CN114085857A - 一种基于小檗碱核酸适配体的核糖开关的设计方法 - Google Patents

一种基于小檗碱核酸适配体的核糖开关的设计方法 Download PDF

Info

Publication number
CN114085857A
CN114085857A CN202111226716.XA CN202111226716A CN114085857A CN 114085857 A CN114085857 A CN 114085857A CN 202111226716 A CN202111226716 A CN 202111226716A CN 114085857 A CN114085857 A CN 114085857A
Authority
CN
China
Prior art keywords
aptamer
bbr
riboswitch
sequence
egfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111226716.XA
Other languages
English (en)
Inventor
田平芳
赵鹏
张丽娜
刘国新
杨文书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111226716.XA priority Critical patent/CN114085857A/zh
Publication of CN114085857A publication Critical patent/CN114085857A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于小檗碱核酸适配体的核糖开关的设计方法属于基因表达调控领域,利用SELEX技术从随机单链寡核苷酸文库中筛选出能与BBR结合的亲和力较大的RNA适配体R1,对BBR和R1的亲和力进行表征。以适配体R1为基础,在R1片段的3’端设计包含10个随机寡核苷酸及核糖体结合位点(RBS)序列的片段N10‑RBS,将该R1‑N10‑RBS片段与表达增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)的载体pBJ23119‑egfp进行连接,然后转化大肠杆菌,挑取阳性克隆测序,确定不同N10的序列,建立转化子库。利用EGFP编码基因egfp为报告基因(GenBank:AF323988.1),从转化子库中筛选能受BBR调控的核糖开关元件。

Description

一种基于小檗碱核酸适配体的核糖开关的设计方法
技术领域
本发明属于基因表达调控领域,涉及一种受小檗碱(berberine,BBR)诱导的核糖开关的构建方法及其应用。
背景技术
小檗碱是从黄连(Coptis chinensis Franch)和黄柏(Phellodendron chinenseSchneid)等药用植物中分离得到的一种异喹啉生物碱,分子式为C20H18NO4 +。黄连中BBR的含量高达5-8%,且提取工艺简单,因此生产成本低。此外,BBR效用广泛,具有抗炎、抗真菌、保肝和护肝等作用。BBR生物安全性好,对环境友好,且其原料廉价易得,这些优势使其在工业生物技术领域极具开发潜力。近年来,研究发现BBR能与核酸分子发生相互作用,表明BBR可开发为荧光探针,还可作为潜在遗传元件,与核酶、反义RNA及CRISPR等技术相结合,从而拓展其在微生物遗传操作等方面的应用。
核酸适配体(Aptamer)是一段能与靶标物质高特异性、高亲和力结合的核酸序列(DNA或RNA)。适配体与靶分子的结合方式与抗体-抗原之间的结合类似。但与抗体相比,适配体的稳定性更高、更易获取,且与靶标结合的特异性和亲和性更强。目前,获得核酸适配体的主要方法是利用指数富集的配体系统进化技术(Systematic Evolution of Ligandsby Exponential Enrichment,SELEX)从随机单链寡核苷酸文库中筛选能与靶物质特异性结合且高度亲和的序列。通过SELEX技术筛选获得BBR的核酸适配体将为后续遗传元件开发奠定基础。
核糖开关(Riboswitch)位于mRNA的5’端非翻译区,包括结构保守的适体(aptamer)和易变的表达模块(expression platform),其保守的适体与一些特定小分子结合后,可诱发模块区域的mRNA分子发生变构,从而来调节基因转录的终止和翻译的起始。核糖开关的调控机制主要有两种:一是通过控制终止子或抗终止子结构的形成在转录水平调控基因的表达;二是通过遮蔽或暴露核糖体结合位点(ribosome binding site,RBS)来调控翻译过程的起始。将筛选得到的BBR核酸适配体进行改造,可开发出响应BBR分子的核糖开关,从而建立廉价高效的新型诱导表达系统,丰富工业微生物现有的表达体系。
发明内容
鉴于现今工业微生物发酵中所使用的诱导剂,如异丙基-β-D-硫代半乳糖苷(IPTG)、阿拉伯糖、脱水四环素、茶碱等价格昂贵,本发明旨在开发一种基于小檗碱核酸适配体的核糖开关结构,建立以BBR为诱导剂的廉价、安全的新型表达系统。本发明的技术方案概述如下:
利用SELEX技术从随机单链寡核苷酸文库中筛选出能与BBR结合的亲和力较大的RNA适配体R1,对BBR和R1的亲和力进行表征。以适配体R1为基础,在R1片段的3’端设计包含10个随机寡核苷酸及核糖体结合位点(RBS)序列的片段N10-RBS,将该R1-N10-RBS片段与表达增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)的载体pBJ23119-egfp进行连接,然后转化大肠杆菌,挑取阳性克隆测序,确定不同N10的序列,建立转化子库。利用EGFP编码基因egfp为报告基因(GenBank:AF323988.1),从转化子库中筛选能受BBR调控的核糖开关元件,并测定核糖开关的调控能力。最终筛选得到一株重组菌E.coli BL21-C25,其包含的核糖开关序列对EGFP表达的开关比率达到8.94。
一种基于小檗碱核酸适配体的核糖开关的设计方法,其特征在于:包括筛选得到的BBR核酸适配体的序列R1、R2以及在R1序列基础上获得的受BBR调控的核糖开关的方法和核糖开关具体序列,其中:
核酸适配体R1:
5’-CAUCAUUGCCUAGUCUGAUCUCAUCUCCGUCAGAUUGAUG-3’
核酸适配体R2:5’-ACAUCUCCUAGACCAACGGCCUGCAUCCUGUCCUCUACGC-3’
更具体的:
1)、一种利用SELEX技术筛选得到的与BBR具有较高亲和力的核糖核酸适配体序列R1及R2;
2)、以R1序列为基础,设计筛选获得受BBR调控的核糖开关元件;
3)、利用EGFP表征获得的具有受BBR调控的核糖开关的序列。
附图说明
图1小檗碱RNA适配体的筛选过程
图2每轮转录产物电泳验证图。M:Marker;1:转录产物
图3适配体序列二级结构模拟图。
R1的二级结构模拟图;(b)R2的二级结构模拟图
图4BBR标准曲线。
图5适配体R1的非线性拟合曲线
图6适配体R2的非线性拟合曲线
图7添加和不添加小檗碱时菌株荧光强度对比图。(a)发酵6h荧光强度对比图;(b)发酵12h荧光强度对比图;(c)发酵18h荧光强度对比图;(d)发酵24h荧光强度对比图。
具体实施方式
下面的具体方法可使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。本发明方法的具体步骤包括:
1.利用SELEX技术筛选BBR的核糖核酸适配体
1.1单链DNA随机文库及相关引物的准备
用于SELEX筛选的随机单链寡核苷酸文库由上海生工公司合成,两端的固定序列用于片段的扩增,中间为40nt的随机序列,理论库容为1014~15。具体序列为:
5’-CCCGCGAAATTAATACGACTCACTATAGGAATGCCGGCGTAGAGGATCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGCCTCTAAACGGGTACTG-3’
其中的下划线部分为T7启动子序列,用于结合T7 RNA聚合酶,将随机DNA文库在体外转录为随机RNA文库,进行后续筛选。将随机文库用DEPC处理水溶解至100μM,之后稀释为1μM,备用。
由于单链随机库的合成长度有限,上游引物中5’端需添加T7启动子序列,所以上游引物很长,导致下游引物的固定序列太短,不匹配。因此需通过补偿引物Fplus和Rplus把下游引物的固定序列补充得足够长,才能进行后续操作。将补偿引物Fplus和Rplus用DEPC处理水配制成20μM,备用。捕获引物F0可与RNA随机库一端结合,3’端标记生物素(Biotin),可与链霉亲和素磁珠(SMB)结合,将RNA分子库固定到磁珠上,用DEPC处理水配制成100μM,备用。RNA文库富集后经反转录得到第一链cDNA,再用扩增引物F/R进行PCR扩增得到双链DNA次级文库,在放大样品量的同时通过引物再次引入T7启动子,用于下一轮体外转录,其中扩增引物R的5’端标记生物素,可用于分离双链与单链产物,用DEPC处理水配制成20μM,备用。捕获引物F0、Fplus、Rplus、F扩增、R扩增引物的具体序列见表1。
表1引物序列
Figure BDA0003314582240000031
1.2随机文库的补偿扩增
以文库
5’-CCCGCGAAATTAATACGACTCACTATAGGAATGCCGGCGTAGAGGATCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGCCTCTAAACGGGTACTG-3’为模板,使用引物Fplus和Rplus通过PCR反应进行补偿扩增,使得两端固定序列的长度一致,得到双链DNA文库用于后续筛选。
表2补偿扩增PCR反应体系(总体系为20μL)
Figure BDA0003314582240000041
表3补偿扩增PCR反应条件
Figure BDA0003314582240000042
变形、退火、延伸30个循环。
1.3RNA文库的构建及纯化回收
利用NEB#E2050S T7 RNA高效合成试剂盒对上一步扩增后的dsDNA文库进行体外转录,试剂盒内含:500μL NTP Buffer Mix(每种20mM),100μL T7 RNAP Mix,100μL DNaseⅠ(2units/μL),1.4mL LiCl溶液(7.5M LiCl,10mM EDTA)。转录反应体系见表4。
表4标准RNA合成反应体系
Figure BDA0003314582240000051
取4个200μL的RNase-Free离心管,按照表4所述的量依次加入每种试剂,充分地混匀,37℃温育2h后,每管加入1.5μL的DNase I,再置于37℃,反应30min,取2μL样品在超微量分光光度计上测定RNA浓度,并用琼脂糖凝胶电泳对转录产物进行验证,之后对转录得到的RNA产物进行纯化回收。RNA纯化回收使用天根纯化试剂盒DP412,该试剂盒包括如下试剂:溶液RK,10mL;漂洗液,12mL;RNase-Free H2O,15mL;RNase-Free吸附柱,20套;RNase-Free离心管,20个。首次使用时向溶液RK中加入β-巯基乙醇至终浓度为1%(10mL中加100μL),加热37℃溶解后使用。向漂洗液中加入无水乙醇。具体的RNA纯化回收步骤如下:
(1)在转录得到的RNA样品中添加RNase-Free水补足至100μL,之后加入350μL溶液RK,轻柔充分混匀。
(2)向溶液中加入250μL无水乙醇,混匀后立即进行下一步操作。
(3)将溶液转入吸附柱中,4℃,12000rpm冷冻离心30s,去掉废液。
(4)向吸附柱中加入500μL漂洗液,室温放置2min后,4℃,12000rpm离心30s,弃废液,将吸附柱放回收集管。
(5)重复漂洗一次。
(6)4℃,12000rpm离心5min,去除残余液体。
(7)将吸附柱转入一个新的RNase-Free离心管中,加20μL RNase-Free水,室温静置2min后,4℃,12000rpm离心2min,得到纯化后的产物,用超微量分光光度计测定其核酸浓度后,-20℃保存。
1.4BBR适配体的筛选
SELEX筛选流程如图1所示,具体步骤如下:
(1)随机RNA库与捕获引物的结合
取纯化后的随机RNA库,加入200μL用灭菌的DEPC处理水配制的WB缓冲液,混匀,加入4μL捕获引物F0,在恒温金属浴上95℃解链10min,自然冷却至室温。
(2)对链霉亲和素包被的磁珠(SMB)进行洗涤
取150μL SMB,加入800μL WB缓冲液进行洗涤,用磁力架对体系进行磁分离,弃上清,重复洗涤2次(所用离心管、枪头、WB缓冲液均为RNase-Free)。
(3)将与捕获引物结合的随机RNA库结合在SMB上。
将捕获引物F0所结合的RNA库与SMB混和均匀,在30℃,100rpm的恒温摇床中轻振孵育30min,然后用磁力架进行磁分离,去上清,用WB缓冲液洗涤3次后,弃上清。
(4)制备次级文库
取200μL浓度为50μg/mL的BBR溶液,加入到连接了单链库的SMB中,充分混匀,在37℃,100rpm的恒温摇床中振荡孵育1h,间隙摇匀。磁分离,收集清液即为次级文库。用超微量分光光度计测定RNA浓度。
(5)反转录得到cDNA一链
利用NEB#E6300S ProtoScript First Strand cDNA Synthesis kit试剂盒进行反转录。由于体外转录得到的RNA库不含poly(A)尾,所以需用随机引物进行反转录,反转录体系如表5所示。
表5反转录体系表
Figure BDA0003314582240000061
使用随机引物后,反应体系需在25℃温育5min,之后在42℃金属浴中反应1h,最后,80℃保持5min使酶失活,用超微量分光光度计测定cDNA浓度。
(6)将单链cDNA转化为双链DNA
使用扩增引物F/R,利用对称PCR反应将cDNA转化为双链DNA,放大样品量的同时再次引入T7启动子。对称PCR反应体系见表6,反应条件见表7,使用PCR仪,按照表7中的反应条件设定程序进行扩增。其中变性、退火、延伸过程进行30个循环。用超微量分光光度计测定对称PCR产物的浓度。直接将PCR产物当作模板进行下一轮转录。
表6对称PCR反应体系表
Figure BDA0003314582240000062
Figure BDA0003314582240000071
表7对称PCR反应条件
Figure BDA0003314582240000072
变形、退火、延伸30个循环。
(7)重复1.3至1.4的步骤,再进行15轮的SELEX筛选步骤。
为考察每轮筛选时RNA单链次级库的情况,将每轮使用试剂盒转录得到的RNA样品进行电泳,电泳结果如图2所示。
由上图可知,在16轮筛选中,每轮转录后的产物均有明显条带。经过转录得到的RNA条带大小为110nt,大致位于Marker的100bp位置处,表明每一轮转录均成功。
用超微量分光光度计测量每轮转录及产物回收后的核酸浓度、小檗碱结合后的核酸浓度、反转录后得到的cDNA一链的浓度、以及将cDNA一链进行对称PCR扩增后测得的双链DNA浓度,测定结果如表8所示。
表8核酸浓度测定表
Figure BDA0003314582240000073
Figure BDA0003314582240000081
1.5适配体片段的克隆、转化与测序
筛选结束后,将第16轮的单链次级库进行对称PCR扩增,纯化后与载体pMDTM19-T进行TA克隆,并转化到宿主菌中,在37℃培养进行蓝白斑筛选。其中连接体系如表9所示。
表9 dsDNA与T载体连接体系
Figure BDA0003314582240000082
连接反应置于16℃金属浴或PCR仪中进行,反应时间为1小时。
使用E.coli Top 10感受态细胞进行转化,具体步骤为:(1)10μL经连接反应的反应液加入到100μL细胞中,冰浴30min后迅速转移到42℃水浴,计时1min 30s,再移至冰浴中2min;(2)在热击后的细胞中加入LB培养基,摇床震荡复苏1小时,用于表达载体上的抗性基因;(3)涂布在含有相应抗生素的LB平板上,进行蓝白斑筛选。37℃培养16h后挑取白色阳性菌落,接种于含有氨苄青霉素的4mL LB培养基中培养12h后,保菌并取菌液进行测序。
扩增得到的含有适配体序列的双链片段与T载体连接后进行测序,虽然TA克隆过程中片段的连接方向会有正反的区分,但由于适配体序列的5’端存在一个T7启动子,所以使用Snapgene软件分析测序结果时会自动识别出T7启动子结构,其下游区域即为适配体的40nt序列,与T载体连接测得的序列结果见表10,测序结果的丰度指结果中序列的重复次数。
表10适配体对应序列测序结果表
Figure BDA0003314582240000091
Figure BDA0003314582240000101
根据表10中的测序结果可将序列转化为与小檗碱结合的RNA适配体的序列,结果统计可知R1和R2分别出现了46次和16次,丰度较高(表11),而其他序列重复性相对较差,证明经过16轮的筛选,适配体得以充分富集,所以接下来对R1和R2进行二级结构模拟及亲和力的测定。
表11 RNA适配体结果统计表
Figure BDA0003314582240000102
1.6适配体二级结构预测分析
适配体经测序后,在DNAMAN软件中进行序列比对及同源性分析,选出同源性较高的序列,用mfold软件进行二级结构预测。
如图3所示,R1和R2的结构模拟图包含明显的茎环、发卡结构,这推测是靶标结合适配体的结构基础,也是适配体与靶标高特异性和高亲和力结合的机制之一。
1.7BBR与适配体亲和力的测定
采用平衡渗透法评估适配体与小檗碱的亲和力。选取同源性较高的RNA适配体与小檗碱进行结合,进一步测定RNA适配体与小檗碱的亲和力。用结合缓冲液配制成一系列浓度梯度的适配体溶液(0,1,2,3,4,5,6μM),分别加入终浓度为20μg/mL小檗碱溶液,30℃结合反应1h。之后将混合液加入到截留率为3kD的超滤离心管中,12000rpm离心30min,混合液经过超滤离心管离心后,与适配体结合的小檗碱被截留在膜内,滤液中仅包括未与适配体结合的游离小檗碱,收集清液用高效液相色谱(HPLC)测定游离小檗碱含量。根据式1对每一个适配体的Kd值进行分析。
Figure BDA0003314582240000111
其中y表示饱和度,即适配体结合的小檗碱含量占总含量的百分比;x表示加入适配体的浓度;Bmax为适配体与小檗碱的最大结合数目;Kd表示二者的解离常数。利用OriginPro 9.0进行非线性拟合,可得到每条适配体与小檗碱作用的解离常数Kd值。
HPLC测定BBR的条件为:使用UV检测器,检测波长设定为265nm,C18反向柱,流动相为甲醇与0.2%磷酸水溶液(质量百分比)的混合物(体积比甲醇:0.2%磷酸水溶液=45:55),流速为0.8mL/min,柱温保持25℃。首先测定不同浓度小檗碱与峰面积的标准曲线,如图4所示。
BBR标准曲线的回归方程为y=80002x+47538,R2=0.9983。
测定透过超滤膜的游离BBR浓度,利用OriginPro 9.0对适配体浓度与其对应的饱和度进行非线性拟合,拟合曲线如图5及6所示。
表12 R1与小檗碱Kd值测定
Figure BDA0003314582240000112
对比式1:
Figure BDA0003314582240000113
可得到适配体R1与BBR的解离常数Kd=764±15nM。
表13适配体R2与小檗碱Kd
Figure BDA0003314582240000114
Figure BDA0003314582240000121
对比式1:
Figure BDA0003314582240000122
可得到适配体R2与BBR的解离常数Kd=7.25±0.2569μM。
综上所述,筛选得到的适配体R1与BBR的亲和力较大,且达到了纳摩尔每升的数量级,可用于后续受BBR诱导调控元件的构建。
2.受小檗碱诱导的核糖开关元件的构建
2.1实验材料
R1-N10-RBS元件序列:
Figure BDA0003314582240000123
Figure BDA0003314582240000124
(两端分别为酶切位点Xba I及Nhe I)
限制酶Xba I、Nhe I、T4 DNA连接酶均购自NEB公司。DNA marker BM5000(+)、感受态细胞E.coli top10、E.coli BL21(DE3)等购自博迈德公司。实验用到的其他化学试剂包括培养基成分和抗生素等均来自宝如亿公司。片段R1-N10-RBS由上海生工公司合成。DNA测序由华大基因完成。质粒载体pBJ23119-egfp为实验室保存。
细菌培养、复苏、转化均在Luria-Bertani(LB)培养基中进行,其成分为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。固体LB培养基需加入15g/L的琼脂。
E.coli的发酵培养基为M9培养基:200mL 5×M9溶液,2mL浓度为1mol/L的MgSO4溶液,20mL 20%葡萄糖溶液,0.1mL浓度为1mol/L的CaCl2溶液,补加去离子水至1L。其中5×M9溶液成分:64g/L Na2HPO4·7H2O,15g/L KH2PO4,2.5g/L NaCl,5g/L NH4Cl。
抗生素种类及浓度:氯霉素170μg/mL。
2.2片段R1-N10-RBS与载体pBJ23119-egfp的酶切、连接、转化感受态细胞
(1)双酶切反应
将载体pBJ23119-egfp与片段R1-N10-RBS分别在37℃下进行2h的双酶切,酶切体系如表14所示。
表14 50μL酶切体系
Figure BDA0003314582240000131
酶切反应之后,将载体及片段的酶切体系置于65℃的金属浴中10min,使限制酶高温失活。
(2)连接反应
载体与片段的连接反应体系如表15所示,依次加入表15中各组分试剂,混匀,在16℃金属浴进行连接反应1h。
表15 10μL连接体系
Figure BDA0003314582240000132
(3)连接液转化感受态细胞
从-80℃冰箱中取出感受态细胞E.coli top 10,在冰盒上融化待用。向100μL感受态细胞中加入10μL连接液,冰浴30min。将上述体系在42℃水浴锅中热击90s,然后快速转移到冰水浴,计时2min。加入890μL LB培养基,轻轻吸打混匀后,在37℃,200rpm的恒温摇床中培养复苏1h。复苏后的菌液在12000rpm转速下离心5min,吸除700μL上清,吸打混匀剩余的300μL。涂布于含相应抗生素的LB固体培养基上,培养20h。挑取平板上的单菌落,进行菌落PCR验证,正确的阳性克隆接入4mL LB液体试管中,培养12h。将过夜培养的阳性克隆菌用50%甘油(菌液:甘油=7:3(v:v))保存,同时吸取1mL菌液,送交华大基因公司测序。
经过菌落PCR验证,共得到106株成功连入R1-N10-RBS基因的重组菌,将这些重组菌送公司测序。将重组载体pBJ23119-R1-N10-RBS-egfp的测序结果与R1-N10-RBS片段序列进行比对,确定每株重组菌中随机序列N10的具体序列。将随机N10的具体序列进行整理,除去测序未成功以及重复的序列,最终得到28种不同的N10序列,见表16(序列名称对应每批次获得的重组菌的编号)。
表16 N10的具体序列统计表
Figure BDA0003314582240000141
2.3重组菌发酵及荧光测定
利用电穿孔法将鉴定及测序正确的重组载体转化至宿主菌——E.coli BL21(DE3)中,具体步骤为:(1)从-80℃冰箱中取出感受态细胞E.coli BL21(DE3);(2)将8μL重组载体与感受态细胞轻轻混合,移入BioRad电转杯中电击(2.5kV);(5)加入LB培养基混匀菌体,转移至无菌离心管中,37℃复苏1小时;(6)涂布至含有相应抗性的培养基中,培养12小时后挑菌保藏备用。
以野生菌E.coli BL21(DE3)及重组菌E.coli BL21(pBJ23119-egfp)为对照,对所有构建成功的编号为A9,A11,A16,C2,C6,C8,C25,C27,D14,D24,D38,D44,E3,E11,E12,E13,E14,E17,E18,E22,E27,E30,E31,E37,E40,E55,E59,E65的重组菌E.coli BL21(pBJ23119-R1-N10-RBS-egfp)进行微氧摇瓶发酵,分别设置添加BBR与不添加BBR的组别进行对比,37℃200rpm培养6h后添加BBR。之后在30℃,150rpm的恒温振荡摇床中进行培养,每隔6h取样置于96孔板中,用Synergy H1全功能酶标仪测定EGFP的表达情况,其中激发波长479nm,发射波长520nm,结果如图7所示。
根据重组菌发酵过程的荧光强度变化筛选得到满足核糖开关功能的重组元件。此时重组菌需要满足的特征为:(1)若发酵液中未添加小檗碱,核糖开关应处于关闭状态,此时,N10序列与R1适配体序列片段形成互补结构,从而封闭了RBS序列,阻碍EGFP的翻译,重组菌无荧光;(2)当加入小檗碱,核糖开关应处于打开状态,此时由于BBR与适配体序列形成一定的二级结构,破坏了N10序列与适配体序列的结合,暴露出RBS序列,使得EGFP可以正常翻译并发出荧光。
由图7c-d可知,发酵24h后,未添加BBR的情况下,C6、C25、D44、E37、E40这5株重组菌的荧光强度与野生型BL21相近,说明这5株菌的EGFP表达被有效关闭。进而考察这5株重组菌在添加BBR时的荧光强度与不添加时的差别,计算开关元件的ON/OFF比率,统计如表17所示。
表17不同菌株在24h时的ON/OFF比率
Figure BDA0003314582240000151
由表17可知,C25菌株的ON/OFF比率较大,为8.94,由图7d所示,发酵24h时添加小檗碱的C25菌株与E.coli BL21(pBJ23119-egfp)的荧光强度值较接近,说明C25菌株中核糖开关元件的调控效果最好,其余四株重组菌C6,D44,E37,E40中包含的核糖开关元件也可正常调控下游基因的表达水平。
综上所述,通过荧光强度的表征,上述5株重组菌中的核糖开关元件受BBR诱导后能较好调控下游基因的表达,为BBR在今后工业生物技术领域的应用奠定了基础。重组菌中的核糖开关元件具体序列分别为(DNA序列):
C6:
Figure BDA0003314582240000161
C25:
Figure BDA0003314582240000162
D44:
Figure BDA0003314582240000163
E37:
Figure BDA0003314582240000164
E40:
Figure BDA0003314582240000165
其中加粗下划线部分为适配体R1,阴影部分为N10序列,波浪线标出的为RBS序列。
序列表
<110> 北京化工大学
<120> 一种基于小檗碱核酸适配体的核糖开关的设计方法
<141> 2021-10-21
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40
<212> RNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 1
caucauugcc uagucugauc ucaucuccgu cagauugaug 40
<210> 2
<211> 40
<212> RNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 2
acaucuccua gaccaacggc cugcauccug uccucuacgc 40
<210> 3
<211> 80
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 3
catcattgcc tagtctgatc tcatctccgt cagattgatg catccatggc cgatcacatg 60
accatcattg caagaaggag 80
<210> 4
<211> 80
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 4
catcattgcc tagtctgatc tcatctccgt cagattgatg catccatggc cgatcacatg 60
accagggttc caggaaggag 80
<210> 5
<211> 80
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 5
catcattgcc tagtctgatc tcatctccgt cagattgatg catccatggc cgatcacatg 60
accagctttg gcacaaggag 80
<210> 6
<211> 80
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 6
catcattgcc tagtctgatc tcatctccgt cagattgatg catccatggc cgatcacatg 60
accagccctg ttccaaggag 80
<210> 7
<211> 80
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 7
catcattgcc tagtctgatc tcatctccgt cagattgatg catccatggc cgatcacatg 60
accagggaac ggcaaaggag 80

Claims (3)

1.一种基于小檗碱核酸适配体的核糖开关的设计方法,其特征在于:包括筛选得到的BBR核酸适配体的序列R1、R2以及在R1序列基础上获得的受BBR调控的核糖开关的方法和核糖开关具体序列,其中:
核酸适配体R1:
5’-CAUCAUUGCCUAGUCUGAUCUCAUCUCCGUCAGAUUGAUG-3’
核酸适配体R2:5’-ACAUCUCCUAGACCAACGGCCUGCAUCCUGUCCUCUACGC-3’。
2.根据权利要求1所述的方法,其特征在于:
1)、一种利用SELEX技术筛选得到的与BBR具有较高亲和力的核糖核酸适配体序列R1及R2;
2)、以R1序列为基础,设计筛选获得受BBR调控的核糖开关元件;
核糖开关元件中下划线为适配体序列,灰色阴影表示N10序列,波浪线为RBS序列;
C6:
Figure FDA0003314582230000011
C25:
Figure FDA0003314582230000012
D44:
Figure FDA0003314582230000013
E37:
Figure FDA0003314582230000014
E40:
Figure FDA0003314582230000015
3.一种包含上述核糖开关元件载体的重组菌。
CN202111226716.XA 2021-12-07 2021-12-07 一种基于小檗碱核酸适配体的核糖开关的设计方法 Pending CN114085857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111226716.XA CN114085857A (zh) 2021-12-07 2021-12-07 一种基于小檗碱核酸适配体的核糖开关的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111226716.XA CN114085857A (zh) 2021-12-07 2021-12-07 一种基于小檗碱核酸适配体的核糖开关的设计方法

Publications (1)

Publication Number Publication Date
CN114085857A true CN114085857A (zh) 2022-02-25

Family

ID=80297356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111226716.XA Pending CN114085857A (zh) 2021-12-07 2021-12-07 一种基于小檗碱核酸适配体的核糖开关的设计方法

Country Status (1)

Country Link
CN (1) CN114085857A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487401A (zh) * 2022-04-18 2022-05-13 中国农业大学 一种微生物检测的双适配体功能核酸恒温微流控芯片传感器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834295A (zh) * 2017-03-21 2017-06-13 江南大学 一种特异识别细菌脂多糖的广谱核酸适配体及其定向筛选方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834295A (zh) * 2017-03-21 2017-06-13 江南大学 一种特异识别细菌脂多糖的广谱核酸适配体及其定向筛选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张丽娜: "小檗碱核酸适配体的筛选及其应用研究", 万方学位论文数据库 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487401A (zh) * 2022-04-18 2022-05-13 中国农业大学 一种微生物检测的双适配体功能核酸恒温微流控芯片传感器

Similar Documents

Publication Publication Date Title
Lalaouna et al. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise
AU2012264606B2 (en) Transcription terminator sequences
CN106947766B (zh) 一种枯草芽孢杆菌具有启动子功能的dna片段及其应用
CN117660397A (zh) 耐热dna聚合酶突变体
Juntawong et al. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation
KR20240024171A (ko) 재조합 원형 rna로부터 개선된 단백질 번역을 위한 조성물 및 방법
CN114085857A (zh) 一种基于小檗碱核酸适配体的核糖开关的设计方法
Borgmann et al. A small regulatory RNA controls cell wall biosynthesis and antibiotic resistance
Brenes‐Álvarez et al. NsiR1, a small RNA with multiple copies, modulates heterocyst differentiation in the cyanobacterium Nostoc sp. PCC 7120
CN106086025B (zh) 一种具有启动子功能的dna片段及其应用
JP5769173B2 (ja) 環境ストレス下の翻訳抑制を回避する5’utrをコードする組換えdna分子
Diel et al. A novel plasmid‐transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in Agrobacterium fabrum
Chellappan et al. Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing
CN111948181A (zh) 利用烟草双荧光素酶报告系统检测ath-miRNA170-3p靶向MSH2的方法
CN114774425A (zh) 一种基于工程大肠杆菌的MERS-CoV病毒检测系统
CN107603979B (zh) 一种高效表达外源蛋白的启动子样基因及其应用
AU2017208930A1 (en) Mini-ILL RNases, methods for changing specificity of RNA sequence cleavage by mini-ILL RNases, and uses thereof
CN107475257B (zh) 高效启动表达外源蛋白的启动子样基因及其应用
CN107043772B (zh) 乳酸乳球菌乳亚种YF11的非编码小RNA s013
CN115485374A (zh) 一种具有高扩增活性的耐热dna聚合酶突变体
Czarnocka-Cieciura et al. mRNA decay can be uncoupled from deadenylation during stress response
CN113817736B (zh) 一种具有群体感应特征的启动子及其应用
Diel et al. A novel plasmid-transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic mRNAs in Agrobacterium tumefaciens
Ren et al. Analysis of the uridylation of both ARGONAUTE-bound MiRNAs and 5′ cleavage products of their target RNAs in plants
Zhang et al. Transiently Induce RNA Silencing in Plants Using a Tobacco Necrosis Virus A (TNV-A)-Based dsRNA Production System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220225