CN113981533A - 一维单晶锗基石墨烯等离激元纳米结构的制备方法 - Google Patents

一维单晶锗基石墨烯等离激元纳米结构的制备方法 Download PDF

Info

Publication number
CN113981533A
CN113981533A CN202111269115.7A CN202111269115A CN113981533A CN 113981533 A CN113981533 A CN 113981533A CN 202111269115 A CN202111269115 A CN 202111269115A CN 113981533 A CN113981533 A CN 113981533A
Authority
CN
China
Prior art keywords
germanium
source
graphene
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111269115.7A
Other languages
English (en)
Other versions
CN113981533B (zh
Inventor
陈珂
常凯莉
顾玉宗
王红芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202111269115.7A priority Critical patent/CN113981533B/zh
Publication of CN113981533A publication Critical patent/CN113981533A/zh
Application granted granted Critical
Publication of CN113981533B publication Critical patent/CN113981533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种一维单晶锗基石墨烯等离激元纳米结构的制备方法,步骤如下:(1)在衬底上利用磁控溅射的方法溅射金纳米薄膜;(2)在步骤(1)得到的衬底上采用化学气相沉积生长掺杂锗单晶纳米线;(3)在步骤(2)得到的掺杂锗单晶纳米线表面采用化学气相沉积直接生长高质量石墨烯,获得一维锗基石墨烯表面等离激元纳米结构。本发明通过化学气相沉积法在锗单晶纳米线表面直接生长石墨烯,避免了传统的石墨烯薄膜转移过程,最大程度上减小了转移过程对石墨烯载流子迁移率的影响,增强了锗与石墨烯之间中红外表面等离激元的耦合。本发明所提供的材料具有强烈且可调的表面等离激元效应,有望在分子指纹检测、中红外传感、光子芯片等领域广泛应用。

Description

一维单晶锗基石墨烯等离激元纳米结构的制备方法
技术领域
本发明涉及极化激元纳米结构制备领域,具体涉及一种一维单晶锗基石墨烯等离激元纳米结构的制备方法。
背景技术
随着现代信息技术的飞速发展,人们对于器件微型化、高度集成化和光数据处理的要求越来越高,在纳米级尺度增强电子、光子与物质相互作用,实现光学传输与操控成为普遍关注的热点。表面等离激元能够突破传统光学衍射极限,具有很强的局域电磁场增强特点,使其在高灵敏度生物检测、传感和新型光源等领域有着广阔的应用前景。
然而,目前对于等离激元的研究大多都是基于金、银等贵金属,光学响应通常处于可见光和近红外波段,对于中红外波段的表面等离激元探究则较少。同时,对于金属而言,一旦固定金属的材料、形状和大小,其等离激元波长很难调控。对于半导体材料,通过调整掺杂程度或者施加电场便可实现等离激元波长可调。石墨烯作为一种二维半金属材料,具有超高的载流子迁移率和较宽的响应波段,在中红外和太赫兹波段可激发高度局域的表面等离激元,且损耗较低。目前制备的石墨烯基等离激元纳米结构大都依靠转移之后的石墨烯与其他贵金属材料进行复合,在这一过程中引入的样品污染会直接影响石墨烯载流子的迁移率,进而影响其等离激元寿命。同时,由于与入射光动量和能量的失配,石墨烯等离激元的光响应往往较弱,成为亟需解决的挑战。掺杂锗纳米结构是一种新兴的半导体等离激元材料,具有与石墨烯类似可调的中红外等离激元效应,且中红外光损耗较低。将锗等离激元纳米结构用于增强石墨烯的等离激元效应将是实现石墨烯等离激元耦合、光与物质强相互作用的重要手段,该方面的研究目前鲜有报道。
目前已公开的锗基石墨烯制备方法有化学气相沉积法、外延生长法和氧化还原法等。其中化学气相沉积和外延生长方法都可以获得高质量的石墨烯薄膜,但二者大都在锗单晶薄膜上进行生长,与硅基器件技术不兼容;通过氧化还原法制备的粉体石墨烯虽然对于基底的要求较低,但石墨烯的质量较差。专利CN110875470A中公开了一种无定形锗基纳米线-石墨烯纳米复合锂离子电池负极材料及制备方法,该方法采用还原氧化石墨烯与无定形锗线进行超声分散再抽滤真空干燥得到样品,整个实验周期较长且复杂,容易引入其他污染物,且对于还原氧化石墨烯无论是结晶度还是洁净度都无法与化学气相沉积制备的高质量石墨烯相比拟,因此也无法用于对样品质量要求较高的表面等离激元效应研究。
有鉴于此,特提出本发明。
发明内容
针对现有技术中存在的问题,本发明提出了一种一维单晶锗基石墨烯等离激元纳米结构的制备方法,通过化学气相沉积法在掺杂锗单晶纳米线表面直接生长石墨烯,构建等离激元纳米复合结构。本发明采用化学气相沉积的方法,在一维掺杂锗单晶纳米线表面直接生长高质量石墨烯,实现一维等离激元纳米结构的可控制备。与以往方法相比,本发明整个实验过程耗时短,制备方法简单,可重复性高,同时实现了锗纳米线/石墨烯复合结构的尺寸和掺杂的调控,为推动高灵敏度、低成本等离激元传感材料的制备及其分子指纹检测等方面应用开辟了新思路。
为解决上述技术问题,本发明采用以下技术方案:
一种一维单晶锗基石墨烯等离激元纳米结构的制备方法,步骤如下:
(1)在衬底上利用射频磁控溅射方法,在真空环境下溅射金纳米薄膜,通过调整溅射功率、温度和时间实现对金膜厚度的控制;
所述衬底清洗方式:先用丙酮超声清洗15min,再使用异丙醇超声清洗15min,然后乙醇冲洗后用氮气枪吹干;
(2)在步骤(1)得到的衬底上采用化学气相沉积的方法生长掺杂锗单晶纳米线;掺杂锗单晶纳米线直径取决于步骤1)所溅射的金薄膜的厚度;
(3)在步骤(2)所得到掺杂锗单晶纳米线表面采用化学气相沉积的方法生长高结晶度石墨烯壳层。
进一步,步骤(1)中衬底为Si/SiO2(100) (含300nm SiO2)、蓝宝石衬底(0001)、Si(111)衬底或云母衬底中的任意一种;所得金纳米薄膜的厚度为5~30nm;步骤(2)所得纳米线直径为50~1000 nm,长度为30~100μm。步骤(3)所生长的一维石墨烯包覆单晶锗纳米结构具有光滑的表面形貌,石墨烯结晶质量较高,显示出强且尖锐的拉曼特征峰。
进一步,步骤(1)中磁控溅射方法为射频磁控溅射方法,在真空环境下,溅射功率为25W-50W,溅射时间为5s-40s,衬底温度为25℃-400℃,
进一步,步骤(2)中采用管式炉,将步骤(1)所得衬底放置于管式炉中央,引入锗源,在保护气存在的条件下对管式炉进行升温,当衬底所在温区升至400℃以上,锗源通过载气输运到达衬底表面实现锗单晶纳米线的生长。步骤(2)结束后,在保护气存在的条件下将管式炉升至石墨烯生长温度,然后通入一定量的碳源和载气,实现锗纳米线/石墨烯复合纳米结构的制备。
进一步,所述锗源为气态锗源、液态锗源或固态锗源中的任一种,保护气体为Ar,气体流量为1-100sccm,升温时间为20-60min,温度为300℃~1000℃,保温时间为5-60min。
进一步,所述引入锗源的温度为300℃~1000℃,具体根据所用锗源进行适当调整,不同锗源会导致不同的挥发温度,使用气态源和液态源时温度较低。
进一步,所述气态锗源为GeH4,锗源为气态锗源时,管式炉升温至300℃-600℃;液态锗源(有机锗的化合物)为四乙基锗或二苯基锗,锗源为液态锗源时,管式炉升温至300℃-600℃。
进一步,固态锗源为锗粉(99.999%),尺寸:-100目,当锗源为锗粉时,同时在锗粉中混入石墨粉(99.95%),石墨粉尺寸≥325目,锗粉用量为300mg-1g,石墨粉用量为100mg-333mg;锗粉和石墨粉的质量比为3:1,管式炉锗源所在温区升温至900℃-1000℃,衬底所在温区升温至400℃~650℃。
进一步,步骤(3)中以H2为载气,载气流量为10-100sccm,通入碳源,碳源气体流量为1-50sccm,采用化学气相沉积的方法生长石墨烯。
进一步,所述碳源为CH4,C2H2和C2H4中的任一种,优选CH4,化学气相沉积温度为850℃-870℃,升温时间为50min,保温时间为0.5h-2h。
进一步,步骤(2)中通入锗源时,还可以同时引入N型掺杂源,以实现掺杂锗单晶纳米线的生长。
进一步,所述N型掺杂源可为磷源或锑源,磷源包括赤磷和黑磷等,锑源包括三氯化锑、三氧化二锑。所述固态掺杂磷源赤磷粉末纯度为99%,尺寸60-100目;黑磷晶体粉末纯度99.998%,掺杂源用量为1mg-20mg。所述固态掺杂锑源三氯化锑粉末纯度99%,三氧化二锑粉末纯度99.9%,N型掺杂源用量为1mg-20mg,优选的,固体锗源与N型掺杂源的质量比为100:1~1000:1。
进一步,所述步骤(3)的压力环境为常压。
所述方法还包括:第一步掺杂锗单晶纳米线生长过程中将管式炉升温到生长温度所用时间为1h;升温过程结束后为保温阶段,保温阶段结束停止通入Ar,通入H2。第二步石墨烯生长过程中将管式炉升温到850℃-870℃,所用时间为50min,升温结束后进入保温阶段,通入CH4进行反应,保温阶段结束停止通入CH4,自然降温到常温后取出样品。
本发明的有益效果是:本发明通过化学气相沉积法在掺杂锗单晶纳米线表面直接生长石墨烯,避免了传统的石墨烯薄膜转移过程,最大程度上减小了样品缺陷、污染物对载流子迁移率的影响,确保了较长的等离激元寿命。整个化学气相沉积过程无需取出样品,直接调整通入的气体及温控程序就可实现复合结构的制备,能够有效避免锗单晶纳米线的氧化,维持较强的等离激元效应。同时通过对掺杂的调控,可以得到不同波长光响应的等离激元纳米结构。由拉曼光谱、扫描电子显微镜以及透射电子显微镜等分析手段确定样品是高结晶质量的锗纳米线/石墨烯复合等离激元纳米结构。
锗作为一种可调的中红外等离激元材料,能够与石墨烯结合在中红外波段实现较强的等离激元耦合增强。同时通过调控锗单晶纳米线与石墨烯的生长和掺杂条件,可以在较宽光谱范围内调控石墨烯等离激元,从而探究其在气体传感、生物分子探测等方面的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例3掺杂锗单晶纳米线典型扫描电子显微镜图片。
图2为实施例3生长过石墨烯的掺杂锗单晶纳米线典型扫描电子显微镜图片。
图3为实施例3掺杂锗单晶纳米线典型透射电子显微镜图片。
图4为实施例3生长过石墨烯的掺杂锗单晶纳米线典型透射电子显微镜图片。
图5为实施例2生长过石墨烯的锗单晶纳米线拉曼光谱图。
图6为实施例1锗单晶纳米线XRD图谱。
图7为实施例3掺杂锗单晶纳米线在不同波长激发下的近场光学图像。
图8为实施例3生长过石墨烯的掺杂锗单晶纳米线在不同波长激发下的近场光学图像。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一维单晶锗基石墨烯等离激元纳米结构的制备方法,具体如下:
步骤1:将硅片切成需要的大小,放入烧杯中用丙酮溶液超声15分钟,然后放在异丙醇溶液中超声15min,最后乙醇冲洗后用氮气枪吹干备用;
步骤2:分别将金靶材和清洗过的硅片装入磁控溅射仪器,打开分子泵开关,通入工作气体20sccm Ar,待溅射室真空度达到7 ×10-4pa,选用磁控溅射射频模式,设置溅射功率为25W,衬底温度设置为室温,将溅射时间设置为10s,溅射结束后取出样品,衬底表面上覆有一层纳米级的金薄膜;
步骤3:称取300mg锗粉,100mg石墨粉,将二者混和后放入刚玉舟中,选用步骤2得到的有金薄膜镀层的硅片放入石英舟,然后将两舟分别放置管式炉的两个温区;设置管式炉升温程序,锗粉所在温区温度设为950℃,衬底所在温区温度设为650℃,升温程序开始前先用Ar气对系统进行洗气,洗气结束后通入20sccm Ar,开启升温程序,1h后两温区分别升至950℃、600℃,保温30min后第一阶段反应停止;
步骤4:系统第一步程序结束后停止通入Ar气,通入50sccm H2,然后开启第二步升温程序,50min将系统升至850℃,通入30sccm CH4保温2h,反应结束后停止CH4的供给,系统开始自然降温,衬底表面覆盖锗纳米线/石墨烯复合结构即一维单晶锗基石墨烯等离激元纳米结构。
实施例2
一维单晶锗基石墨烯等离激元纳米结构的制备方法,具体如下:
步骤1:将硅片切成需要的大小,放入烧杯中用丙酮溶液超声15分钟,然后放在异丙醇溶液中超声15min,最后乙醇冲洗后用氮气枪吹干备用;
步骤2:分别将金靶材和清洗过的硅片装入磁控溅射仪器,打开泵开关,通入工作气体20sccm Ar,待溅射室真空度达到7×10-4pa,选用磁控溅射射频模式,设置溅射功率为25W,衬底温度设置为400℃,将溅射时间设置为20s,溅射结束后取出样品,衬底表面上覆有一层纳米级的金薄膜;
步骤3:称取300mg锗粉,100mg石墨粉,1mg红磷粉末,将三者混和后放入刚玉舟中,选用步骤2得到的有金薄膜镀层的硅片放入石英舟,然后将两舟分别放置管式炉的两个温区,设置管式炉升温程序,锗粉所在温区温度设为950℃,衬底所在温区温度设为650℃,升温程序开始前先用Ar气对系统进行洗气,洗气结束后通入20sccm Ar,开启升温程序,1h后两温区分别升至950℃、600℃,保温30min后第一阶段反应停止;
步骤4:系统第一步程序结束后停止通入Ar气,通入50sccm H2,然后开启第二步升温程序,50min将系统升至870℃,通入50sccm CH4保温2h,反应结束后停止CH4的供给,系统开始自然降温,衬底表面覆盖锗纳米线/石墨烯复合结构即一维单晶锗基石墨烯等离激元纳米结构。
实施例3
一维单晶锗基石墨烯等离激元纳米结构的制备方法,具体如下:
步骤1:将硅片切成需要的大小,放入烧杯中用丙酮溶液超声15分钟,然后放在异丙醇溶液中超声15min,最后乙醇冲洗后用氮气枪吹干备用;
步骤2:分别将金靶材和清洗过的硅片装入磁控溅射仪器,打开泵开关,通入工作气体20sccm Ar,待溅射室真空度达到7×10-4pa,选用磁控溅射射频模式,设置溅射功率为25W,衬底温度设置为400℃,将溅射时间设置为10s,溅射结束后取出样品,衬底表面上覆有一层纳米级的金薄膜;
步骤3:称取500mg锗粉,166.6mg石墨粉,2.2mg红磷粉末,将三者混和后放入刚玉舟中,选用步骤2得到的有金薄膜镀层的硅片放入石英舟,然后将两舟分别放置管式炉的两个温区,设置管式炉升温程序,锗粉所在温区温度设为950℃,衬底所在温区温度设为650℃,升温程序开始前先用Ar气对系统进行洗气,洗气结束后通入20sccm Ar,开启升温程序,1h后两温区分别升至950℃、600℃,保温30min后第一阶段反应停止;
步骤4:系统第一步程序结束后停止通入Ar气,通入50sccm H2,然后开启第二步升温程序,50min将系统升至860℃,通入40sccm CH4保温2h,反应结束后停止CH4的供给,系统开始自然降温,衬底表面覆盖锗纳米线/石墨烯复合结构即一维单晶锗基石墨烯等离激元纳米结构。
实施例4
一维单晶锗基石墨烯等离激元纳米结构的制备方法,具体如下:
步骤1:将硅片切成需要的大小,放入烧杯中用丙酮溶液超声15分钟,然后放在异丙醇溶液中超声15min,最后乙醇冲洗后用氮气枪吹干备用;
步骤2:分别将金靶材和清洗过的硅片装入磁控溅射仪器,打开泵开关,通入工作气体20sccm Ar,待溅射室真空度达到7×10-4pa,选用磁控溅射射频模式,设置溅射功率为25W,衬底温度设置为室温,将溅射时间设置为5s,溅射结束后取出样品,衬底表面上覆有一层纳米级的金薄膜;
步骤3:称取3mg红磷粉末放入刚玉舟中,选用步骤2得到的有金薄膜镀层的硅片放入石英舟,然后将两舟放入管式炉中,设置管式炉升温程序,将管式炉温度设为500℃,升温程序开始前先用Ar气对系统进行洗气,洗气结束后通入19sccm Ar和1sccm GeH4,开启升温程序,1h后管式炉温区升至500℃,保温30min后第一阶段反应停止;
步骤4:系统第一步程序结束后停止通入Ar气和GeH4,通入50sccm H2,然后开启第二步升温程序,50min将系统升至860℃,通入50sccm CH4保温2h,反应结束后停止CH4的供给,系统开始自然降温,衬底表面覆盖锗纳米线/石墨烯复合结构即一维单晶锗基石墨烯等离激元纳米结构。
实施例5
一维单晶锗基石墨烯等离激元纳米结构的制备方法,具体如下:
步骤1:将硅片切成需要的大小,放入烧杯中用丙酮溶液超声15分钟,然后放在异丙醇溶液中超声15min,最后乙醇冲洗后用氮气枪吹干备用;
步骤2:分别将金靶材和清洗过的硅片装入磁控溅射仪器,打开泵开关,通入工作气体20sccm Ar,待溅射室真空度达到7×10-4pa,选用磁控溅射射频模式,设置溅射功率为25W,衬底温度设置为室温,将溅射时间设置为20s,溅射结束后取出样品,衬底表面上覆有一层纳米级的金薄膜;
步骤3:称取4mg红磷粉末放入刚玉舟中,选用步骤2得到的有金薄膜镀层的硅片放入石英舟,然后将两舟放入管式炉中,设置管式炉升温程序,将管式炉温度设为500℃,升温程序开始前先用Ar气对系统进行洗气,洗气结束后通入18sccm Ar和2sccm GeH4,开启升温程序,1h后管式炉温区升至500℃,保温30min后第一阶段反应停止;
步骤4:系统第一步程序结束后停止通入Ar气和GeH4,通入50sccm H2,然后开启第二步升温程序,50min将系统升至870℃,通入50sccm CH4保温2h,反应结束后停止CH4的供给,系统开始自然降温。衬底表面覆盖锗纳米线/石墨烯复合结构即一维单晶锗基石墨烯等离激元纳米结构。
通过拉曼数据、扫描电子显微镜数据等表征,证明所得材料为锗纳米线/石墨烯复合结构,且复合纳米结构具有较好的形貌维持,石墨烯的质量较好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于,步骤如下:
(1)在衬底上利用磁控溅射的方法溅射金纳米薄膜;
(2)在步骤(1)得到的衬底上采用化学气相沉积的方法生长掺杂锗单晶纳米线;
(3)在步骤(2)所得到掺杂锗单晶纳米线表面采用化学气相沉积的方法直接生长高结晶度石墨烯壳层。
2.根据权利要求1所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述步骤(1)中衬底为Si/SiO2(100)、蓝宝石衬底(0001)、Si(111)衬底、云母衬底中的任意一种,金纳米薄膜的厚度为5~30nm;步骤(2)中掺杂锗单晶纳米线的直径为50~1000 nm,长度为30~100μm。
3.根据权利要求1所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述步骤(1)中磁控溅射方法为射频磁控溅射方法,在真空环境下,溅射功率为25W-50W,溅射时间为5s-40s,衬底温度为25℃-400℃。
4.根据权利要求1-3任一项所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:步骤(2)中采用管式炉,将步骤(1)所得衬底放置于管式炉中央,引入锗源在保护气存在的条件下对管式炉进行升温,实现锗单晶纳米线的生长。
5.根据权利要求4所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述锗源为气态锗源、液态锗源或固态锗源中的任一种,保护气体为Ar,气体流量为1-100sccm,升温时间为20-60min,锗源温度为300℃~1000℃,衬底温度为400~650℃,保温时间为5-60min。
6.根据权利要求5所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述气态锗源为GeH4,锗源为气态锗源时,管式炉升温至300℃-600℃;液态锗源为四乙基锗或二苯基锗,锗源为液态锗源时,管式炉升温至300℃-600℃;固态锗源为锗粉,当锗源为锗粉时,同时在锗粉中混入石墨粉,锗粉和石墨粉的质量比为3:1,管式炉锗源所在温区升温至900℃-1000℃,衬底所在温区升温至400℃~650℃。
7.根据权利要求1所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:步骤(3)中以H2为载气,载气流量为10-100sccm,通入碳源气体,碳源气体流量为1-50sccm,采用化学气相沉积的方法生长石墨烯壳层。
8.根据权利要求7所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述碳源气体为CH4,C2H2和C2H4中的任一种,化学气相沉积反应温度为850℃-870℃,反应压力为常压,升温时间为50min,保温时间为0.5h-2h。
9.根据权利要求4-8任一项所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:步骤(2)中引入锗源时,可以同时引入N型掺杂源,以实现掺杂锗单晶纳米线的生长。
10.根据权利要求9所述的一维单晶锗基石墨烯等离激元纳米结构的制备方法,其特征在于:所述N型掺杂源为磷源或锑源,磷源包括赤磷、黑磷;锑源包括三氯化锑、三氧化二锑,其中N型掺杂源的质量为1-20mg。
CN202111269115.7A 2021-10-29 2021-10-29 一维单晶锗基石墨烯等离激元纳米结构的制备方法 Active CN113981533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111269115.7A CN113981533B (zh) 2021-10-29 2021-10-29 一维单晶锗基石墨烯等离激元纳米结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111269115.7A CN113981533B (zh) 2021-10-29 2021-10-29 一维单晶锗基石墨烯等离激元纳米结构的制备方法

Publications (2)

Publication Number Publication Date
CN113981533A true CN113981533A (zh) 2022-01-28
CN113981533B CN113981533B (zh) 2023-01-24

Family

ID=79744090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111269115.7A Active CN113981533B (zh) 2021-10-29 2021-10-29 一维单晶锗基石墨烯等离激元纳米结构的制备方法

Country Status (1)

Country Link
CN (1) CN113981533B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN105174268A (zh) * 2015-09-21 2015-12-23 中国科学院上海微系统与信息技术研究所 纳米线与石墨烯的复合材料及其制备方法
CN105990107A (zh) * 2015-03-06 2016-10-05 武汉理工大学 一种掺杂磷的n型锗纳米线的低温低压生长方法及拉曼光谱表征方法
US20170062213A1 (en) * 2014-09-11 2017-03-02 Ramot At Tel-Aviv University Ltd. Method of fabricating a nanoribbon and applications thereof
CN111883607A (zh) * 2020-07-13 2020-11-03 上海纳米技术及应用国家工程研究中心有限公司 一种基于石墨烯/锗复合薄膜的高灵敏度位置探测器的构筑方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170062213A1 (en) * 2014-09-11 2017-03-02 Ramot At Tel-Aviv University Ltd. Method of fabricating a nanoribbon and applications thereof
CN105990107A (zh) * 2015-03-06 2016-10-05 武汉理工大学 一种掺杂磷的n型锗纳米线的低温低压生长方法及拉曼光谱表征方法
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN105174268A (zh) * 2015-09-21 2015-12-23 中国科学院上海微系统与信息技术研究所 纳米线与石墨烯的复合材料及其制备方法
CN111883607A (zh) * 2020-07-13 2020-11-03 上海纳米技术及应用国家工程研究中心有限公司 一种基于石墨烯/锗复合薄膜的高灵敏度位置探测器的构筑方法

Also Published As

Publication number Publication date
CN113981533B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
Beena et al. Photoluminescence in laser ablated nanostructured indium oxide thin films
Wang et al. Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition
Tneh et al. The structural and optical characterizations of ZnO synthesized using the “bottom-up” growth method
CN110028058B (zh) 一种氮掺石墨烯材料及其制备方法
Meitei et al. Microstructural and optical properties of Ag assisted β-Ga2O3 nanowires on silicon substrate
Prathap et al. Anti-reflection In2O3 nanocones for silicon solar cells
CN112875655A (zh) 一种非层状二维Cr2Se3纳米片的制备方法和应用
Wu et al. Self-catalyst β-Ga 2 O 3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors
CN109368605B (zh) 一种碲纳米线材料的制备方法、碲纳米线材料及装置
Khadher et al. Metal oxide thin films: a mini review
Das et al. Controlling the opto-electronic properties of nc-SiOx: H films by promotion of< 220> orientation in the growth of ultra-nanocrystallites at the grain boundary
Ali Origin of photoluminescence in nanocrystalline Si: H films
Choppali et al. Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent
CN113981533B (zh) 一维单晶锗基石墨烯等离激元纳米结构的制备方法
Water et al. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires
CN110224035B (zh) 一种异质结、其制备方法和应用
CN113718227A (zh) 一类二维层状三元化合物及其制备方法
CN108893714B (zh) 一种高密度Ag纳米柱表面增强拉曼散射衬底的制备方法
Kim et al. Optimal temperature of the sol–gel solution used to fabricate high-quality ZnO thin films via the dip-coating method for highly sensitive UV photodetectors
CN115663057A (zh) 一种基于氢氩混合等离子体温和处理的多层WSe2薄膜光电探测器及其制备方法
CN110172733A (zh) 一种高质量锡酸锌单晶薄膜及其制备方法
Sharma et al. Surface modification of carbon fiber by direct growth of zinc oxide nanowalls using a radio-frequency magnetron sputtering technique
CN109023296A (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN109504951B (zh) 一种生长混合相锌镁氧三元氧化物纳米线网的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant