CN113996338A - 一种复合光催化剂及其制备方法和应用 - Google Patents

一种复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113996338A
CN113996338A CN202110698867.9A CN202110698867A CN113996338A CN 113996338 A CN113996338 A CN 113996338A CN 202110698867 A CN202110698867 A CN 202110698867A CN 113996338 A CN113996338 A CN 113996338A
Authority
CN
China
Prior art keywords
composite photocatalyst
perylene diimide
modified
preparation
pdi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110698867.9A
Other languages
English (en)
Other versions
CN113996338B (zh
Inventor
陈平
方政
肖震钧
林紫封
吕文英
刘国光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110698867.9A priority Critical patent/CN113996338B/zh
Publication of CN113996338A publication Critical patent/CN113996338A/zh
Application granted granted Critical
Publication of CN113996338B publication Critical patent/CN113996338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/363PCB's; PCP's
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本申请属于光催化剂技术领域,尤其涉及一种复合光催化剂及其制备方法和应用。本申请提供了一种复合光催化剂,包括:负载碳量子点的苝二酰亚胺超分子催化剂;其中,所述苝二酰亚胺超分子催化剂选自丙氨酸基团修饰的苝二酰亚胺或/和甲氧卞胺基团修饰的苝二酰亚胺。本申请提供了所述复合光催化剂的制备方法,包括:将苝二酰亚胺超分子催化剂和碳量子点分散于溶剂中,将所得固体物质进行抽滤离心和干燥,得到复合光催化剂。本申请提供了一种复合光催化剂及其制备方法和应用,能有效解决现有PDI光催化剂存在比表面积小,光催化过程中容易产生电子与空穴复合现象,光生载流子复合率高,可见光响应低,以及光催化活性低的问题。

Description

一种复合光催化剂及其制备方法和应用
技术领域
本申请属于光催化剂技术领域,尤其涉及一种复合光催化剂及其制备方法和应用。
背景技术
近年来,随着药物和个人护理用品(PPCPs)的使用,使得这类药物不断进入环境,因这类污染物具有“假”持久性并能引起环境菌群的抗药性,造成普遍污染的现象,引起了人们广泛的关注。由于其稳定的化学结构和对生物降解的逆行性,它们已在城市污水循环,甚至饮用水中检测到。各种水环境中PPCPs的浓度范围已达到ng~μg·L-1之间,因此长期在这种环境下生存的水生生物会受到此类微量污染物的影响,如给生物带来致癌致畸致突变以及对神经系统、免疫系统等方面造成健康威胁,并且会随着食物链的传递而累积,最终对生态环境造成不可逆的影响。PPCPs的迁移转化、暴露机理、生态风险和治理技术日益成为科学界的研究热点。因此亟须发展高效PPCPs污染控制技术。
我国是一个水资源短缺,水旱灾害频繁的国家。随着工业的发展,水污染加剧了水资源的短缺,人们赖以生存的水环境正面临着严重的污染危机。可利用太阳光来降解污染物的光催化技术因其成本低无污染由此应运而生。
相比传统金属半导体(TiO2、ZnO和Ag2O等)和非金属C3N4光催化剂,苝二酰亚胺(PDI)超分子催化剂具有制备工艺简单、原料价格低以及材料结构可控性高等特点,是目前研究的新方向。然而原状PDI光催化剂存在比表面积小,光催化过程中容易产生电子与空穴复合现象,光生载流子复合率高,可见光响应低,以及光催化活性低的问题。
发明内容
有鉴于此,本申请提供了一种复合光催化剂及其制备方法和应用,能有效解决现有PDI光催化剂存在比表面积小,光催化过程中容易产生电子与空穴复合现象,光生载流子复合率高,可见光响应低,以及光催化活性低的问题。
本申请第一方面提供了一种复合光催化剂,包括:
负载碳量子点的苝二酰亚胺超分子催化剂;
其中,所述苝二酰亚胺超分子催化剂选自丙氨酸基团修饰的苝二酰亚胺或/和甲氧卞胺基团修饰的苝二酰亚胺。
具体的,上述负载方法采用现有常规手段负载。
具体的,上述碳量子点为现有常规的碳量子点物质。
另一实施例中,所述丙氨酸基团修饰的苝二酰亚胺的制备方法包括:将苝-3,4,9,10-四羧酸二酐、丙氨酸和咪唑混合,然后进行煅烧,得到所述丙氨酸基团修饰的苝二酰亚胺。
具体的,所述煅烧条件具体为:以4~6℃/min的升温速率升温至90~150℃,保温3~7h;优选为90~130℃,保温3~6h。
具体的,所述丙氨酸基团修饰的苝二酰亚胺的制备方法为:将苝-3,4,9,10-四羧酸二酐、丙氨酸、咪唑,充分混合之后在氩气保护下煅烧。煅烧结束后,将煅烧得到的样品冷却至室温后进行研磨,得到所述丙氨酸基团修饰的苝二酰亚胺。
另一实施例中,所述甲氧卞胺基团修饰的苝二酰亚胺的制备方法包括:将3,4,9,10-苝四甲酸二酐、甲氧卞胺和喹啉溶液混合,然后进行煅烧,得到所述甲氧卞胺基团修饰的苝二酰亚胺。
具体的,所述甲氧卞胺基团修饰的苝二酰亚胺的制备方法包括:将3,4,9,10-苝四甲酸二酐和甲氧卞胺分散在喹啉溶液中,在氩气环境下加热160℃持续6h。收集到的混合物逐滴加入HCl溶液,搅拌半小时,得到的固体真空过滤并用乙醇和超纯水清洗,烘干回收。固体物质(甲氧卞胺基团修饰的苝二酰亚胺)用一定体积浓硫酸超声溶解,然后加入不同体积的超纯水,形成沉淀,保持悬浮0.5h,然后过滤清洗至中性,烘干,得到自组装甲氧卞胺基团修饰的苝二酰亚胺。
另一实施例中,所述碳量子点的制备方法包括:
以有机小分子或低聚物作为碳源,通过水热合成法、电弧放电法、激光销蚀法、电化学法、化学氧化法、燃烧法、溶剂热合成法、微波合成法、模板法或室温羟醛缩合聚合法制得碳量子点。
另一实施例中,所述碳源选自柠檬酸、葡萄糖、聚乙二醇、尿素和离子液体中的一种或多种。
具体的,本申请提供了两种碳量子点CDs,制备方法分别包括:
运用水热合成方法,将3.0g柠檬酸和1.0g尿素溶解于15mL的超纯水中,分散均匀之后转移到高压反应釜中,然后在180℃下保温3~7个小时。待其冷却至室温后,将所得到的棕色溶液在高速离心机里采用10000rpm的转速保持30分钟,以去除未反应的大颗粒物,剩余的溶液转至烘箱将水分蒸干,得到碳量子点A。
将葡萄糖与尿素,再加入氢氧化钠溶液,超声反应,将溶液pH调至7.0,将所得溶液在搅拌下逐滴加乙醇,再加入硫酸镁(10-12wt%)去除盐和水,液体烘干,得到碳量子点B。
另一实施例中,所述苝二酰亚胺超分子催化剂与所述碳量子点的质量比为(0~100):(1~10),且所述苝二酰亚胺超分子催化剂的用量不为0。
本申请第二方面提供了所述复合光催化剂的制备方法,包括:将苝二酰亚胺超分子催化剂和碳量子点分散于溶剂中,将所得固体物质进行抽滤离心和干燥,得到复合光催化剂。
另一实施例中,所述溶剂为水、甲醇和乙醇中的一种或者多种。
具体的,所述复合光催化剂的制备方法包括:将苝二酰亚胺超分子催化剂分散于溶剂中,然后加入碳量子点(CDs)溶液水浴搅拌、超声分散,将所述搅拌得到的固体物质进行抽滤离心,得到复合光催化剂。
另一实施例中,所述超声分散的功率为800~1200Hz,时间为25~40min,优选为30min。
另一实施例中,向上述苝二酰亚胺超分子催化剂溶液中加入所述碳量子点进行超声搅拌,将所述超声搅拌后得到的固体物质进行水浴震荡,抽滤之后烘干得到复合光催化剂。
另一实施例中,所述搅拌的速率为100~300r/min,时间为1~3h,优选为2h。
本申请中,所述室温均为25℃±5℃。
本申请第三方面提供了所述的复合光催化剂或所述制备方法制得的复合光催化剂在降解药物和个人护理用品(PPCPs)中的应用。
另一实施例中,所述药物和个人护理用品为萘普生(NPX)、萘普生产物一[1-(6-甲氧基-2-萘基)乙醇](以下简写为NPX1)、萘普生产物二[2–乙酰基–6–甲氧基萘](以下简写为NPX2)中的一种或两种以上。
本申请中所制备的CDs/PDI复合光催化剂能在可见和近红外光的激发下具有高催化活性。本申请创造性采用原位共聚法来制备CDs修饰PDI的超分子光催化剂CDs/PDI,采用的原料少,合成工艺简单,重复性好,具有大规模生产的基本条件,有较高的应用潜力和使用价值。采用本制备方法制得的复合光催化剂可在模拟太阳光下降解PPCPs,且光催化效果优异。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例1步骤3提供的CDs/PDI的TEM图;
图2为本申请实施例1步骤2提供的CDs的TEM图;
图3为本申请对比例1提供的original PDI的TEM图;
图4为本申请实施例2提供的CDs/PDI和对比例1中的original PDI的紫外漫反射光谱图(插图为带隙宽度);
图5为本申请实施例1提供的CDs/PDI和对比例1中的original PDI傅里叶变换红外光谱图。
图6为本申请实施例1步骤2的碳量子点CDs、实施例1中的CDs/PDI和对比例1中的original PDI对萘普生及NPX1、NPX2的去除率,其中,图标中PDI为对比例1中的originalPDI。
具体实施方式
本申请提供了涉及一种复合光催化剂及其制备方法和应用,用于解决现有技术中PDI光催化剂存在比表面积小,光催化过程中容易产生电子与空穴复合现象,光生载流子复合率高,可见光响应低,以及光催化活性低的技术缺陷。
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
其中,以下实施例所用原料或试剂均为市售或自制。
本申请的丙氨酸基团修饰的苝二酰亚胺制备方法包括:将3,4,9,10-苝四甲酸二酐、丙氨酸和咪唑在氩气环境下加热100℃持续4h。冷却至室温后,混合物分散在乙醇和HCl溶液中,搅拌过夜。用0.45μm滤膜过滤,得到的丙氨酸基团修饰的PDI物质,用超纯水清洗至中性并经过60℃烘干后溶解于三乙醇胺溶液得到红色溶液,并添加HCl,形成纳米纤维PDI,用超纯水反复清洗后,60℃烘干,得到丙氨酸基团修饰的苝二酰亚胺。
本申请的甲氧卞胺基团修饰的苝二酰亚胺制备方法包括:将3,4,9,10-苝四甲酸二酐和甲氧卞胺分散在喹啉溶液中,在氩气环境下加热160℃持续6h。收集到的混合物逐滴加入HCl溶液,搅拌半小时,得到的固体真空过滤并用乙醇和超纯水清洗,烘干回收,得到甲氧卞胺基团修饰的PDI物质。将甲氧卞胺基团修饰的PDI物质用浓硫酸超声溶解,然后加入不同体积的超纯水,形成沉淀,保持悬浮0.5h,然后过滤清洗至中性,烘干,得到自组装甲氧卞胺基团修饰的苝二酰亚胺。
以下实施例的原状PDI(original PDI)催化剂的制备方法包括:称取1.372g苝-3,4,9,10-四羧酸二酐、2.492g丙氨酸、18g咪唑,混合均匀之后,转移至管式炉中,在氩气的保护下,以5℃/min,升温至100℃,保持4小时。待其冷却至室温,将所获得的固体转移到烧杯中,加入100ml乙醇和300ml 2.0M的HCl搅拌过夜,随后用0.45μm滤膜抽滤至pH为正常,60℃烘干。称取2.679g块状上述烘干后的固体,加入200ml水和0.834ml三乙醇胺,最后加入4.0M的HCl,超声、水浴震荡,然后抽滤离心,60℃干燥,研磨后得到PDI催化剂。
本申请提供了两种碳量子点CDs的制备方法,分别为:
1、将柠檬酸与尿素与超纯水混合。随后将该溶液转移至高温水热反应釜中,并在烘箱中180℃反应5h。待其冷却至室温,将所得的棕色溶液放入高速离心机中10000rpm离心30min去除未反应大颗粒,从而得到CDs溶液A。
2、将葡萄糖、尿素和氢氧化钠溶液混合,超声反应,将溶液pH调至7.0,将所得溶液在搅拌下逐滴加乙醇,再加入硫酸镁(10-12wt%)去除盐和水,液体烘干,得到CDs。
本申请提供了两种CDs/PDI复合光催化剂的制备方法,分别为:
1、将上述制得的丙氨酸基团修饰的苝二酰亚胺和上述制得的CDs溶液A混合,溶解于三乙醇胺溶液得到红色溶液,并添加HCl溶液,大功率超声机超声,水浴震荡,形成纳米纤维,用超纯水反复清洗后,60℃烘干,得到丙氨酸基团修饰的PDI/CDs复合光催化剂。
2、将上述制得的丙氨酸基团修饰的苝二酰亚胺、上述制得的CDs和水混合分散,80℃搅拌烘干,形成自组装的丙氨酸基团修饰的PDI/CDs复合光催化剂。
实施例1
本实施例为复合光催化剂(CDs/PDI)的制备,具体步骤如下:
1、称取1.372g苝-3,4,9,10-四羧酸二酐、2.492g丙氨酸、18g咪唑,混合均匀之后,转移至管式炉中,在氩气的保护下,以5℃/min,升温至100℃,保持4小时。待其冷却至室温,得到丙氨酸基团修饰的苝二酰亚胺,保存备用。
2、称取3.0g柠檬酸和1g尿素,溶解于15mL的去离子水中。随后将该溶液转移至高温水热反应釜中,并在烘箱中180℃反应5小时。待其冷却至室温,将所得的棕色溶液进行10000rpm离心30min去除大颗粒,从而得到CDs溶液。
3、将步骤1的丙氨酸基团修饰的苝二酰亚胺转移到烧杯中,加入100mL乙醇和300ml 2.0M的HCl搅拌过夜,随后用0.45μm滤膜抽滤至pH为正常,60℃烘干。称取2.679g块状上述烘干后的固体,加入200ml水和0.834ml三乙醇胺,加入步骤2的CDs溶液,最后加入4.0M的HCl,超声、水浴震荡,然后抽滤离心,60℃干燥,研磨后得到复合光催化剂CDs/PDI。
对比例1
本实施例为原状光催化剂PDI(original PDI)的制备,具体步骤如下:
1.称取1.372g苝-3,4,9,10-四羧酸二酐、2.492g丙氨酸、18g咪唑,混合均匀之后,转移至管式炉中,在氩气的保护下,以5℃/min,升温至100℃,保持4小时。待其冷却至室温,将所获得的固体转移到烧杯中,加入100mL乙醇和300ml 2.0M的HCl搅拌过夜,随后用0.45μm滤膜抽滤至pH为中性,60℃烘干。称取2.679g块状上述烘干后的固体,加入200ml水和0.834ml三乙醇胺,最后加入4.0M的HCl,超声、水浴震荡,然后抽滤离心,60℃干燥,研磨后得到原状光催化剂PDI(original PDI)。
实施例3
本实施例对实施例1提供的CDs/PDI和对比例提供的original PDI进行形貌观察和性能测试,结果如图1~5所示。
图1至图3依次为实施例1步骤3中的CDs/PDI、实施例1步骤2中的CDs和对比例1中的original PDI的TEM图。从图3中可以看出,original PDI呈棒状结构,并且从图1可以得知CDs与PDI紧密结合在一起,未发现CDs解离,说明实施例1成功合成了CDs/PDI复合光催化剂。
图4为实施例1中的CDs/PDI和对比例1中的original PDI的紫外漫反射光谱图,插图为带隙宽度(CDs/PDI为1.53eV),其中,original PDI的光谱图标记为PDI。由图4可知,original PDI在可见光范围内~734nm以下均具有一定的吸收,CDs可以拓宽PDI的光吸收范围,使CDs/PDI的光吸收边界红移,提高了CDs/PDI对光的响应,可以更加有效地利用太阳光。根据测试结果可知,用CDs改性PDI能够拓宽复合光催化材料对可见光的吸收,进而提高了材料对太阳光的利用率。
图5为实施例1中的CDs/PDI和对比例1中的original PDI的红外光谱图,其中,original PDI的光谱图标记为PDI。由图5可知,吸收峰在1040~1260cm-1和1410cm-1处的吸收峰分别对应-N-CH2和-N-C=O的振动。这表明在材料制备过程中聚合过程中成功地引入了酰胺和β-丙氨酸。original PDI在1670cm-1和1700cm-1的中心出现了尖锐的带状,这与C=O的不对称性和对称拉伸频率有关。在1700cm-1处的吸收峰被认为是羧酸基团,被认为是同一基团的C=O。original PDI中这些羧基基团和-N-CH2基团可以提高对阴阳离子的吸附能力。
实施例4
本实施例为实施例1步骤2的碳量子点CDs、实施例1中的CDs/PDI和对比例1中的original PDI处理药物废水的应用试验,具体包括:
1、分别称取10mg的实施例1中的CDs/PDI和对比例1中的original PDI于烧杯中,加入50ml浓度为10mg/L的萘普生、NPX1、NPX2,避光搅拌30min使其达到吸附平衡。
加入50ml浓度为10mg/L的萘普生、NPX1、NPX2于烧杯中,将实施例1步骤2的碳量子点CDs加入到烧杯,使烧杯中CDs的浓度为0.2g/L,避光搅拌30min使其达到吸附平衡。
2、采用9W的LED灯源对上述溶液进行光催化实验,反应一定时间后,用高效液相色谱仪检测反应液中剩余的萘普生、NPX1、NPX2的残余浓度C0根据公式N=(C0-C)/C0*100%计算萘普生、NPX1、NPX2去除率N,其中C0为萘普生、NPX1、NPX2的初始浓度。
表1为实施例1步骤2的碳量子点CDs、实施例1提供的CDs/PDI和对比例1提供的original PDI在模拟太阳光下反应一定时间对萘普生、NPX1、NPX2的降解率。由表1可知,CDs、original PDI与CDs/PDI对萘普生1分钟降解率分别为1.08%、37.24%、75.58%;CDs、original PDI与CDs/PDI对NPX120分钟降解率分别为0.566%、37.28%、51.11%;CDs、original PDI与CDs/PDI对NPX2180分钟降解率分别为去除率为4.37%、63.19%、88.41%。单独的碳量子点CDs不具备光降解萘普生、NPX1、NPX2的能力,在降解这三种污染物时,改性后的材料CDs/PDI比original PDI分别提高了102.95%、37.10%和39.91%,这表明利用CDs改性PDI光催化剂后,大大地增强了其光催化效率,两种材料对萘普生母体的降解效果相差不大,但是用碳量子点改性后的材料对萘普生降解后的两个主要产物的降解率提升较大。
表1
Figure BDA0003128949850000081
Figure BDA0003128949850000091
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

1.一种复合光催化剂,其特征在于,包括:
负载碳量子点的苝二酰亚胺超分子催化剂;
其中,所述苝二酰亚胺超分子催化剂选自丙氨酸基团修饰的苝二酰亚胺或/和甲氧卞胺基团修饰的苝二酰亚胺。
2.根据权利要求1所述的复合光催化剂,其特征在于,所述丙氨酸基团修饰的苝二酰亚胺的制备方法包括:将苝-3,4,9,10-四羧酸二酐、丙氨酸和咪唑混合,然后进行煅烧,得到所述丙氨酸基团修饰的苝二酰亚胺。
3.根据权利要求1所述的复合光催化剂,其特征在于,所述甲氧卞胺基团修饰的苝二酰亚胺的制备方法包括:将3,4,9,10-苝四甲酸二酐、甲氧卞胺和喹啉溶液混合,然后进行煅烧,得到所述甲氧卞胺基团修饰的苝二酰亚胺。
4.根据权利要求1所述的复合光催化剂,其特征在于,所述碳量子点的制备方法包括:
以有机小分子或低聚物作为碳源,通过水热合成法、电弧放电法、激光销蚀法、电化学法、化学氧化法、燃烧法、溶剂热合成法、微波合成法、模板法或室温羟醛缩合聚合法制得碳量子点。
5.根据权利要求4所述的复合光催化剂,其特征在于,所述碳源选自柠檬酸、葡萄糖、聚乙二醇、尿素和离子液体中的一种或多种。
6.根据权利要求1所述的复合光催化剂,其特征在于,所述苝二酰亚胺超分子催化剂与所述碳量子点的质量比为(0~100):(1~10),且所述苝二酰亚胺超分子催化剂的用量不为0。
7.权利要求1~6任意一项所述的复合光催化剂的制备方法,其特征在于,包括:将苝二酰亚胺超分子催化剂和碳量子点分散于溶剂中,将所得固体物质进行抽滤离心和干燥,得到复合光催化剂。
8.根据权利要求7所述的制备方法,其特征在于,所述溶剂为水、甲醇和乙醇中的一种或者多种;
所述分散的时间为1~3h。
9.权利要求1~6任意一项所述的复合光催化剂或权利要求7或8所述的制备方法制得的复合光催化剂在降解药物和个人护理用品中的应用。
10.根据权利要求9所述的应用,其特征在于,所述药物和个人护理用品为萘普生、[1-(6-甲氧基-2-萘基)乙醇]和[2–乙酰基–6–甲氧基萘]中的一种或多种。
CN202110698867.9A 2021-06-23 2021-06-23 一种复合光催化剂及其制备方法和应用 Active CN113996338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698867.9A CN113996338B (zh) 2021-06-23 2021-06-23 一种复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698867.9A CN113996338B (zh) 2021-06-23 2021-06-23 一种复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113996338A true CN113996338A (zh) 2022-02-01
CN113996338B CN113996338B (zh) 2024-01-09

Family

ID=79921040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698867.9A Active CN113996338B (zh) 2021-06-23 2021-06-23 一种复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113996338B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611915A (zh) * 2022-10-13 2023-01-17 上海理工大学 一种苝系金属化合物及其复合材料的制备方法与应用
CN115715989A (zh) * 2022-10-27 2023-02-28 闽江学院 羟基官能化双掺杂高结晶度氮化碳及其制备方法和应用
CN116078428A (zh) * 2023-01-04 2023-05-09 天津大学 一种八氟萘共晶超分子材料在光催化降解中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519907A (zh) * 2017-07-19 2017-12-29 广东工业大学 一种碳点与石墨相氮化碳复合光催化剂及其制备方法和应用
CN109292753A (zh) * 2018-12-06 2019-02-01 洛阳师范学院 一种碳量子点及其绿色制备方法及应用
CN112275321A (zh) * 2020-11-10 2021-01-29 河南师范大学 一种柔性复合催化膜的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519907A (zh) * 2017-07-19 2017-12-29 广东工业大学 一种碳点与石墨相氮化碳复合光催化剂及其制备方法和应用
CN109292753A (zh) * 2018-12-06 2019-02-01 洛阳师范学院 一种碳量子点及其绿色制备方法及应用
CN112275321A (zh) * 2020-11-10 2021-01-29 河南师范大学 一种柔性复合催化膜的制备方法及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611915A (zh) * 2022-10-13 2023-01-17 上海理工大学 一种苝系金属化合物及其复合材料的制备方法与应用
CN115715989A (zh) * 2022-10-27 2023-02-28 闽江学院 羟基官能化双掺杂高结晶度氮化碳及其制备方法和应用
CN115715989B (zh) * 2022-10-27 2024-02-02 闽江学院 羟基官能化双掺杂高结晶度氮化碳及其制备方法和应用
CN116078428A (zh) * 2023-01-04 2023-05-09 天津大学 一种八氟萘共晶超分子材料在光催化降解中的应用
CN116078428B (zh) * 2023-01-04 2023-08-18 天津大学 一种八氟萘共晶超分子材料在光催化降解中的应用

Also Published As

Publication number Publication date
CN113996338B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
Gao et al. Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor: Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation
CN113996338B (zh) 一种复合光催化剂及其制备方法和应用
Chen et al. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
CN108940344B (zh) 改性石墨相氮化碳光催化剂及其制备方法和应用
Xiao et al. In-suit fabricating an efficient electronic transport channels via S-scheme polyaniline/Cd0. 5Zn0. 5S heterojunction for rapid removal of tetracycline hydrochloride and hydrogen production
Chen et al. S-scheme-enhanced PMS activation for rapidly degrading tetracycline using CuWO4− x/Bi12O17Cl2 heterostructures
Wang et al. Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water
CN106881111B (zh) 氧化亚铜和银共同负载的钒酸铋复合光催化剂及其制备方法和应用
Luo et al. Facile synthesis of PVDF photocatalytic membrane based on NCQDs/BiOBr/TiO2 heterojunction for effective removal of tetracycline
CN101972645B (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
CN110694662B (zh) 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN111036265A (zh) 一种复合纳米光催化剂CDs-N-BiOCl及其制备方法与应用
CN110124655B (zh) 一种氧化锌/碳量子点复合光催化剂及其制备方法和应用
CN109954518B (zh) 一种磁性石墨烯-TiO2光化生物污水处理方法及装置
CN105944747A (zh) Ag2CrO4负载的g-C3N4复合光催化剂及其制备方法和应用
Jiang et al. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants
Cho et al. Preparation of Ni (OH) 2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism
Xu et al. CTAB‐Assisted Hydrothermal Synthesis of Bi2Sn2O7 Photocatalyst and Its Highly Efficient Degradation of Organic Dye under Visible‐Light Irradiation
Qing et al. Facile synthesis of PA photocatalytic membrane based on C-PANI@ BiOBr heterostructures with enhanced photocatalytic removal of 17β-estradiol
Zhang et al. Constructing a Z-scheme heterojunction photocatalyst I-ABN-C3N4@ CDs/BiOI by synergistically in situ modified g-C3N4 via carbon dots and copolymerization for BPA degradation
CN103962160B (zh) 一种碳基固体酸的芬顿载体及其制备方法和应用
CN111359676B (zh) 一种mof基复合材料及其制备方法和应用
Gao et al. Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53 (Fe/Ti) photocatalysts under visible light irradiation
CN117324040A (zh) 一种聚酰亚胺复合苯乙炔铜光催化剂及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant