CN114031390A - 一种微波介质材料及其制备方法 - Google Patents
一种微波介质材料及其制备方法 Download PDFInfo
- Publication number
- CN114031390A CN114031390A CN202111527364.1A CN202111527364A CN114031390A CN 114031390 A CN114031390 A CN 114031390A CN 202111527364 A CN202111527364 A CN 202111527364A CN 114031390 A CN114031390 A CN 114031390A
- Authority
- CN
- China
- Prior art keywords
- source compound
- dielectric material
- microwave dielectric
- calcined product
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/47—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种微波介质材料,化学式为:Sr(1+2x)La2.03(1‑x)[Al(1‑x)Tix]2O7.045,其中,x=0.05~0.8。本发明提供的微波介质材料的介电常数在25~35之间,Qf值大于80000GHz,温漂‑0~+30ppm/C之间,强度大于200MPa,原材料成本低廉,制备工艺简单。填补了微波介质材料材料在30附件没有低成本、高强度介质材料的空白,极大的丰富了微波介质材料的应用,同时也提供一种新的提高微波介质材料Q值得制备方法。
Description
技术领域
本发明属于介质材料技术领域,具体涉及一种微波介质材料及其制备方法。
背景技术
随着现代通信技术的不断发展,人们对于移动通讯设备的小型化、高性能化及低成本化要求越来越高,这种趋势很大程度上取决于所用介质材料的介电常数。
但是,目前介电常数30左右的微波介质陶瓷材料存在低成高、强度低的问题,极大的限制了微波介质陶瓷的应用。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种微波介质材料及其制备方法,本发明提供的微波介质材料制备成本低,Qf值和强度高。
本发明提供了一种微波介质材料,化学式为:
Sr(1+2x)La2.03(1-x)[Al(1-x)Tix]2O7.045
其中,x=0.05~0.8。
优选的,所述微波介质材料介电常数在25~35之间,Qf值大于80000GHz,温漂在-0~+30ppm/C之间,强度大于200MPa。
本发明还提供了一种上述微波介质材料的制备方法,包括以下步骤:
A)将锶源化合物、镧源化合物、铝源化合物和钛源化合物按照化学计量比混合后烘干,然后在空气气氛条件下进行煅烧,得到煅烧产物;
B)将所述煅烧产物粉碎后与分散介质、分散剂以及粘结剂混合造粒,得到陶瓷颗粒;
C)将所述陶瓷颗粒制备为生坯后进行等静压和烧结,得到微波介质材料。
优选的,所述锶源化合物选自SrCO3;
所述镧源化合物选自La2O3;
所述铝源化合物选自Al2O3;
所述钛源化合物选自TiO2;
所述锶源化合物、镧源化合物、铝源化合物和钛源化合物的纯度大于99.5%;
所述Al2O3的粒度D50小于1.0μm,TiO2的粒度D50为0.5~2.0μm之间。
优选的,步骤A)中,所述烘干的温度为110~150℃;
所述煅烧的最高温度为1240±10度,升温速率≥5℃/分钟,煅烧时间130~180分钟。
优选的,步骤B)中,所述粉碎的粒度为D50为1.0±0.2μm,最大粒度不大于3.5μm;
所述分散介质选自高纯水或无水乙醇;
所述分散剂选自聚氧化烯;
所述粘结剂选自PVA;
所述分散剂为煅烧产物的0.1%~5%,所述分散介质为煅烧产物的40%~100%,所述粘结剂为煅烧产物的1%~3%;
所述造粒的颗粒大小控制在100目~300目之间。
优选的,所述生坯采用干压成型的方法进行制备。
优选的,所述等静压的压力为50±2MPa,时间为10±1分钟,温度为65±2℃。
优选的,所述烧结的程序为:
1)以1℃/min的升温速率升温至1380±2℃,保温120±15min;
2)以≥15℃/min的升温速率升温至1540±10℃,保温10±2min;
