CN114032410A - 一种高硬度高导热铁铜材料及其制备方法 - Google Patents

一种高硬度高导热铁铜材料及其制备方法 Download PDF

Info

Publication number
CN114032410A
CN114032410A CN202111385112.XA CN202111385112A CN114032410A CN 114032410 A CN114032410 A CN 114032410A CN 202111385112 A CN202111385112 A CN 202111385112A CN 114032410 A CN114032410 A CN 114032410A
Authority
CN
China
Prior art keywords
hardness
ball milling
iron
copper material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111385112.XA
Other languages
English (en)
Other versions
CN114032410B (zh
Inventor
刘美红
梁梦
黎振华
解靖伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Yunnei Power Machinery Manufacturing Co ltd
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111385112.XA priority Critical patent/CN114032410B/zh
Publication of CN114032410A publication Critical patent/CN114032410A/zh
Application granted granted Critical
Publication of CN114032410B publication Critical patent/CN114032410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开一种高硬度高导热铁铜材料及其制备方法,属于新材料领域。本发明将气雾化工艺制备的粒径为10~60微米的纯铜粉和粒径为50~100微米的Fe‑(0.3‑0.5)C‑(1.8~4.6)B粉末混合,进行球磨,然后将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,在铺粉厚度100~150微米、激光功率280~370W、扫描速度600~900毫米/秒、扫描间距0.1~0.15微米条件下进行激光选区熔化微冶金增材,凝固冷却后获得新型高硬度高导热铁铜材料并实现增材制备成形。本发明获得的高硬度高导热铁铜材料硬度超过HRC35,导热率超过95W/(m.k),与铍铜相当,具有无毒无污染、安全性高、成本低、应用广等特点。

Description

一种高硬度高导热铁铜材料及其制备方法
技术领域
本发明涉及一种高硬度高导热铁铜材料及其制备方法,属于新材料领域。
背景技术
铍铜是以铍为主要添加元素的青铜,又称为铍青铜。铍铜硬度高,导热率高,弹性好,抗火花、耐磨损、抗应力松弛,加工性能好,广泛用于注塑模具、防爆工具、和电子元器件中的载流簧片、接插件、触点、紧固弹簧等。但是,铍及其氧化物和盐类化合物以粉尘、烟雾、蒸气形式经呼吸道吸收后会对肺严重伤害,经破损皮肤吸收后,会引起局部病变。铍进入人体后,难溶的氧化铍主要储存在肺部,引起肺炎。可溶性的铍化合物主要储存在骨骼、肝脏、肾脏和淋巴结等处,它们可与血浆蛋白作用,生成蛋白复合物,引起脏器或组织的病变而致癌。
铜和铁可以形成互溶体系,过饱和的铁固溶到铜中,可以强化铜基体,提高硬度和强度。但是,固溶的铁会导致铜的导热性能急剧下降。此外,合金化电阻熔炼或感应熔炼方法,难以实现铁的过饱和溶解,铁的强化作用难以体现。激光选区熔化微冶金增材以聚焦激光束为热源,按照成形件三维模型的离散切片数据扫描粉床上的球形粉末,以极快速度熔化粉末,凝固后获得成形件,这为实现铜基体中铁的过饱和可控固溶、实现强度硬度和导热性的可靠调控,提供了条件。
发明内容
本发明不使用有毒的铍,以成分简单的纯铜和Fe-C-B合金为组元,通过选区激光熔化粉床微冶金快速凝固方法,解决了铜-铁难混熔合金的制备和成形问题。
本发明的目的在于提供一种高硬度高导热铁铜材料及其的制备方法,制备的高硬度高导热铁铜材料硬度超过HRC35,导热率超过95W/(m.k),与铍铜相当,具有无毒无污染、安全性高、成本低、应用广等突出优点,包括以下步骤:
(1)将气雾化工艺制备的粒径为10~60微米的纯铜粉和粒径为50~100微米的Fe-C-B合金粉末按照重量比4:(0.2~1)混合。
(2)将混合粉末进行行星球磨,将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,激光选区熔化微冶金增材,凝固冷却后获得新型高硬度高导热铁铜材料并实现增材制备成形。
优选的,本发明步骤(2)中行星球磨的条件为:在150~300转转速下分5阶段球磨,其中每阶段球磨5分钟后暂停25分钟再进行下一阶段球磨。
优选的,本发明所述激光选区熔化的条件为:在铺粉厚度100~150微米、激光功率280 ~ 370W、扫描速度600~900毫米/秒、扫描间距0.1~0.15微米条件下进行
本发明步骤(1)中所述用于高硬度高导热铁铜材料的原材料为气雾化纯铜球形粉末和Fe-C-B铁基球形粉末,其中Fe、C、B的摩尔比为1:(0.3-0.5):(1.8~4.6);其添加量和成分,可以根据工况条件的需要进行改变,实现性能的有效调节。
本发明的另一目的在于提供所述的方法制备得到的高硬度高导热铁铜材料。
本发明的有益效果:
(1)新型高硬度高导热铁铜材料但不使用有毒的铍元素,克服了铍铜生产过程中对人体的危害,无毒无污染。
(2)以成分简单的纯铜和Fe-C-B合金为组元,充分发挥激光选区熔化增材制备粉床微冶金过程中快速凝固的特点,解决了铜-铁难混熔合金的制备和成形问题;制备的高硬度高导热铁铜材料硬度超过HRC35,导热率超过95W/(m.k),与铍铜相当。
(3)球磨方法提高铜粉的激光吸收率和Fe-C-B粉的均匀分布,有利于实现成形件致密化和组织均匀性。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)将气雾化工艺制备的粒径为10~30微米的纯铜粉和粒径为50~80微米的Fe-0.30C-1.8B粉末按照重量比4:0.2混合。
(2)使用行星球磨机在150转转速下分5阶段球磨25分钟,其中每阶段球磨5分钟后暂停25分钟再进行下一阶段球磨。
(3)将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,在铺粉厚度100微米、激光功率280W、扫描速度600毫米/秒、扫描间距0.1微米条件下进行激光选区熔化微冶金增材。
(4)凝固冷却后获得实现了增材制备成形的高硬度高导热铁铜材料,硬度为36HRC,导热率为126 W/(m.k)。
实施例2
(1)将气雾化工艺制备的粒径为30~60微米的纯铜粉和粒径为80~100微米的Fe-0.49C-4.5B粉末按照重量比4:1混合。
(2)使用行星球磨机在240转转速下分5阶段球磨25分钟,其中每阶段球磨5分钟后暂停25分钟再进行下一阶段球磨。
(3)将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,在铺粉厚度150微米、激光功率370W、扫描速度900毫米/秒、扫描间距0.15微米条件下进行激光选区熔化微冶金增材。
(4)凝固冷却后获得实现了增材制备成形的新型高硬度高导热铁铜材料,硬度为45HRC,导热率为96 W/(m.k)。
实施例3
(1)将气雾化工艺制备的粒径为20~40微米的纯铜粉和粒径为70~90微米的Fe-0.42C-3.0B粉末按照重量比4:0.8混合。
(2)使用行星球磨机在300转转速下分5阶段球磨25分钟,其中每阶段球磨5分钟后暂停25分钟再进行下一阶段球磨。
(3)将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,在铺粉厚度120微米、激光功率350W、扫描速度900毫米/秒、扫描间距0.12微米条件下进行激光选区熔化微冶金增材。
(4)凝固冷却后获得实现了增材制备成形的新型高硬度高导热铁铜材料,硬度为41HRC,导热率为102 W/(m.k)。

Claims (5)

1.一种高硬度高导热铁铜材料的制备方法,其特征在于,具体包括以下步骤:
(1)将气雾化工艺制备的粒径为10~60微米的纯铜粉和粒径为50~100微米的Fe-C-B合金粉末按照重量比4:(0.2~1)混合;
(2)将混合粉末进行行星球磨,将球磨后获得的混合粉末置于选区激光熔化增材制备设备中,激光选区熔化微冶金增材,凝固冷却后获得高硬度高导热铁铜材料并实现增材制备成形。
2.根据权利要求1所述高硬度高导热铁铜材料的制备方法,其特征在于:Fe-C-B合金粉末中Fe、C、B的摩尔比为1:(0.3-0.5):(1.8~4.6)。
3.根据权利要求1所述高硬度高导热铁铜材料的制备方法,其特征在于:步骤(2)中行星球磨的条件为:在150~300转转速下分5阶段球磨,其中每阶段球磨5分钟后暂停25分钟再进行下一阶段球磨。
4.根据权利要求1所述高硬度高导热铁铜材料的制备方法,其特征在于:激光选区熔化的条件为:在铺粉厚度100~150微米、激光功率280 ~ 370W、扫描速度600~900毫米/秒、扫描间距0.1~0.15微米条件下进行。
5.权利要求1~4任意一项所述的方法制备得到的高硬度高导热铁铜材料。
CN202111385112.XA 2021-11-22 2021-11-22 一种高硬度高导热铁铜材料及其制备方法 Active CN114032410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111385112.XA CN114032410B (zh) 2021-11-22 2021-11-22 一种高硬度高导热铁铜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111385112.XA CN114032410B (zh) 2021-11-22 2021-11-22 一种高硬度高导热铁铜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114032410A true CN114032410A (zh) 2022-02-11
CN114032410B CN114032410B (zh) 2023-04-18

Family

ID=80138317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111385112.XA Active CN114032410B (zh) 2021-11-22 2021-11-22 一种高硬度高导热铁铜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114032410B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102157A (zh) * 2013-03-25 2015-11-25 新日铁住金株式会社 铜合金粉末、铜合金烧结体和高速铁道用制动衬片
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN108220642A (zh) * 2018-01-17 2018-06-29 昆明理工大学 一种CoCrCuFeMoNi高熵合金颗粒增强铜基复合材料的制备方法
CN111822710A (zh) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 一种SLM式3D打印CuFe合金的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102157A (zh) * 2013-03-25 2015-11-25 新日铁住金株式会社 铜合金粉末、铜合金烧结体和高速铁道用制动衬片
US20160047016A1 (en) * 2013-03-25 2016-02-18 Nippon Steel & Sumitomo Metal Corporation Copper alloy powder, sintered copper alloy body, and brake lining for use in high-speed railways
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN108220642A (zh) * 2018-01-17 2018-06-29 昆明理工大学 一种CoCrCuFeMoNi高熵合金颗粒增强铜基复合材料的制备方法
CN111822710A (zh) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 一种SLM式3D打印CuFe合金的制备方法

Also Published As

Publication number Publication date
CN114032410B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN105061989B (zh) 一种用于sls技术的聚醚醚酮/纳米羟基磷灰石复合材料及其制备方法
Barreto et al. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy
CN106448995B (zh) 一种高直流偏磁特性FeSiAl磁粉芯的制备方法
ATE240176T1 (de) PULVERMETALLSPRITZGIESSVERFAHREN ZUM FORMEN EINES GEGENSTANDES AUS DER NICKELBASIS- SUPERLEGIERUNG ßHASTELLOY Xß
CN102127713B (zh) 一种双晶结构氧化物弥散强化铁素体钢及制备方法
CN107557642A (zh) 用于配重块的合金及其制备方法以及配重块
CN112692294B (zh) 一种高比重钨合金粉末及其制备方法
CN114032410B (zh) 一种高硬度高导热铁铜材料及其制备方法
CN105665715A (zh) 采用粉末冶金工艺制备的铁硅系软磁合金及方法
CN111168053A (zh) 一种高熵合金选区激光熔化增材制造的原料粉末制备方法
JPH01116002A (ja) 基体鉄粉と合金化成分から複合金属粉を製造する方法及び複合金属粉
CN105524415B (zh) 电磁屏蔽peek/ptfe复合材料及其制备方法
CN1785555A (zh) 一种激光烧结快速成形材料的制备方法
CN114226716A (zh) 制备抗菌不锈钢刃具的喂料和刃具及其制备方法
KR100374704B1 (ko) 나노 Cu-Al₂O₃복합분말 제조방법
CN102373359A (zh) 一种汽车发动机专用合金钢粉的生产方法
KR101064429B1 (ko) 실란 윤활제를 포함하는 철계 분말 조성물
CN107175333A (zh) 高性能粉末冶进气门座圈及其制备方法
JP2019188668A (ja) ポリマー粉末およびそれを調製する方法
CN101391818B (zh) 超顺磁四氧化三铁纳米球的合成方法
CN103537669A (zh) 一种粉末冶金汽车助力泵定子及其制备方法
KR20050059285A (ko) 고압 성형에 의한 철계 부품의 제조 방법
JPS60208402A (ja) 分散強化型銅合金粉末の製造方法
CN114438370B (zh) 一种轻质化阻尼式翻盖自锁正畸矫治装置及其近终成形制备方法
JPH04210448A (ja) Zn―22A1超塑性粉末を用いた傾斜型機能材料及びその成形方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240329

Address after: 650000 Yanglin Industrial Development Zone, Songming County, Kunming City, Yunnan Province

Patentee after: YUNNAN YUNNEI POWER MACHINERY MANUFACTURING Co.,Ltd.

Country or region after: China

Address before: 650093 No. 253, Xuefu Road, Wuhua District, Yunnan, Kunming

Patentee before: Kunming University of Science and Technology

Country or region before: China

TR01 Transfer of patent right
OL01 Intention to license declared
OL01 Intention to license declared