所述的大张角发光二极管芯片,其特征在于,从所述钝化层的中部至所述钝化层的边缘,所述斜面的倾斜角度逐渐减小。2 . The large-angle light-emitting diode chip according to claim 1 , wherein, from the middle of the passivation layer to the edge of the passivation layer, the inclination angle of the slope gradually decreases. 3 . 3.根据权利要求2所述的大张角发光二极管芯片,其特征在于,所述多个光线反射槽的底面的倾斜角度分别为α1、α2和α3,α1=20°,α2=30°,α3=40°。3. The large-angle light-emitting diode chip according to claim 2, wherein the inclination angles of the bottom surfaces of the plurality of light reflection grooves are respectively α1, α2 and α3, α1=20°, α2=30°, α3=40°. 4.根据权利要求1所述的大张角发光二极管芯片,其特征在于,所述多个光线反射槽之间间隔布置,相邻两个所述光线反射槽之间的间隔为2~3um。4 . The large-angle light-emitting diode chip according to claim 1 , wherein the plurality of light reflection grooves are arranged at intervals, and the distance between two adjacent light reflection grooves is 2-3 um. 5.根据权利要求4所述的大张角发光二极管芯片,其特征在于,每个所述光线反射槽在所述钝化层上的正投影均为圆形或者椭圆形。5 . The large-angle light-emitting diode chip according to claim 4 , wherein the orthographic projection of each of the light reflection grooves on the passivation layer is circular or elliptical. 6.根据权利要求5所述的大张角发光二极管芯片,其特征在于,每个所述光线反射槽的长度均为2~3um,宽度为1~2um。6 . The large-angle light-emitting diode chip according to claim 5 , wherein the length of each of the light reflection grooves is 2-3 um, and the width is 1-2 um. 7.根据权利要求5所述的大张角发光二极管芯片,其特征在于,每个所述光线反射槽的深度均为0.5~2.5um。7 . The large-angle light-emitting diode chip according to claim 5 , wherein the depth of each light reflection groove is 0.5-2.5 um. 8.一种大张角发光二极管芯片的制造方法,其特征在于,所述制造方法包括:8. A method for manufacturing a large-angle light-emitting diode chip, characterized in that the method comprises: 提供一衬底;providing a substrate; 在所述衬底上依次生长N型半导体层、有源层和P型半导体层;sequentially growing an N-type semiconductor layer, an active layer, and a P-type semiconductor layer on the substrate; 在所述P型半导体层上开设延伸至所述N型半导体层的凹槽;opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer; 在所述P型半导体层上形成P型电极;forming a P-type electrode on the P-type semiconductor layer; 在所述凹槽内的所述N型半导体层上形成N型电极;forming an N-type electrode on the N-type semiconductor layer in the groove; 所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成绝缘层,所述绝缘层包括依次层叠的钝化层和分布式布拉格反射层,所述钝化层为氧化硅层,所述分布式布拉格反射层包括交替层叠的氧化硅层和氧化钛层;所述钝化层的与所述分布式布拉格反射层接触的一面上具有多个光线反射槽,每个所述光线反射槽的槽底均为斜面,且所述斜面的倾斜角度为α,20°≤α≤40°,所述分布式布拉格反射层位于所述钝化层的表面和所述多个光线反射槽内;An insulating layer is formed in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, and the insulating layer includes a passivation layer and a distributed Bragg reflection layer stacked in sequence, so The passivation layer is a silicon oxide layer, and the distributed Bragg reflection layer includes alternately stacked silicon oxide layers and titanium oxide layers; the side of the passivation layer in contact with the distributed Bragg reflection layer has a plurality of light rays Reflecting grooves, the groove bottom of each of the light reflecting grooves is a slope, and the slope angle of the slope is α, 20°≤α≤40°, and the distributed Bragg reflection layer is located on the surface of the passivation layer and in the plurality of light reflecting grooves; 在所述绝缘层上形成保护层。A protective layer is formed on the insulating layer. 9.根据权利要求8所述的制造方法,其特征在于,所述在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成绝缘层,包括:9. The manufacturing method according to claim 8, wherein an insulating layer is formed in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode, include: 在所述凹槽内和所述N型电极上,以及所述P型半导体层和所述P型电极上形成所述钝化层;forming the passivation layer in the groove and on the N-type electrode, and on the P-type semiconductor layer and the P-type electrode; 采用光刻技术在所述钝化层的表面形成所述多个光线反射槽;forming the plurality of light reflection grooves on the surface of the passivation layer by photolithography; 在所述钝化层的形成有所述多个光线反射槽的一面上、以及所述多个光线反射槽内形成所述分布式布拉格反射层。The distributed Bragg reflection layer is formed on the side of the passivation layer on which the plurality of light reflection grooves are formed and in the plurality of light reflection grooves. 10.根据权利要求9所述的制造方法,其特征在于,所述采用光刻技术在所述钝化层的表面形成所述多个光线反射槽,包括:10. The manufacturing method according to claim 9, wherein the forming the plurality of light reflection grooves on the surface of the passivation layer using photolithography technology comprises: 采用光刻技术在所述钝化层的表面形成图形化光刻胶,所述图形化光刻胶的厚度不均;A patterned photoresist is formed on the surface of the passivation layer by photolithography, and the thickness of the patterned photoresist is uneven; 采用干法刻蚀技术在所述钝化层表面形成多个槽底为斜面的光线反射槽;Using dry etching technology to form a plurality of light reflection grooves with sloped groove bottoms on the surface of the passivation layer; 去除所述图形化光刻胶。removing the patterned photoresist.
CN202111111348.4A 2021-09-23 2021-09-23 Large-opening-angle light-emitting diode chip and manufacturing method thereof Active CN114093997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111111348.4A CN114093997B (en) 2021-09-23 2021-09-23 Large-opening-angle light-emitting diode chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111111348.4A CN114093997B (en) 2021-09-23 2021-09-23 Large-opening-angle light-emitting diode chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN114093997A CN114093997A (en) 2022-02-25
CN114093997B true CN114093997B (en) 2023-06-09

Family

ID=80296164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111111348.4A Active CN114093997B (en) 2021-09-23 2021-09-23 Large-opening-angle light-emitting diode chip and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN114093997B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012929A (en) * 1996-06-25 1998-01-16 Hitachi Cable Ltd Mounting structure for light emitting diode
JPH11150305A (en) * 1997-11-18 1999-06-02 Ricoh Co Ltd Optical device and its manufacture
CN101807650A (en) * 2010-03-19 2010-08-18 厦门市三安光电科技有限公司 Gallium nitride-based high-brightness light-emitting diode with distributed Bragg reflecting layer and manufacturing process thereof
CN201773864U (en) * 2010-09-08 2011-03-23 厦门市三安光电科技有限公司 Gallium nitride inverted light-emitting diode having high reflector
CN203434204U (en) * 2013-08-30 2014-02-12 华南理工大学 LED packaging structure with asymmetrical rectangular light spot
CN203760510U (en) * 2013-12-18 2014-08-06 四川新力光源股份有限公司 Large light angle LED light source module
CN104091869A (en) * 2014-07-31 2014-10-08 湘能华磊光电股份有限公司 Light emitting diode chip and manufacturing method thereof
CN108183157A (en) * 2017-11-30 2018-06-19 华灿光电(浙江)有限公司 Light-emitting diode and preparation method thereof
CN111697114A (en) * 2020-07-29 2020-09-22 东南大学苏州研究院 LED chip with vertical structure and preparation method thereof
CN113314650A (en) * 2021-04-06 2021-08-27 华灿光电(苏州)有限公司 Light emitting diode chip for improving lateral light emitting intensity and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012929A (en) * 1996-06-25 1998-01-16 Hitachi Cable Ltd Mounting structure for light emitting diode
JPH11150305A (en) * 1997-11-18 1999-06-02 Ricoh Co Ltd Optical device and its manufacture
CN101807650A (en) * 2010-03-19 2010-08-18 厦门市三安光电科技有限公司 Gallium nitride-based high-brightness light-emitting diode with distributed Bragg reflecting layer and manufacturing process thereof
CN201773864U (en) * 2010-09-08 2011-03-23 厦门市三安光电科技有限公司 Gallium nitride inverted light-emitting diode having high reflector
CN203434204U (en) * 2013-08-30 2014-02-12 华南理工大学 LED packaging structure with asymmetrical rectangular light spot
CN203760510U (en) * 2013-12-18 2014-08-06 四川新力光源股份有限公司 Large light angle LED light source module
CN104091869A (en) * 2014-07-31 2014-10-08 湘能华磊光电股份有限公司 Light emitting diode chip and manufacturing method thereof
CN108183157A (en) * 2017-11-30 2018-06-19 华灿光电(浙江)有限公司 Light-emitting diode and preparation method thereof
CN111697114A (en) * 2020-07-29 2020-09-22 东南大学苏州研究院 LED chip with vertical structure and preparation method thereof
CN113314650A (en) * 2021-04-06 2021-08-27 华灿光电(苏州)有限公司 Light emitting diode chip for improving lateral light emitting intensity and manufacturing method thereof

Also Published As

Publication number Publication date
CN114093997A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
CN111129255B (en) Light emitting diode
CN113314650B (en) Light emitting diode chip capable of improving lateral light-emitting intensity and manufacturing method thereof
CN102130285B (en) Light emitting diode and manufacturing method thereof
CN110034218A (en) A kind of miniature LED chip and display panel
CN115458666B (en) Micro LED micro display chip and manufacturing method thereof
WO2012058961A1 (en) Light-emitting diode and method for manufacturing same
CN115472730A (en) Micro LED Micro display chip and manufacturing method thereof
US12095010B2 (en) Light emitting diode and fabrication method thereof
KR20110130204A (en) Semiconductor light emitting device and manufacturing method thereof
CN113690349B (en) Anti-fracture light-emitting diode chip and manufacturing method thereof
CN102130252B (en) Light-emitting diode and its manufacturing method
CN114093997B (en) Large-opening-angle light-emitting diode chip and manufacturing method thereof
CN116995175B (en) An Ag microprism reflective structure same-side electrode LED and its production method
US10707381B2 (en) Light emitting diode and fabrication method thereof
CN103050600A (en) Chip of light-emitting diode and preparation method thereof
CN103022298A (en) High voltage LED chip with light guide pillar and preparation method of high voltage LED chip
CN113903845B (en) Micro light-emitting diode chip and preparation method thereof
CN113594318B (en) High-brightness light-emitting diode chip and manufacturing method thereof
CN112133804B (en) Light-emitting diode chip and method of making the same
CN113517378B (en) Light emitting diode chip for enhancing side light intensity and manufacturing method thereof
CN114927602A (en) Miniature light-emitting diode chip and preparation method thereof
CN116259694A (en) LED chip, manufacturing method thereof and LED display device
KR20180097979A (en) Light emitting diode having light blocking layer
CN203659931U (en) LED chip and array type LED chip having structure of same
CN118412416B (en) Light-emitting diode chip and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant