CN114045146A - 一种高导热性能水性聚氨酯复合材料及制备方法 - Google Patents

一种高导热性能水性聚氨酯复合材料及制备方法 Download PDF

Info

Publication number
CN114045146A
CN114045146A CN202111567630.3A CN202111567630A CN114045146A CN 114045146 A CN114045146 A CN 114045146A CN 202111567630 A CN202111567630 A CN 202111567630A CN 114045146 A CN114045146 A CN 114045146A
Authority
CN
China
Prior art keywords
waterborne polyurethane
polyurethane composite
thermal conductivity
composite material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111567630.3A
Other languages
English (en)
Inventor
吴淑英
赵玉金
吴志民
薛耀宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202111567630.3A priority Critical patent/CN114045146A/zh
Publication of CN114045146A publication Critical patent/CN114045146A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种高导热性能水性聚氨酯复合材料,首先交联性水性聚氨酯复合乳液是由大分子二元醇、二异氰酸酯、亲水性扩链剂、小分子扩链剂、中和剂、去离子水、改性石墨烯粉末、内交联剂制备而成。本发明制备的水性聚氨酯复合乳液胶粒平均粒径40.00~60.00mm,固含量为30%左右,复合乳液的离心稳定性很好,复合乳液干燥成膜后铅笔硬度为1H~2H,吸水率为20~40%,乙醇溶胀率为10~35%,拉伸强度为10~25MPa,断裂伸长率为500~800%,导热系数为0.3~0.7W/(m·K),当填充质量分数为3%时,复合胶膜的导热系数为0.65 W/(m·K),拉伸强度为17.9MPa,断裂伸长率为754%,此时水性聚氨酯复合薄膜的各方面性能均较优异。

Description

一种高导热性能水性聚氨酯复合材料及制备方法
技术领域
本发明属于导热树脂材料领域,具体的说,涉及一种高导热性能水性聚氨酯复合材料及制备方法。
背景技术
随着微电子集成与组装技术迅速发展,电子设备与元器件日益微型化、多功能化,高效化,其工作频率急剧增高,造成的结果就是器件运行时产生的热量会急剧增加,从而导致芯片温度急剧升高,也会造成环境温度不断升高。如果产生的热量不能及时地向外释放出去,电子设备和电子元器件的使用可靠性将受到极大的影响,使用寿命也会极大的缩短。而且还会威胁电路的安全。因此,为保证电子设备和电子元器件能够持续平稳高效的运行,如何提高散热效率,提高设备使用寿命,成为微电子封装领域丞待解决的问题。现普遍使用具有高导热率的导热材料作为导热填料,选择一种树脂作为填充复合材料的基体,从而保障电子元器件的正常运行,提高电子设备和电子元器件的散热能力。
水性聚氨酯的水性聚氨酯以水为分散介质,具有低VOCs、相容性好、易于改性、运输储存过程中均安全可靠等优点,其固化膜具有优异的力学性能,耐磨性能及成膜性能等,广泛应用于涂料、胶黏剂、油墨、导热导电胶及合成革表面等领域。但是,纯水性聚氨酯本体的导热系数很低,大约为0.018~0.024W/(m·K)。针对上述的问题,可以通过在聚氨酯链段结构中引入高导热填料提高水性聚氨酯的导热系数,改善其表面的拉伸强度和断裂伸长率。
首先,石墨烯具有极高的导热系数5300W/(m·K),这是因为石墨烯的独特结构,是由碳组成的二维周期六角环式蜂窝状层状结构,石墨烯依靠独特的声子模式进行热传输,是目前被广泛应用于填充复合材料的最佳基体,但是,如果高质量分数填料容易在树脂基体发生团聚,难以在基体均匀分散,从而引起导热系数的降低,所以说,为解决石墨烯的分散问题,我们通常需要先石墨烯表面进行改性,解决分散问题,再通过溶液混合的复合方法制备复合材料,石墨烯的功能化一般是通过将氧化石墨烯功能化再还原而实现的。
因此,如何提供一种高导热,机械性能优良,耐热、耐水性能好,硬度高的水性聚氨复合材料,成为本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明提供了一种高导热性能水性聚氨酯复合材料及制备方法,制备得到的水性聚氨酯乳液成膜后具备高导热,机械性能优良,耐热、耐水性能好,硬度高在高温下聚氨酯胶膜不会出现回粘,内部具有交联网状结构。
为了实现上述目的,本发明采用如下技术方案:
一种高导热性能水性聚氨酯复合材料制备,包括以下原料,各原料之间的摩尔比为:
二异氰酸酯:亲水性扩链剂:有机锡催化剂:小分子扩链剂:中和剂:改性氧化石墨烯粉末:去离子水:内交联剂:端羟基二元醇的摩尔比为:(3~6):(0.5~1.5):(0.015~0.04):(1.0~3.0):(0.5~1.25):(1.7~5):(200~350):(0.1~0.3):1。
优选的,所述端羟基二元醇为聚己内酯二元醇、聚四氢呋喃醚二元醇、聚己二酸-1,4-丁二醇酯二元醇、聚丙二醇、聚乙二醇中的一种或多种混合物。
优选的,所述二异氰酸酯为异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯、六亚甲基二异氰酸酯中的一种或多种混合物。
优选的,所述改性石墨烯粉末为硅烷偶联剂改性粉末,氨性改性剂改性石墨烯粉末,异氰酸酯改性石墨烯粉末一种或多种混合物。
优选的,所述亲水性扩链剂为二羟甲基丙酸或二羟甲基丁酸中的至少一种。
优选的,所述小分子扩链剂为乙二醇、1,4-丁二醇、乙二胺、1,6-己二醇、1,3-丙二醇中的一种或多种混合物。
优选的,所述有机锡催化剂为二月桂酸二丁基锡、辛酸亚锡中的至少一种。
优选的,所述内交联剂为三羟甲基丙烷、甲基丙烯酸、甲基丙烯酸羟乙酯的至少一种。
进一步地,一种高导热性能水性聚氨酯复合薄膜的制备方法,包括以下步骤:
1)称取如权利要求1-8所述的一种高导热性能的水性聚氨酯复合材料的各原料备用;
2)将氧化石墨烯、三乙胺、3-氨基丙基三乙氧基硅烷在乙醇-水溶液常温下磁力搅拌反应24h,然后用抽滤设备将得到的反应混合液过滤,用无水乙醇洗涤和去离子水各洗涤至中性,得到G1,然后超声分散60min,滴加入三乙醇胺对其进行还原,常温磁力搅拌24h,再用无水乙醇和去离子水各洗涤3次至中性,最后在60℃干燥箱干燥2h,得到改性还原氧化石墨烯粉末G2;
3)在120℃下将真空除水处理后的端羟基二元醇、二异氰酸酯、内交联剂有机锡催化剂在少量丙酮中搅拌混合,均匀溶解后,在80~85℃下搅拌反应,在转速400~600rpm,搅拌反应3~4h,当达到反应终点即停止反应,得到异氰酸酯基团封端的预聚物A;
4)在预聚物A中,按比例加入亲水性扩链剂,在70~75℃下反应,在转速400~600rpm,搅拌反应2~3h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物B;
5)在异氰酸酯基团封端的离子化聚合物B中按比例加入小分子扩链剂,温度升至75~85℃下继续反应,在转速400~600rpm,搅拌反应2~3h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物C;
6)将所述步骤5)得到的离子化聚合物C降温至55~65℃,加入预先超声分散好的G2的丙酮分散液,在转速400~600rpm,搅拌反应2~3h。然后降温至30~40℃,加入中和剂中和所得离子化聚合物C中的羧酸基团,在转速400~600rpm搅拌反应20~40min,再在1200~1400rpm高转速下加入去离子水,搅拌20~40min,形成交联型的复合水性聚氨酯乳液,然后蒸馏回收丙酮,即得到复合水性聚氨酯乳液,然后倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到一种高导热性能的水性聚氨酯复合薄膜。
优选的,所述中和剂为三乙胺、三甲胺中的一种或二者混合物。
经由上述的技术方案可知,与现有技术相比,本发明增益效果如下:
1.本发明选用3-氨基丙基三乙氧基硅烷改性石墨烯,利用3-氨基丙基三乙氧基硅烷水解产生的硅羟基与氧化石墨烯表面的羟基、羧基进行缩合将3-氨基丙基三乙氧基硅烷共价键合到石墨烯表面上,得到含氨基的氧化石墨烯,然后采用还原剂二乙醇胺对其还原,得到含氨基的还原氧化石墨烯。最后利用表面上的氨基与聚氨酯预聚体上的异氰酸酯基反应,通过原位聚合法将共价键合到水性聚氨酯基体中,得到复合乳液。还原氧化石墨烯在水性聚氨酯乳液的分散性很好,同时使得聚氨酯复合乳液在成膜后具备高导热,机械性能优良,耐热、耐水性能好,硬度高。在高温下聚氨酯复合胶膜不会出现回粘,内部具有交联网状结构。
2.本发明制备得到的水性聚氨酯复合乳液胶粒平均粒径40.00~60.00mm,固含量为30%左右,复合乳液的离心稳定性很好,复合乳液干燥成膜后铅笔硬度为1H~2H,吸水率为20~40%,乙醇溶胀率为10~35%,拉伸强度为10~25MPa,断裂伸长率为500~800%,导热系数为0.3~0.7W/(m·K),当填充质量分数为3%时,复合胶膜的导热系数为0.65W/(m·K),拉伸强度为17.9MPa,断裂伸长率为754%,此时水性聚氨酯复合材料的各方面性能均较优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例和对比例。
图1为实施例1和对比例1的红外吸收图谱。
图2为实施例1和对比例1的热失重曲线。
图3为实施例1、2、3、4和对比例1的应力-应变曲线。
图4为实施例1、2、3、4和对比例1导热系数关系对比。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
a.主要反应原料及比例组成:
原料 质量(g) 毫摩尔(mmol)
异佛尔酮二异氰酸酯 6.72 30.24
改性氧化石墨烯粉末 0.17 14.15
二羟甲基丙酸 0.84 6.25
1,4-丁二醇 0.79 8.4
三乙胺 0.633 6.24
二月桂酸二丁基锡 0.15 0.25
去离子水 39.9 2215
三羟甲基丙烷 0.168 1.25
聚四氢呋喃醚二元醇 8.29 8.29
反应原料二异氰酸酯为异佛尔酮二异氰酸酯,改性氧化石墨烯粉末为3-氨基丙基三乙氧基硅烷改性,亲水性扩链剂为二羟甲基丙酸,小分子扩链剂为1,4-丁二醇,中和剂为三乙胺,有机锡催化剂为二月桂酸二丁基锡,去离子水,内交联剂三羟甲基丙烷,端羟基二元醇为聚四氢呋喃醚二元醇,它们的摩尔比为3.65:1.70:0.75:1.01:0.75:0.03:267:0.15:1。
b.将氧化石墨烯、三乙胺、3-氨基丙基三乙氧基硅烷在乙醇-水溶液常温下磁力搅拌反应24h,然后用抽滤设备将得到的反应混合液过滤,用无水乙醇洗涤和去离子水各洗涤至中性,得到G1,然后超声分散60min,滴加入三乙醇胺对其进行还原,常温磁力搅拌24h,再用无水乙醇和去离子水各洗涤3次至中性,最后在60℃干燥箱干燥2h,得到改性氧化石墨烯粉末G2。取样进行分析,对其傅里叶红外光谱测试;
c.在120℃下将真空除水处理后的端羟基二元醇、二异氰酸酯、内交联剂有机锡催化剂在少量丙酮中搅拌混合,均匀溶解后,在80~85℃下搅拌反应,在转速400~600rpm,搅拌反应3~4h,当达到反应终点即停止反应,得到异氰酸酯基团封端的预聚物A;
d.在预聚物A中,按比例加入亲水性扩链剂,在70~75℃下反应,在转速400~600rpm,搅拌反应2~3h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物B;
e.在异氰酸酯基团封端的离子化聚合物B中按比例加入小分子扩链剂,温度升至75~85℃下继续反应,在转速400~600rpm,搅拌反应3~4h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物C;
f.将所述步骤e)得到的离子化聚合物C降温至55~65℃,加入预先超声分散好的0.170gG2的丙酮分散液,在转速400~600rpm,搅拌反应2~3h。然后降温至30~40℃,加入中和剂中和所得离子化聚合物C中的羧酸基团,在转速400~600rpm搅拌反应20~40min,再在1200~1400rpm高转速下加入去离子水,搅拌20~40min,形成交联型的复合水性聚氨酯乳液,然后蒸馏回收丙酮,即得到复合水性聚氨酯乳液,记为ARGO-WPU-1,对其固含量,粒径,稳定性进行测试,乳液固含量为31.2%,乳液平均粒径为43.14mm,乳液离心稳定,然后取其乳液倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到质量分数为1%的高导热性能的水性聚氨酯复合材料。对其进行导热系数测试及吸水率,拉伸强度,断裂伸长率,铅笔硬度的测试。当质量分数为1%时,复合胶膜的导热系数为0.37W/(m·K),吸水率为20.6%,拉伸强度为15.2MPa,断裂伸长率为617%,铅笔硬度为1H。
实施例2:
与实施例1对比,上述步骤未做改变,只是对G2的添加量做一下改变,添加量为0.343gG2的丙酮分散液,即得到复合水性聚氨酯乳液,记为ARGO-WPU-2,对其固含量,粒径,稳定性进行测试,乳液固含量为30.8%,乳液平均粒径为48.22mm,乳液离心稳定。然后取其乳液倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到质量分数为2%的高导热性能的水性聚氨酯复合材料。对其进行导热系数测试及吸水率,拉伸强度,断裂伸长率,铅笔硬度的测试。当质量分数2%时,复合胶膜的导热系数为0.62W/(m·K),吸水率为22.8%,拉伸强度为16.1MPa,断裂伸长率为630%,铅笔硬度为1H。
实施例3:
与实施例1对比,上述步骤未做改变,只是对G2的添加量做一下改变,添加量为0.520gG2的丙酮分散液,即得到复合水性聚氨酯乳液,记为ARGO-WPU-3,对其固含量,粒径,稳定性进行测试,乳液固含量为32.1%,乳液平均粒径为57.55mm,乳液离心稳定。然后取其乳液倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到质量分数3%的高导热性能的水性聚氨酯复合材料。对其进行导热系数测试及吸水率,拉伸强度,断裂伸长率,铅笔硬度的测试。当质量分数为3%时,复合胶膜的导热系数为0.65W/(m·K),吸水率为26.1%,拉伸强度为17.9MPa,断裂伸长率为754%,铅笔硬度为2H。
实施例4:
与实施例1对比,上述步骤未做改变,只是对G2的添加量做一下改变,添加量为0.700gG2的丙酮分散液,即得到复合水性聚氨酯乳液,记为ARGO-WPU-4,对其固含量,粒径,稳定性进行测试,乳液固含量为32.8%,乳液平均粒径为58.08mm,乳液离心稳定。然后取其乳液倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到质量分数4%的高导热性能的水性聚氨酯复合材料。对其进行导热系数测试及吸水率,拉伸强度,断裂伸长率,铅笔硬度的测试。当质量分数为4%时,复合胶膜的导热系数为0.52W/(m·K),吸水率为28.2%,拉伸强度为25.43MPa,断裂伸长率为640%,铅笔硬度为2H。
对比例1:
与实施例1对比,步骤2省略,未添加任何导热填料,仅制作纯水性聚氨酯乳液。复合乳液固含量为30.2%,乳液平均粒径35.48mm,乳液离心稳定。然后取其乳液倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到纯水性聚氨酯薄膜。对其进行导热系数测试及吸水率,拉伸强度,断裂伸长率,铅笔硬度的测试。其薄膜的导热系数为0.018W/(m·K),吸水率为15.8%,拉伸强度为9.48MPa,断裂伸长率为512%,铅笔硬度为HB。
检测方法:
对以上各实施例及对比例所合成的水性聚氨酯复合乳液及其对应的薄膜进行相关测试,测试方法如下:
乳液固含量:按照GB/2793-1995测试,锡纸盒烘干之后称重M1,在锡纸盒滴加聚氨酯复合乳液称重M2,放置于60℃烘箱中三小时后称重,再每隔半小时称重,直至两次重量相对差值小于0.1g,最后称重M3,乳液固含量=[(M3-M1)/(M2-M1)]×100%。
乳液稳定性:采用高速离心机对复合乳液进行离心稳定性测试,取3ml复合乳液置于10ml规格离心管中,在转速为3000r/min下离心15min后取出,观察是否有分层或者是沉淀现象;若无分层或者沉淀现象则离心稳定性合格。
水性聚氨酯复合胶膜的耐水性测试:准确称取质量W0的水性胶黏剂胶膜,25℃下用去离子水浸泡24小时后取出,用滤纸擦去表面水,称量质量为W1,吸水率为=[(W1-W0)/W0]×100%。若吸水率低则耐水性较好,吸水率高则耐水性较差。
复合胶膜力学性能测试:根据GB/T528-2009采用电脑式万能材料试验机进行测试,拉伸速度为100mm/min,记录复合胶膜的拉伸强度与断裂伸长率。
导热系数测试:采用西安夏溪电子科技有限公司的热导率测试仪(TC3100),在常温环境下,使用瞬态热线法对复合薄膜材料进行三次热导率测试,最后取平均值,得到导热系数。
铅笔硬度测试:按照GB/T6739-1996测试胶膜的铅笔硬度,结果取三次测试后的平均值。
表1各实施例及对比例测试结果
Figure BDA0003425185120000071
Figure BDA0003425185120000081
通过上述表1可以得知,本发明实施例3制备的水性聚氨酯复合薄膜的各方面性能均较优异。
进一步地,参见说明书附图,图1所示的是实施例1和对比例1的红外吸收图谱,从图中可以看出,其红外谱图的变化差别不大,只是在3200-3400cm-1处的氢键在减弱,2800-3000cm-1-CH2-得到增强。3350cm-1处吸收峰变得狭窄,这就说明石墨烯的表面的-OH参与反应,在2200-2700cm-1-NCO吸收峰消失,因为有氨基甲酸酯的存在,结合1540cm-1N-H键的吸收峰,这就说明还原氧化石墨烯接到水性聚氨酯上面。
图2所示的是实施例1和对比例1的热失重曲线,与对比例1相比,实施例1的热失重曲线,从图中可以看出,二者的热分解趋势相似,热分解分为两部分,第一部分为280℃附近硬段的分解,第二部分为420℃附近软段的分解。但是石墨烯改性水性聚氨酯的热分解温度高于纯水性聚氨酯,热失重减少,表明其耐热性有所提高,硬段热分解向后延迟,这是因为石墨烯的添加,可以充当水性聚氨酯硬段的作用,其他实施例类似。
图3为实施例1、2、3、4和对比例1的应力-应变曲线,从图中可以看出,实施例3的拉伸强度在17.9MPa左右,断裂伸长率在754%,对比例1的拉伸强度减少到9.48MPa,断裂伸长率降低到了512%左右,这说明石墨烯在水性聚氨酯基体分散均匀,导热填料与水性聚氨酯的异氰酸酯基反应,从而使得填料和基体界面结合力增大,提高应力传递和能量的转移与消耗,从而使得力学性能提高,胶膜的拉伸强度增加,断裂伸长率增加。
图4为实施例1、2、3、4和对比例1的导热系数,从图中可以看出,纯聚氨酯膜的导热系数较小,为0.018W/(m·K),加入3%质量分数填料增加了复合薄膜的导热系数,为0.65W/(m·K),大约增加了35倍左右。填料之间的距离变小,联接得更加紧,填料之间能够形成良好的导热网络,更加有利于热量传递,加快导热速率,后续结果证明,导热系数随着质量分数的增加先增加后减少,这边暂不做解释。
本说明书中各个实施例采用质量分数递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

Claims (10)

1.一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,包括以下原料,各原料之间的摩尔比为:
二异氰酸酯:亲水性扩链剂:有机锡催化剂:小分子扩链剂:中和剂:改性氧化石墨烯粉末:去离子水:内交联剂:端羟基二元醇的摩尔比为:(3~6):(0.5~1.5):(0.015~0.04):(1.0~3.0):(0.5~1.25):(1.7~5):(200~350):(0.1~0.3):1。
2.根据权利要求1所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述端羟基二元醇为聚己内酯二元醇、聚四氢呋喃醚二元醇、聚己二酸-1,4-丁二醇酯二元醇、聚丙二醇、聚乙二醇中的一种或多种混合物。
3.根据权利要求1所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述二异氰酸酯为异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯、六亚甲基二异氰酸酯中的一种或多种混合物。
4.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述改性石墨烯粉末为硅烷偶联剂改性粉末,氨性改性剂改性石墨烯粉末,异氰酸酯改性石墨烯粉末一种或多种混合物。
5.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述亲水性扩链剂为二羟甲基丙酸或二羟甲基丁酸中的至少一种。
6.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述小分子扩链剂为乙二醇、1,4-丁二醇、乙二胺、1,6-己二醇、1,3-丙二醇中的一种或多种混合物。
7.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述有机锡催化剂为二月桂酸二丁基锡、辛酸亚锡中的至少一种。
8.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述内交联剂为三羟甲基丙烷、甲基丙烯酸、甲基丙烯酸羟乙酯的至少一种。
9.一种高导热性能的水性聚氨酯复合材料的制备方法,其特征在于,包括以下步骤:
1)称取如权利要求1-8所述的一种高导热性能的水性聚氨酯复合材料的各原料备用
2)将氧化石墨烯、三乙胺、3-氨基丙基三乙氧基硅烷在乙醇-水溶液常温下磁力搅拌反应24h,然后用抽滤设备将得到的反应混合液过滤,用无水乙醇洗涤和去离子水洗剂三次洗涤至中性,得到G1,然后超声分散60min,滴加入三乙醇胺对其进行还原,常温磁力搅拌24h,再用无水乙醇和去离子水各洗涤3次至中性,最后在60℃干燥箱干燥2h,得到改性还原氧化石墨烯粉末G2;
3)将端羟基二元醇、二异氰酸酯、内交联剂、有机锡催化剂在少量丙酮中搅拌混合,均匀溶解后,在80~85℃下搅拌反应,在转速400~600rpm,搅拌反应3~4h,当达到反应终点即停止反应,得到异氰酸酯基团封端的预聚物A;
4)在预聚物A中,按比例加入亲水性扩链剂,在70~75℃下反应,在转速400~600rpm,搅拌反应2~3h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物B;
5)在异氰酸酯基团封端的离子化聚合物B中按比例加入小分子扩链剂,温度升至75~85℃下继续反应,在转速400~600rpm,搅拌反应2~3h,当达到反应终点即停止反应,得到异氰酸酯基团封端的离子化聚合物C;
6)将所述步骤5)得到的离子化聚合物C降温至55~65℃,加入预先超声分散好的G2的丙酮分散液,在转速400~600rpm,搅拌反应2~3h。然后降温至30~40℃,加入中和剂中和所得离子化聚合物C中的羧酸基团,在转速400~600rpm搅拌反应20~40min,再在1200~1400rpm高转速下加入去离子水,搅拌20~40min,形成交联型的复合水性聚氨酯乳液,然后蒸馏回收丙酮,即得到复合水性聚氨酯乳液,然后倒入直径为4cm的圆形四氯乙烯模具,室温干燥48h,然后真空干燥箱干燥24h,得到一种高导热性能的水性聚氨酯复合材料。
10.根据权利要求1任一项所述的一种高导热性能的水性聚氨酯复合材料,其复合乳液特征在于,所述中和剂为三乙胺、三甲胺中的一种或二者混合物。
CN202111567630.3A 2021-12-22 2021-12-22 一种高导热性能水性聚氨酯复合材料及制备方法 Pending CN114045146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111567630.3A CN114045146A (zh) 2021-12-22 2021-12-22 一种高导热性能水性聚氨酯复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111567630.3A CN114045146A (zh) 2021-12-22 2021-12-22 一种高导热性能水性聚氨酯复合材料及制备方法

Publications (1)

Publication Number Publication Date
CN114045146A true CN114045146A (zh) 2022-02-15

Family

ID=80213285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111567630.3A Pending CN114045146A (zh) 2021-12-22 2021-12-22 一种高导热性能水性聚氨酯复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN114045146A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117487501A (zh) * 2023-12-27 2024-02-02 中天科技装备电缆有限公司 半导电水性弹性胶及其制备方法、复合阻燃软电缆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351174A (zh) * 2011-08-23 2012-02-15 华南理工大学 一种可分散性硅烷功能化石墨烯的制备方法
US20130131301A1 (en) * 2011-11-17 2013-05-23 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Method for Making Waterborne Polyurethane with a Reactive Functional Group and a Nanocomposite Made of the Same
CN103254400A (zh) * 2013-05-20 2013-08-21 常州大学 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN105384890A (zh) * 2015-12-16 2016-03-09 江南大学 一种功能化石墨烯及其改性水性光固化聚氨酯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351174A (zh) * 2011-08-23 2012-02-15 华南理工大学 一种可分散性硅烷功能化石墨烯的制备方法
US20130131301A1 (en) * 2011-11-17 2013-05-23 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Method for Making Waterborne Polyurethane with a Reactive Functional Group and a Nanocomposite Made of the Same
CN103254400A (zh) * 2013-05-20 2013-08-21 常州大学 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN105384890A (zh) * 2015-12-16 2016-03-09 江南大学 一种功能化石墨烯及其改性水性光固化聚氨酯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪林峰等: "乙醇胺功能化石墨烯及其PVB复合材料的制备", 《高分子学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117487501A (zh) * 2023-12-27 2024-02-02 中天科技装备电缆有限公司 半导电水性弹性胶及其制备方法、复合阻燃软电缆

Similar Documents

Publication Publication Date Title
US20220290020A1 (en) Thermally Conductive Polyurethane Adhesive Composition
CN109825180B (zh) 一种氨基硅油改性的弹性体材料及其制备方法
CN113999643A (zh) 导热双组分聚氨酯胶粘剂及其制备方法和应用
CN109473677B (zh) 锂离子电池、硅负极水系粘结剂及其制备方法
CN114940885B (zh) 一种导热双组分聚氨酯胶粘剂及其制备方法、应用
CN104804699A (zh) 一种热熔胶
WO2009071467A1 (en) Silica and also adhesive and sealant systems
CN115558457B (zh) 一种双组分聚氨酯结构胶及其制备方法和应用
CN114045146A (zh) 一种高导热性能水性聚氨酯复合材料及制备方法
Wang et al. Environmentally friendly plant‐based waterborne polyurethane for hydrophobic and heat‐resistant films
CN107286310B (zh) 一种含环氧型纳米类流体的反应型抗静电聚氨酯弹性体及其制备方法
Nemati et al. Preparation of polyurethane-acrylate and silica nanoparticle hybrid composites by a free radical network formation method
Jung et al. Chemical hybridization of imidized waterborne polyurethane with silica particle
Xian et al. Synthesis and properties of CO 2 copolymer-based waterborne polyurethane with high solid content
Xu et al. Preparation and characterization of rosin-based waterborne polyurethane from maleopimaric acid polyester polyol
CN111925642A (zh) 自修复碳纳米管-阳离子水性聚氨酯电磁屏蔽复合材料的制备方法
CN111511792B (zh) 具有优异的机械性能组合的导热聚氨酯粘合剂
CN111187507A (zh) 一种石墨烯基杂化阻燃剂/自修复聚氨酯阻燃复合材料的制备方法
CN113337101B (zh) 一种电子用高阻隔性tpu薄膜及其制备方法
CN115572363A (zh) 一种高导热聚氨酯、制备方法及其用途
CN113831830B (zh) 一种高阻隔聚氨酯自修复组合物及其制备方法
CN114805734B (zh) 一种水性聚氨酯分散体及其制备方法,一种自交联型水性聚氨酯防水涂料
Ji et al. Polydimethylsiloxane and castor oil comodified waterborne polyurethane
Jakhmola et al. Emerging research trends in the field of polyurethane and its nanocomposites: Chemistry, Synthesis, Characterization, Application in coatings and Future perspectives
CN113840883A (zh) 使用包含聚(环氧烷)(甲基)丙烯酸偏酯、环状碳酸酯和水的剥离剂制备至少部分地剥离的粘土的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220215

WD01 Invention patent application deemed withdrawn after publication