CN114086205A - 一种泡沫金属基改性材料的制备方法 - Google Patents

一种泡沫金属基改性材料的制备方法 Download PDF

Info

Publication number
CN114086205A
CN114086205A CN202111365534.0A CN202111365534A CN114086205A CN 114086205 A CN114086205 A CN 114086205A CN 202111365534 A CN202111365534 A CN 202111365534A CN 114086205 A CN114086205 A CN 114086205A
Authority
CN
China
Prior art keywords
foam metal
foam
metal
modified
modified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111365534.0A
Other languages
English (en)
Inventor
潘军
蒋敏
谭鹏飞
翟欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111365534.0A priority Critical patent/CN114086205A/zh
Publication of CN114086205A publication Critical patent/CN114086205A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种泡沫金属基改性材料的制备方法,涉及功能材料技术领域。本发明通过将市售泡沫金属进行裁剪、洗涤、酸处理改性、干燥、气相反应等步骤,制得本发明所述泡沫金属基改性材料。本发明所制得的泡沫金属基改性材料为原位改性材料,拥有优异的导电性和结构稳定性;此外,改性后的材料富含纳米孔道且表面异质金属比例可调,能有效加大电极/电解液接触界面,灵活调控和最优化材料的功能性应用。基于本发明的高活性、高导电性、高稳定性、高可控性以及简单易制备的优异特点,将之制成电极材料应用于电催化水解,具有过电位低、循环寿命长、法拉第效率高、生产成本低廉等有益特点,可适用于大规模商业化应用。

Description

一种泡沫金属基改性材料的制备方法
技术领域
本发明涉及功能材料技术领域,尤其涉及一种泡沫金属基改性材料的低成本制备方法,具体地涉及一种泡沫过渡金属基改性材料的低成本制备方法,所述过渡金属选自铜、银、铁、铝、锌、镍、钴、钛中至少一种。
背景技术
随着社会经济的快速发展,以化石能源为主的能源消耗与日俱增,随之而来的是一系列的全球性能源危机、温室气体和环境污染等问题。氢能源因其无污染、热值大而被认为是绿色能源,相关研究正开展的如火如荼。氢燃料电池的逆反应即为水的电解过程,电解水产生的氧气、氢气纯度接近100%,且制备过程零碳排放。因此,电解水能充分满足氢燃料电池所用氢气、氧气的要求。然而,目前,商业化的电解水催化剂材料主要为铂、氧化钌、氧化铱等贵金属材料,资源的稀缺、过高的成本、较短的使用周期成为了限制电解水发展的主要瓶颈。
目前,泡沫金属基改性材料(主要指过渡金属基材料)以其成本低、电催化活性强、资源丰富而被作为电催化水分解电极材料的研究热点。目前,针对泡沫金属基改性材料的制备,主要有水热、化学沉积、油浴、热解等方法,而这些方法存在制备工艺复杂、时间冗长、成本高、条件苛刻、循环寿命短、催化活性弱、电化学稳定性差等技术缺陷。比如中国专利CN108774737B公开了一种泡沫金属基铅合金复合阳极材料的制备方法,先通过真空磁控溅镀进行表面处理,再经过真空微重力熔炼,然后经过双金属连续挤压才制得所述复合阳极材料,尽管具有较低的过电位,但存在操作复杂、设备要求苛刻、成本高昂、循环寿命短、电催化稳定性差等技术问题。
因此,有必要研发一种制备方法,解决现有技术中存在的机械稳定性差、材料导电性低、电催化活性弱、制备成本高等技术问题。
发明内容
本发明的目的是提供一种泡沫金属基改性材料的制备方法,通过将市售泡沫金属进行裁剪、洗涤、酸处理改性、干燥、气相反应等步骤,制得本发明所述泡沫金属基改性材料。本发明所制得的泡沫金属基改性材料具有导电性强、结构稳定、电催化活性强、循环寿命长、简单易制备、用途广泛等优点,有效解决了现有技术缺陷。
基于上述技术目的,本发明采用如下技术方案:
一方面,本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市售泡沫金属剪裁、用溶剂洗涤、烘干后得到表面干净的泡沫金属材料;
(2)将步骤(1)中所述干净的泡沫金属材料与酸溶液混合搅拌后,用溶剂冲洗、静置后烘干,得到改性泡沫金属材料;
(3)在惰性气氛下,将步骤(2)所述改性泡沫金属材料与粉体材料置于管式炉,升温加热后保温,得到改性泡沫金属基材料;或在空气中,将步骤(2)所述改性泡沫金属材料升温加热后保温,得到改性泡沫金属基材料。
进一步地,步骤(1)中所述泡沫金属为铜、银、铁、铝、锌、镍、钴、钛中至少一种的组合,优选地,步骤(1)中所述泡沫金属为铜、银、铁、铝、镍、钴、钛中至少一种的组合,具体地,步骤(1)中所述泡沫金属为铜、铁、铝、镍、钴中至少一种的组合。
进一步地,步骤(1)中所述泡沫金属孔隙率大于65%,优选地,步骤(1)中所述泡沫金属孔隙率大于75%,具体地,步骤(1)中所述泡沫金属孔隙率大于80%。
进一步地,步骤(1)中所述泡沫金属厚度小于3.0mm,优选地,步骤(1)中所述泡沫金属厚度小于2.0mm,具体地,步骤(1)中所述泡沫金属厚度小于1.5mm。
进一步地,步骤(1)中所述泡沫金属剪裁所得长方体面积为(0.1~2.0)×(0.5~3.0)cm2,优选地,步骤(1)中所述泡沫金属剪裁所得长方体面积为(0.5~1.5)×(1.0~2.0)cm2,具体地,步骤(1)中所述泡沫金属剪裁所得长方体面积为1.0×1.5cm2
进一步地,步骤(1)中所述溶剂为甲醇、乙醇、丙醇、乙醚、乙酸乙酯、水中至少一种的组合,优选地,步骤(1)中所述溶剂为乙醇、丙醇、乙醚、水中至少一种的组合,具体地,步骤(1)中所述溶剂为乙醇、水。
进一步地,步骤(1)所述溶剂与泡沫金属比例为(5~5000)ml:(1~20)cm3,优选地,步骤(1)所述溶剂与泡沫金属比例为(5~4000)ml:(3~10)cm3,具体地,步骤(1)所述溶剂与泡沫金属比例为(5~3000)ml:(5~10)cm3
进一步地,步骤(1)中所述洗涤时间为1~400min,优选地,步骤(1)中所述洗涤时间为5~300min,具体地,步骤(1)中所述洗涤时间为10~200min。
进一步地,步骤(2)所述酸为甲酸、乙酸、盐酸、硝酸、硫酸、草酸中至少一种的组合,优选地,步骤(2)所述酸为乙酸、盐酸、硫酸、草酸中至少一种的组合,具体地,步骤(2)所述酸为硫酸。
进一步地,步骤(2)中所述酸溶液浓度为0.01~50mol/L,优选地,步骤(2)中所述酸溶液浓度为0.01~30mol/L,具体地,步骤(2)中所述酸溶液浓度为0.01~20mol/L。
进一步地,步骤(2)中所述烘干温度为30~100℃,烘干时间为10~200min,优选地,步骤(2)中所述烘干温度为30~80℃,烘干时间为10~150min,具体地,步骤(2)中所述烘干温度为60℃,烘干时间为60min。
进一步地,步骤(2)中所述洗泡沫金属材料与酸溶液的用量比为(1~30)cm3:(1~100)mL,优选地,步骤(2)中所述洗泡沫金属材料与酸溶液的体积用量比为(1~25)cm3:(1~80)mL,具体地,步骤(2)中所述洗泡沫金属材料与酸溶液的用量比为(1~20)cm3:(1~50)mL。
进一步地,步骤(2)中所述洗泡沫金属材料与酸溶液混合搅拌时间为1~400min,优选地,步骤(2)中所述洗泡沫金属材料与酸溶液混合搅拌时间为1~300min,具体地,步骤(2)中所述洗泡沫金属材料与酸溶液混合搅拌时间为1~200min。
进一步地,步骤(2)中所述溶剂为乙醇、甲醇、丙醇、乙醚、乙酸乙酯、水中的至少一种的组合,优选地,步骤(2)中所述溶剂为乙醇、甲醇、丙醇、水中的至少一种的组合,具体地,步骤(2)中所述溶剂为乙醇、水。
进一步地,步骤(3)中所述粉体材料为硫基、硒基、氮基、磷基单质或盐中的一种,优选地,步骤(3)中所述粉体材料为硫基、硒基、磷基单质或盐中的一种,具体地,步骤(3)中所述粉体材料为硫粉、磷粉或次磷酸钠。
进一步地,步骤(3)所述改性泡沫金属材料与粉体材料在加热前需分别放入方舟中,然后再将方舟放入管式炉中进行加热;具体地,步骤(3)所述改性泡沫金属材料与粉体材料在加热前需分别放入方舟中,然后再将方舟放入管式炉中进行加热,其中放有粉体材料的方舟至于进气口一端。
进一步地,步骤(3)中所述惰性气氛为氦气(He)、氮气(N)、氖气(Ne)、氩气(Ar)中至少一种,优选地,步骤(3)中所述惰性气氛为氦气(He)、氮气(N)、氩气(Ar)中至少一种,具体地,步骤(3)中所述惰性气氛为氩气(Ar)。
进一步地,步骤(3)中所述加热升温速率为0.1-20℃/min,优选地,步骤(3)中所述加热升温速率为0.1-10℃/min,具体地,步骤(3)中所述加热升温速率为1.0℃/min。
进一步地,步骤(3)中所述加热温度为100-1000℃,优选地,步骤(3)中所述加热温度为200-800℃,具体地,步骤(3)中所述加热温度为200-600℃。
进一步地,步骤(3)所述泡沫金属基改性材料孔径为1~150nm,优选地,步骤(3)所述泡沫金属基改性材料孔径为1~100nm,具体地,步骤(3)所述泡沫金属基改性材料孔径为1-50nm。
相对于现有技术,本发明提供的技术方案具备有益效果如下:
1)本发明通过将泡沫金属材料进行酸处理,在泡沫金属表面刻蚀溶出一部分表面金属,从而在微米级金属材料上造出大量纳米孔道,为电解液的浸透以及离子的传输提供了大量通道,且提高了活性位点的暴露面积、电解液与电极材料之间的接触面积;
2)利用不同金属特性,选取酸的种类、浓度,进而调节不同金属的浸出速率,以达到泡沫金属表界面成分比例可控的目的,从而降低制备成本,增强高活性位点性能的发挥;
3)通过将市售泡沫金属材料简单的进行酸改性处理,以及与粉体材料分解或挥发出的气相物质反应后,制备出表面富含纳米孔道且表面异质金属比例可调的泡沫金属基改性材料;其应用于电催化电极材料时,在电流密度为10mA/cm2时,过电位仅为10-380mV、塔菲儿斜率为30-150mV/dec、双电层电容为2.0-6.5mF/cm2、循环时长长达20-300h,表现出优异的电催化性能;
4)本发明所制得的泡沫金属基改性材料为原位改性材料,拥有优异的导电性和机械稳定性;此外,改性后的材料富含纳米孔道且表面异质金属比例可调,能有效加大电极/电解液接触界面,灵活调控和最优化材料的功能性应用。基于本发明的高活性、高导电性、高稳定性、高可控性以及制备简单易操作的优异特点,将之制成电极材料应用于电催化水解,具有过电位低、循环寿命长、法拉第效率高、生产成本低廉等有益特点,可适用于大规模商业化应用。本发明操作过程简单、无需大型设备、绿色无污染、成本低廉,所得到的本发明所述泡沫金属基改性材料具有优良电催化特性和极高电化学稳定性,本发明所制得的电极材料用于电催化水分解、氧还原等领域时导电性好、过电位低、循环性能优异,适用于大规模的商业化应用。
附图说明
图1为本发明实施例1市场购买泡沫镍铁材料。
图2为本发明对比例制得泡沫金属基材料的扫描电镜图;
图3为本发明实施例1制得的泡沫金属基改性材料的扫描电镜图;
图4为本发明实施例1制得的泡沫金属基改性材料、商用RuO2、泡沫镍作为电催化析氧电极材料时的线性扫描伏安曲线图;
图5为本发明实施例1制得的泡沫金属基改性材料、商用RuO2、泡沫镍作为电催化析氧电极材料时,在电流密度为0.1A/cm2时的过电位条形图;
图6为本发明实施例1制得的泡沫金属基改性材料的生命周期图;
具体实施方式
以下实施例旨在说明本发明内容,而不是对本发明保护范围的进一步限定。
实施例1
本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市场购买的厚度为1.5mm泡沫镍铁,如图1所示,剪裁为面积为1×1.5cm2的长方体,随后用酒精、水各洗涤0.5h,经过60℃保温2h烘干后,得到表面干净的泡沫镍铁材料;
(2)将步骤(1)中干净的泡沫镍铁材料放置0.5mol/L硝酸溶液中,搅拌30min,用50ml水、50ml酒精冲洗后静置1h后在60℃保温1h烘干,得到改性泡沫镍铁材料;
(3)将步骤(2)中改性泡沫镍铁材料,2g磷粉分别放入方舟,再将方舟置于管式炉,其中放有磷粉方舟置于进气口一端。通入氩气,以1℃/min加热至600℃并保持2h后自然降至常温,得到改性后的泡沫磷化镍铁材料,如图3所示。
实施例2
本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市场购买的厚度为1.5mm泡沫钴铁,剪裁为面积为1×1.5cm2的长方体,随后用酒精、水各洗涤0.5h,经过60℃保温2h烘干后,得到表面干净的泡沫钴铁材料;
(2)将步骤(2)中干净的泡沫钴铁材料放置1mol/L硝酸溶液中,搅拌30min,用50ml水、50ml酒精冲洗后静置1h后在60℃保温1h烘干,得到改性泡沫镍铁材料;
(3)将步骤(1)中改性泡沫钴铁材料,2g次磷酸钠分别放入方舟,再将方舟置于管式炉,其中放有次磷酸钠方舟置于进气口一端。通入氩气,以1℃/min加热至300℃并保持2h后自然降至常温,得到改性后的泡沫磷化钴铁材料。
实施例3
本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市场购买的厚度为1.5mm泡沫铝,剪裁为面积为1×1.5cm2的长方体,随后用酒精、水各洗涤0.5h,经过60℃保温2h烘干后,得到表面干净的泡沫铝材料;
(2)将步骤(1)中干净的泡沫铝材料放置0.5mol/L硝酸溶液中,搅拌30min,用50ml水、50ml酒精冲洗后静置1h后在60℃保温1h烘干,得到改性泡沫铝材料;
(3)将步骤(2)中改性泡沫铝材料置于管式炉进行空烧,于空气中以5℃/min加热至200℃并保持3h后自然降至常温,得到改性后的泡沫氧化铝材料。
实施例4
本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市场购买的厚度为1.5mm泡沫镍铁,剪裁为面积为1×1.5cm2的长方体,随后用酒精、水各洗涤0.5h,经过60℃保温2h烘干后,得到表面干净的泡沫镍铁材料;
(2)将步骤(1)中干净的泡沫镍铁材料放置0.5mol/L硫酸溶液中,搅拌30min,用50ml水、50ml酒精冲洗后静置1h后在60℃保温1h烘干,得到改性泡沫镍铁材料;
(3)将步骤(2)中改性泡沫镍铁材料,3g硫粉分别放入方舟,再将方舟置于管式炉,其中放有硫粉方舟置于进气口一端。通入氩气,以1℃/min加热至600℃并保持2h后自然降至常温,得到改性后的泡沫硫化镍铁材料。
实施例5
本发明提供一种泡沫金属基改性材料的制备方法,包括以下步骤:
(1)将市场购买的厚度为1.5mm泡沫铜,剪裁为面积为1×1.5cm2的长方体,随后用酒精、水各洗涤0.5h,经过60℃保温2h烘干后,得到表面干净的泡沫铜材料;
(2)将步骤(1)中干净的泡沫铜材料放置10mol/L硫酸溶液中,搅拌30min,用50ml水、50ml酒精冲洗后静置1h后在60℃保温1h烘干,得到改性泡沫铜材料;
(3)将步骤(2)中改性泡沫铜材料,3g硫粉分别放入方舟,再将方舟置于管式炉,其中放有硫粉方舟置于进气口一端。通入氩气,以1℃/min加热至600℃并保持2h后自然降至常温,得到改性后的泡沫硫化铜材料。
对比例
按照实施例1的方法,跳过步骤2),使用相同条件相同用量制备得到泡沫磷化镍铁材料,作为对比例,如图2所示。
实施例6
取实施例1-5制得的改性后泡沫金属基改性材料和对比例制得的泡沫金属材料,将之用作电催化析氧电极材料,测试其电催化性能,测试结果如表1所示。
Figure BDA0003359124450000091
Figure BDA0003359124450000101
由表1可知,较之于对比例,本发明具有超低的过电位、较小的塔菲儿斜率、较高的双电层电容和较长的循环时长,由此可见,酸化改性处理有利于提高本发明所述泡沫金属基改性材料的电催化性能,使本发明具有极高的电化学稳定性。
实施例7
将实施例1制得泡沫金属基改性材料和对比例制得泡沫金属基材料使用扫面电镜进行观察,得到扫描电镜图如图3、图2所示。对比图2、图3可知,本发明制得的泡沫金属基改性材料富含纳米孔洞,且形貌均一。
实施例8
将实施例1制得泡沫金属基改性材料、商用RuO2、市售泡沫镍作为电催化析氧电极材料,进行线性扫描伏安法实验,根据电压、过电位、电流密度和循环时间,如图4、5、6所示。
比较图4、5、6可知,本发明的过电位为239mV,远远低于商用RuO2的402mV、泡沫镍的478mV,表明本发明具有优异的电催化性能。本发明在循环时间为70h内,电流密度一直保持恒稳定,没有出现大幅下降趋势,表明本发明具有优异的电化学稳定性。
实施例9
将实施例5制得的泡沫硫化钴铜材料用于电催化全水解,测得其电催化性能,结果如下:
1)析氢反应中,测得在10mA/cm2时的过电位为56mV,塔菲儿斜率为43mV/dec,双电层电容为6.43mF/cm2,循环时长100h;
2)析氧反应中,在10mA/cm2时的过电位为205mV,塔菲儿斜率为56mV/dec,双电层电容为9.60mF/cm2,循环时长200h。
由上述可知,在析氢和析氧反应中,本发明实施例制备的材料表现出极低的过电位、较小的塔菲儿斜率、具有较高的电催化活性和较长的循环时长,由此可知。本发明具有优良的电催化性能。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种泡沫金属基改性材料的制备方法,其特征在于,包括以下步骤:
(1)将市售泡沫金属剪裁、用溶剂洗涤、烘干后得到表面干净的泡沫金属材料;
(2)将步骤(1)中所述泡沫金属材料与酸溶液混合搅拌后,用溶剂冲洗、静置后烘干,得到改性泡沫金属材料;
(3)在惰性气氛下,将步骤(2)所述改性泡沫金属材料与粉体材料置于管式炉,升温加热后保温,得到改性泡沫金属基材料;或在空气中,将步骤(2)所述改性泡沫金属材料升温加热后保温,得到改性泡沫金属基材料。
2.如权利要求1所述泡沫金属基改性材料的制备方法,其特征在于,步骤(1)中所述泡沫金属为铜、银、铁、铝、锌、镍、钴、钛中至少一种的组合,所述泡沫金属孔隙率大于65%,所述泡沫金属厚度小于3.0mm。
3.如权利要求2所述泡沫金属基改性材料的制备方法,其特征在于,步骤(1)所述溶剂与泡沫金属比例为(5~5000)mL:(1~20)cm3
4.如权利要求3所述泡沫金属基改性材料的制备方法,其特征在于,步骤(2)所述酸为甲酸、乙酸、盐酸、硝酸、硫酸、草酸中至少一种的组合,所述酸溶液浓度为0.01~50mol/L。
5.如权利要求1所述泡沫金属基改性材料的制备方法,其特征在于,步骤(2)中所述洗泡沫金属材料与酸溶液的体积用量比为(1~30):(1~100)mL。
6.如权利要求1所述泡沫金属基改性材料的制备方法,其特征在于,步骤(3)中所述粉体材料为硫基、硒基、氮基、磷基单质或盐中的一种。
7.如权利要求6所述泡沫金属基改性材料的制备方法,其特征在于,步骤(3)所述改性泡沫金属材料与粉体材料在加热前需分别放入方舟中,再将方舟放入管式炉中进行加热。
8.如权利要求7所述泡沫金属基改性材料的制备方法,其特征在于,步骤(3)中所述加热升温速率为0.1-20℃/min;步骤(3)所述泡沫金属基改性材料孔径为1~200nm。
9.如权利要求1-8任一项所述泡沫金属基改性材料的制备方法,其特征在于,所述溶剂为甲醇、乙醇、丙醇、乙醚、乙酸乙酯、水中至少一种的组合。
10.一种权利要求1~9任一项所述方法制备的泡沫金属基改性材料在制备电极材料中的用途。
CN202111365534.0A 2021-11-17 2021-11-17 一种泡沫金属基改性材料的制备方法 Pending CN114086205A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111365534.0A CN114086205A (zh) 2021-11-17 2021-11-17 一种泡沫金属基改性材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111365534.0A CN114086205A (zh) 2021-11-17 2021-11-17 一种泡沫金属基改性材料的制备方法

Publications (1)

Publication Number Publication Date
CN114086205A true CN114086205A (zh) 2022-02-25

Family

ID=80301797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111365534.0A Pending CN114086205A (zh) 2021-11-17 2021-11-17 一种泡沫金属基改性材料的制备方法

Country Status (1)

Country Link
CN (1) CN114086205A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630822A (zh) * 2015-01-14 2015-05-20 太原理工大学 一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法
CN106784637A (zh) * 2016-12-30 2017-05-31 梅庆波 一种高能量密度锂硫电池正极材料的制备方法
CN107805826A (zh) * 2016-09-08 2018-03-16 中国海洋大学 具备电催化氧析出性能的铁磷化合物修饰电极及制备方法
CN109055973A (zh) * 2018-07-09 2018-12-21 太原理工大学 铝掺杂三维纳米多孔金属硫化物析氢电极制备及使用方法
CN109244442A (zh) * 2018-08-08 2019-01-18 中南大学 一种多孔铝阳极及铝空气电池
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630822A (zh) * 2015-01-14 2015-05-20 太原理工大学 一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法
CN107805826A (zh) * 2016-09-08 2018-03-16 中国海洋大学 具备电催化氧析出性能的铁磷化合物修饰电极及制备方法
CN106784637A (zh) * 2016-12-30 2017-05-31 梅庆波 一种高能量密度锂硫电池正极材料的制备方法
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION
CN109055973A (zh) * 2018-07-09 2018-12-21 太原理工大学 铝掺杂三维纳米多孔金属硫化物析氢电极制备及使用方法
CN109244442A (zh) * 2018-08-08 2019-01-18 中南大学 一种多孔铝阳极及铝空气电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO MA ET AL.: "Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
WENXIN ZHU ET AL.: "Nickel sulfide microspheres film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting", 《CHEMCOMM》 *

Similar Documents

Publication Publication Date Title
CN108796535B (zh) 一种具备三金属铜-钴-钼/泡沫镍多孔电极材料及其制备方法与应用
WO2021051897A1 (zh) 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
CN111111707B (zh) 一种硒掺杂镍铁尖晶石/羟基氧化镍复合电催化剂材料及其制备方法与应用
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
CN110983361B (zh) 一种限域生长钴纳米颗粒的氮化钽碳纳米薄膜一体化电极及其制备方法和应用
CN113005469A (zh) 一种钌负载无定型的氢氧化镍/磷化镍复合电极及其制备方法和应用
CN113201764A (zh) 一种磷化镍-磷化铁-磷化钌/泡沫镍三维自支撑电极材料的制备方法和应用
Teng et al. Selective CO 2 Reduction to Formate on Heterostructured Sn/SnO 2 Nanoparticles Promoted by Carbon Layer Networks
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN114875442A (zh) 一种钌修饰的钼镍纳米棒复合催化剂及其制备方法和应用
CN110565113A (zh) 一种用于碱性电催化析氢的复合电催化材料的制备方法
CN112921351B (zh) 一种自支撑型催化电极的制备方法和应用
CN112680745B (zh) 一种限域负载钌纳米团簇的氮化钨纳米多孔薄膜一体化电极及其制备方法和应用
CN117089881A (zh) 一种Pt纳米颗粒修饰的双金属LDH催化剂的制备方法及其工业电流密度电解水应用
CN116219484A (zh) 一种高效的双金属氮化物/氢氧化物异质结构电催化剂、制备方法和应用
CN114086205A (zh) 一种泡沫金属基改性材料的制备方法
WO2023279406A1 (zh) 一种负载型催化剂的制备方法及其应用
Liu et al. Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate
EP4129469A1 (en) Cobalt catalyst and preparation method therefor
CN111420654B (zh) 一种基于碳基纳米材料及其制备方法和用途
CN114214636B (zh) 一种含硒配体制备钴基纳米片自支撑电极的方法及应用
Huang et al. Oxygen evolution reaction enhancement enabled by a Ni-doped cobalt-based phosphate electrode with hierarchical pore structures
CN114318408B (zh) 一种自支撑Cu3P基异质结电催化剂及其制备方法与应用
CN115011995B (zh) 一种铈基析氢电催化剂及其制备方法和应用
CN110735152B (zh) 一种Ni-Cu-C电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220225

RJ01 Rejection of invention patent application after publication