3)以≥10℃/min的降温速率降温至1460±5℃,保温150±15min;
4)自然冷却。
与现有技术相比,本发明提供了一种微波介质材料,化学式为:Sr(1+2x)La2.03(1-x)[Al(1-x)Tix]2O7.045,其中,x=0.05~0.8。本发明提供的微波介质材料的介电常数在25~35之间,Qf值大于80000GHz,温漂-0~+30ppm/C之间,强度大于200MPa,原材料成本低廉,制备工艺简单。填补了微波介质材料材料在30附件没有低成本、高强度介质材料的空白,极大的丰富了微波介质材料的应用,同时也提供一种新的提高微波介质材料Q值得制备方法。
具体实施方式
本发明提供了一种微波介质材料,化学式为:
Sr(1+2x)La2.03(1-x)[Al(1-x)Tix]2O7.045
其中,x=0.05~0.8。
在本发明中,x选自0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8,或0.05~0.8之间的任意值。
所述微波介质材料介电常数在25~35之间,Qf值大于80000GHz,温漂在-0~+30ppm/C之间,强度大于200MPa。
本发明还提供了一种微波介质材料的制备方法,包括以下步骤:
A)将锶源化合物、镧源化合物、铝源化合物和钛源化合物按照化学计量比混合后烘干,然后在空气气氛条件下进行煅烧,得到煅烧产物;
B)将所述煅烧产物粉碎后与分散介质、分散剂以及粘结剂混合造粒,得到陶瓷颗粒;
C)将所述陶瓷颗粒制备为生坯后进行等静压和烧结,得到微波介质材料。
本发明首先将锶源化合物、镧源化合物、铝源化合物和钛源化合物按照化学计量比混合后烘干,然后在空气气氛条件下进行煅烧,得到煅烧产物。
其中,所述锶源化合物选自SrCO3;
所述镧源化合物选自La2O3;
所述铝源化合物选自Al2O3;
所述钛源化合物选自TiO2;
所述锶源化合物、镧源化合物、铝源化合物和钛源化合物的纯度大于99.5%;
其中,所述Al2O3的粒度D50小于1.0μm,优选为0.6~0.8μm,TiO2的粒度D50为0.5~2.0μm之间,优选为0.5、1.0、1.5、2.0,或0.5~2.0μm之间的任意值。
然后,将所述混合后的原料进行烘干,所述烘干的温度为110~150℃,优选为130℃。
将烘干后的原料放入空气气氛中煅烧,得到煅烧产物;所述煅烧的最高温度为1240±10度,升温速率≥5℃/分钟,优选为5℃/分钟,煅烧时间130~180分钟,优选为130、140、150、160、170、180,或130~180分钟之间的任意值。
然后,将所述煅烧产物粉碎后与分散介质、分散剂以及粘结剂混合造粒,得到陶瓷颗粒;
其中,所述粉碎的粒度为D50为1.0±0.2μm,最大粒度不大于3.5μm。
所述分散介质选自高纯水或无水乙醇;
所述分散剂选自聚氧化烯;
所述粘结剂选自PVA;
所述分散剂为煅烧产物的0.1%~5%,优选为0.1%、0.5%、1%、2%、3%、4%、5%,或0.1%~5%之间的任意值;所述分散介质为煅烧产物的40%~100%,优选为40%、50%、60%、70%、80%、90%、100%,或40%~100%之间的任意值;所述粘结剂为煅烧产物的1%~3%,优选为1%、1.5%、2%、2.5%、3%,或1%~3%之间的任意值。上述百分比均为质量百分比。
所述造粒的颗粒大小控制在100目~300目之间,优选为100、150、200、250、300,或100目~300目之间的任意值。
接着,将所述陶瓷颗粒制备为生坯后进行等静压和烧结,得到微波介质材料。
其中,本发明将所述陶瓷颗粒制备为生坯的方法并没有特殊限制,本领域技术人员公知的方法即可。在本发明中,优选在干压设备中成型,尺寸为Φ15*H15mm。
得到生坯后,将所述生坯进行等静压,其中,所述等静压的压力为50±2MPa,时间为10±1分钟,温度为65±2℃,优选的,所述等静压的压力为50MPa,时间为10分钟,温度为65℃。
最后,等静压后的生胚在空气气氛中烧结。其中,所述烧结程序为:
1)以1℃/min的升温速率升温至1380±2℃,保温120±15min;
2)以≥15℃/min的升温速率升温至1540±10℃,保温10±2min;
3)以≥10℃/min的降温速率降温至1460±5℃,保温150±15min;
4)自然冷却。
优选的,所述烧结程序为:
1)以1℃/min的升温速率升温至1380℃,保温120min;
2)以≥15℃/min的升温速率升温至1540℃,保温10min;
3)以≥10℃/min的降温速率降温至1460℃,保温150min;
4)自然冷却。
本发明的微波介质材料QF值高,大于80000GHz同时成本低廉,相比相同级别QF值,且温漂0附近的同类陶瓷,原材料成本仅为10%左右,同时制备工艺相对于现有微波介质材料并没有增加制造成本,且介电常数在一定范围内可调。且为固相反应法制备微波介质材料提供了一种提高Q值得制备方法,对其他体系材料提升Q值具有指导和借鉴意义。
本发明提供的微波介质材料的介电常数在25~35之间,Qf值大于80000GHz,温漂-0~+30ppm/C之间,强度大于200MPa,原材料成本低廉,制备工艺简单。填补了微波介质材料材料在30附件没有低成本、高强度介质材料的空白,极大的丰富了微波介质材料的应用,同时也提供一种新的提高微波介质材料Q值得制备方法。
为了进一步理解本发明,下面结合实施例对本发明提供的微波介质材料及其制备方法进行说明,本发明的保护范围不受以下实施例的限制。
实施例
以下实施例中提供的微波介质材料的化学式为:Sr(1+2x)La2.03(1-x)[Al(1-x)Tix]2O7.045,其中,x的具体取值参见表1.
所述微波介质材料的制备方法如下:
第一步,选用SrCO3、La2O3、Al2O3和TiO2按化学计量比称量,混料。其中原材料的纯度大于99.5%,Al2O3的粒度D50小于1.0μm,TiO2的粒度D50需要0.5~2.0μm之间。
第二步,混好的料在230度温度下快速烘干。
第三步,将第二步中的粉体放入空气气氛中煅烧,煅烧的最高温度为1240±10度,升温速率5度/分钟,煅烧时间150分钟。
第四步,将煅烧后的粉体在砂磨机中粉碎至粒度D50为1.0±0.2μm,最大粒度不大于3.5μm。分散介质为高纯水,添加比例为煅烧物的40%,分散剂为聚氧化烯,比例为煅烧物的1%,并添加PVA作为粘结剂,添加量为煅烧物的1%。
第五步,将砂磨后的浆料在喷雾干燥设备上造粒,颗粒大小控制在100目~300目之间。
第六步,造粒好的粉体,在干压设备中成型,尺寸为Φ15*H15mm,干压好的生胚放入温水等静压设备中在50MPa压力下等静压10分钟,水温65度。
第七步,等静压后的生胚在空气气氛中烧结,所述烧结的程序为:
1)以1℃/min的升温速率升温至1380℃,保温120min;
2)以15℃/min的升温速率升温至1540℃,保温10min;
3)以10℃/min的降温速率降温至1460℃,保温150min;
4)自然冷却。
对比例1
制备方法同实施例,仅改变Al2O3的粒度D50为1.6μm,TiO2的粒度D50为0.3μm。
对比例2
制备方法同实施例,仅改变第七步的烧结程序为:
1)以1℃/min的升温速率升温至1380℃,保温120min;
2)以15℃/min的升温速率升温至1540℃,保温10min;
3)自然冷却。
对上述实施例和对比例进行性能测试,结果见表1
表1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (9)
1.一种微波介质材料,其特征在于,化学式为:
Sr(1+2x)La2.03(1-x)[Al(1-x)Tix]2O7.045
其中,x=0.05~0.8。
2.根据权利要求1所述的微波介质材料,其特征在于,所述微波介质材料介电常数在25~35之间,Qf值大于80000GHz,温漂在-0~+30ppm/C之间,强度大于200MPa。
3.一种如权利要求1或2所述的微波介质材料的制备方法,其特征在于,包括以下步骤:
A)将锶源化合物、镧源化合物、铝源化合物和钛源化合物按照化学计量比混合后烘干,然后在空气气氛条件下进行煅烧,得到煅烧产物;
B)将所述煅烧产物粉碎后与分散介质、分散剂以及粘结剂混合造粒,得到陶瓷颗粒;
C)将所述陶瓷颗粒制备为生坯后进行等静压和烧结,得到微波介质材料。
4.根据权利要求3所述的制备方法,其特征在于,所述锶源化合物选自SrCO3;
所述镧源化合物选自La2O3;
所述铝源化合物选自Al2O3;
所述钛源化合物选自TiO2;
所述锶源化合物、镧源化合物、铝源化合物和钛源化合物的纯度大于99.5%;
所述Al2O3的粒度D50小于1.0μm,TiO2的粒度D50为0.5~2.0μm之间。
5.根据权利要求3所述的制备方法,其特征在于,步骤A)中,所述烘干的温度为110~150℃;
所述煅烧的最高温度为1240±10度,升温速率≥5℃/分钟,煅烧时间130~180分钟。
6.根据权利要求3所述的制备方法,其特征在于,步骤B)中,所述粉碎的粒度为D50为1.0±0.2μm,最大粒度不大于3.5μm;
所述分散介质选自高纯水或无水乙醇;
所述分散剂选自聚氧化烯;
所述粘结剂选自PVA;
所述分散剂为煅烧产物的0.1%~5%,所述分散介质为煅烧产物的40%~100%,所述粘结剂为煅烧产物的1%~3%;
所述造粒的颗粒大小控制在100目~300目之间。
7.根据权利要求3所述的制备方法,其特征在于,所述生坯采用干压成型的方法进行制备。
8.根据权利要求3所述的制备方法,其特征在于,所述等静压的压力为50±2MPa,时间为10±1分钟,温度为65±2℃。
9.根据权利要求3所述的制备方法,其特征在于,所述烧结的程序为:
1)以1℃/min的升温速率升温至1380±2℃,保温120±15min;
2)以≥15℃/min的升温速率升温至1540±10℃,保温10±2min;
3)以≥10℃/min的降温速率降温至1460±5℃,保温150±15min;
4)自然冷却。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111527364.1A CN114031390B (zh) | 2021-12-14 | 2021-12-14 | 一种微波介质材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111527364.1A CN114031390B (zh) | 2021-12-14 | 2021-12-14 | 一种微波介质材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114031390A true CN114031390A (zh) | 2022-02-11 |
CN114031390B CN114031390B (zh) | 2023-01-10 |
Family
ID=80146984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111527364.1A Active CN114031390B (zh) | 2021-12-14 | 2021-12-14 | 一种微波介质材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114031390B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001072464A (ja) * | 1999-06-29 | 2001-03-21 | Kyocera Corp | 誘電体磁器組成物及びこれを用いた誘電体共振器 |
CN102603287A (zh) * | 2012-03-15 | 2012-07-25 | 南京工业大学 | 一种中介电常数微波介质陶瓷及其制备方法 |
CN103130499A (zh) * | 2011-11-30 | 2013-06-05 | 深圳市大富科技股份有限公司 | 一种微波介质陶瓷材料的制备方法 |
CN105399422A (zh) * | 2015-12-15 | 2016-03-16 | 广东国华新材料科技股份有限公司 | 一种stla微波介质陶瓷材料及其制备方法与应用 |
CN107555992A (zh) * | 2017-09-27 | 2018-01-09 | 广东国华新材料科技股份有限公司 | 一种微波介质陶瓷材料及其制备方法 |
CN109020542A (zh) * | 2018-08-28 | 2018-12-18 | 张家港保税区灿勤科技有限公司 | 中介电常数超高品质因数微波介质陶瓷的制备方法 |
-
2021
- 2021-12-14 CN CN202111527364.1A patent/CN114031390B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001072464A (ja) * | 1999-06-29 | 2001-03-21 | Kyocera Corp | 誘電体磁器組成物及びこれを用いた誘電体共振器 |
CN103130499A (zh) * | 2011-11-30 | 2013-06-05 | 深圳市大富科技股份有限公司 | 一种微波介质陶瓷材料的制备方法 |
CN102603287A (zh) * | 2012-03-15 | 2012-07-25 | 南京工业大学 | 一种中介电常数微波介质陶瓷及其制备方法 |
CN105399422A (zh) * | 2015-12-15 | 2016-03-16 | 广东国华新材料科技股份有限公司 | 一种stla微波介质陶瓷材料及其制备方法与应用 |
CN107555992A (zh) * | 2017-09-27 | 2018-01-09 | 广东国华新材料科技股份有限公司 | 一种微波介质陶瓷材料及其制备方法 |
CN109020542A (zh) * | 2018-08-28 | 2018-12-18 | 张家港保税区灿勤科技有限公司 | 中介电常数超高品质因数微波介质陶瓷的制备方法 |
Non-Patent Citations (1)
Title |
---|
刘兵: "Ruddlesden-Popper型微波介质陶瓷的结构和性能", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114031390B (zh) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2383638C2 (ru) | Нанокристаллические спеченные тела на основе альфа-оксида алюминия, способ их изготовления, а также применение | |
US7022305B2 (en) | Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same | |
EP3502052B1 (en) | Method for preparing spherical aluminum nitride powder | |
KR101317546B1 (ko) | 산화 인듐 분말 및 그 제조 방법 | |
CN102276260B (zh) | 常压低温烧结β-氮化硅陶瓷的方法 | |
CN109415266B (zh) | 一种介质陶瓷材料及其制备方法 | |
CN111495513B (zh) | 一种干法研磨活性α-氧化铝微粉的助磨剂及其应用 | |
CN114988886B (zh) | 可低温烧结的高纯α-氧化铝粉的制备方法 | |
CN105294138A (zh) | 一种双峰氧化铝微粉及其制备方法 | |
CN108793102A (zh) | 一种高气压制备氮化铝粉末的方法 | |
CN111732421A (zh) | 一种氧化铝陶瓷复合粉体的制备方法 | |
CN112159218A (zh) | 一种低成本高性能永磁铁氧体材料的制备方法 | |
CN113968732A (zh) | 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料 | |
CN111470864B (zh) | 一种硅基温度稳定型微波介质陶瓷材料及其制备方法 | |
WO2020004304A1 (ja) | セラミックス製造用顆粒の製造方法 | |
CN113744991A (zh) | 一种Co2Z型铁氧体材料及其制备方法和用途 | |
CN114031390B (zh) | 一种微波介质材料及其制备方法 | |
CN114085082B (zh) | 一种碳化硅/黑滑石复合陶瓷膜支撑体及其制备方法 | |
CN109437901A (zh) | 一种钙钛矿结构的微波介质陶瓷及其制备方法 | |
JPS6278103A (ja) | 窒化アルミニウム粉末の製造方法 | |
TW202239735A (zh) | 釔鋁石榴石粉末及其合成方法 | |
CN114180949A (zh) | 陶瓷材料及其制备方法、陶瓷烧结体及其制备方法 | |
CN113943152A (zh) | 一种高氯铁红制备永磁铁氧体的方法及永磁铁氧体 | |
US20040092380A1 (en) | Aluminum oxide ceramic components and methods | |
CN107739201B (zh) | 一种高介电常数的微波介质陶瓷材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |