CN113966461B - 测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部件以及具有液体绝缘电气部件的铁路车辆 - Google Patents

测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部件以及具有液体绝缘电气部件的铁路车辆 Download PDF

Info

Publication number
CN113966461B
CN113966461B CN202080039340.9A CN202080039340A CN113966461B CN 113966461 B CN113966461 B CN 113966461B CN 202080039340 A CN202080039340 A CN 202080039340A CN 113966461 B CN113966461 B CN 113966461B
Authority
CN
China
Prior art keywords
liquid
pressure
electrical component
insulated electrical
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080039340.9A
Other languages
English (en)
Other versions
CN113966461A (zh
Inventor
S·伊斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Co ltd
Original Assignee
Hitachi Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Energy Co ltd filed Critical Hitachi Energy Co ltd
Publication of CN113966461A publication Critical patent/CN113966461A/zh
Application granted granted Critical
Publication of CN113966461B publication Critical patent/CN113966461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/321Insulating of coils, windings, or parts thereof using a fluid for insulating purposes only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

本公开的一方面提供了一种用于测量液体绝缘电气部件中的液体量的方法。液体绝缘电气部件包括主箱(1)和与主箱(1)流体连接的膨胀箱(2)。该方法包括测量液体在主箱(1)中的第一点处的第一压力(P1),测量液体在主箱(1)中的第二点处的第二压力(P2),第二点在第一点上方的高度(H)处,测量液体在膨胀箱(2)中的第三点处的第三压力(P3),并基于第一压力(P1)、第二压力(P2)和第三压力(P3)确定液体绝缘电气部件中的液体量。另一方面提供了一种液体绝缘电气部件,特别是变压器,更特别是用于铁路车辆(100)的牵引变压器(101),以及包括所述液体绝缘电气部件的铁路车辆(100)。

Description

测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部 件以及具有液体绝缘电气部件的铁路车辆
技术领域
本公开的实施例总体上涉及一种用于测量液体绝缘电气部件中、特别是液体绝缘变压器中的液体量的方法。液体绝缘电气部件可以是用于铁路车辆的牵引变压器。本公开的另一实施例涉及一种具有液体绝缘牵引变压器的铁路车辆。
背景技术
电动铁路车辆包括一个或多个牵引变压器,以用于向一个或多个牵引马达供电。通常,牵引变压器容纳于填充有绝缘液体的箱中并通过浸没在液体中而热冷却并电绝缘。提供了一个膨胀箱,以允许由温度变化而引起的液体膨胀和收缩。在正常操作中,牵引变压器的绕组完全浸没在绝缘液体中,从而防止绕组与其他部件(例如外壳)之间的电弧。
液体绝缘变压器的常见故障模式是由于液体量不足。箱焊缝、垫圈、管道、管或配件的故障可导致泄漏。当液体量过低时,绕组的一部分可能从液体暴露,并且然后绕组的暴露部分将会被空气而不是液体绝缘。在这种情况下,绕组和其他部件之间的电弧可能发生。为了防止发生此类故障,牵引变压器通常装配有液位传感器,以用于检测变压器中的液位。这种液位传感器可以提供多个阈值,例如用于提供警告信号的“低”阈值和用于断开主断路器以防止电弧放电的“临界”阈值。然而,由于液体的体积(以及因此液体的液位)在很大程度上取决于其温度,因此现有技术中的液位传感器有些缺点。
铁路车辆需要在从-50℃到45℃的大范围环境温度中操作。然而,由于电力损耗,在牵引变压器中的绝缘液体在操作期间的温度明显更高,一般为60℃至100℃,并且操作期间的液体体积高于环境温度下的液体体积。当牵引变压器操作时,泄漏在液体温度高时可能发生,并且由于更高温度液体的更大体积,常规液位测量系统可能无法检测到泄漏。当铁路车辆停靠在车站或侧时,液体温度随后下降,此时液体体积也会减少,导致液位显著下降并可能导致变压器绕组暴露。然后,液位测量系统可以检测到“临界”液位,自动断开主断路器并将铁路车辆留在原位。
由于上述缺点,难以实现对牵引变压器中的液体量的准确测量和监测。因此,操作员必须组织对牵引变压器箱的经常查看检查,以确保没有发生泄漏,这导致增加的维护成本。
现有技术中的数种方法可用于测量牵引变压器中的液体量。一种方法是使用例如安装在箱中预定液位处的浮子传感器或电容传感器来测量液体体积。然而,由于没有考虑由于温度波动引起的密度变化以及测量的液体体积可能在操作期间随时波动,因此该测量液体体积是不可靠的。
日本专利申请公开JP2015/046458A中描述了一种检测变压器中绝缘油泄漏的替代方法。其中,储油箱设置有气流传感器,以检测经由空气通道流入和流出储油箱的空气流量。还设置空气温度传感器和油温传感器,以分别用于检测空气和绝缘油的温度。油温度用于确定绝缘油的体积变化,同时累积空气温度和空气流量数据以产生相关数据。与控制值的比较允许确定是否发生泄漏。然而,这种方法依赖于对从至少两个源收集的累积数据的积分,并且一旦进行积分,这些源中任何一个的任何偏移或误差将导致大误差,从而可能导致错误确定变压器中的油量。
另一种测量变压器油量的方法在美国专利申请公开号US2011-0156918A1中描述。其中,在膨胀箱中设置压力传感器,并设置至少一个温度传感器来测量油的温度。利用来自箱中的单一压力传感器以及一个或多个油温度传感器的信息,液位监测器通过考虑油密度随其温度的变化而对测量的压力值进行校正,因此获得校正后的油液位高度。虽然这种方法试图解决由于温度波动引起的密度变化,但主箱和膨胀箱中不同位置处的油的温度可能变化。由于温度传感器只能测量单个点处的局部温度,确定箱中的油的平均温度的准确近似值需要测量变压器许多位置的温度并对其平均,从而引入不准确性并增加成本系统。
美国专利申请公开号9,377,341B1描述了另一种方法。其中,系统测量在油上方的气体的压力以及箱的底部附近的油的压力。对于储油箱型变压器,使用初始估计平均温度来计算估计油体积。估计油膨胀,然后将该油膨胀用于计算估计平均油温度。如果估计平均油温度不在要求的准确度范围内,则重新计算并迭代油高度和体积,直到结果在要求的准确度范围内。
有鉴于此,期望通过提供一种用于准确可靠地测量液体量的方法和设备来克服现有技术中的至少一些问题。
发明内容
本公开的第一方面提供了一种用于测量液体绝缘电气部件中的液体量的方法。液体绝缘电气部件包括主箱以及流体连接到主箱的膨胀箱。方法包括测量液体在主箱中的第一点处的第一压力,测量液体在主箱中的第二点处的第二压力,第二点高于第一点的高度处,测量液体在膨胀箱中的第三点处的第三压力,并基于第一压力、第二压力和第三压力确定液体绝缘电气部件中的液体量。
本公开的第二方面还提供了一种液体绝缘电气部件,液体绝缘电气部件包括包含电气部件的主箱、流体连接到主箱的膨胀箱、设置在主箱中并被配置用于测量液体的第一压力的第一压力传感器,设置在主箱中并被配置用于测量液体的第二压力的第二压力传感器,第二压力传感器设置在第一压力传感器上方的高度处,设置在膨胀箱中用于测量液体的第三压力的第三压力传感器,以及确定单元,确定单元被配置用于实施根据第一方面的测量液体量的方法。
本发明的第三方面还提供了根据第二方面的液体绝缘电气部件,其中,液体绝缘电气部件为变压器,特别是用于铁路车辆的牵引变压器。
本公开的第四方面还提供一种铁路车辆,铁路车辆包括根据第三方面的液体绝缘电气部件。
本公开中描述的实施例允许准确且可靠地测量液体绝缘电气部件中的液体量。特别地,这里描述的实施例考虑了由操作中的温度波动引起的液体绝缘电气部件中的液体体积的变化。此外,本文描述的实施例允许对具有液体绝缘部件(例如液体绝缘牵引变压器)的铁路车辆进行更经济有效的维护和操作。
根据从属权利要求、权利要求组合、说明书和附图,可以与本文描述的实施例组合的其他优点、特征、方面和细节是显而易见的。
附图说明
下面参照附图进行详细说明,其中:
图1是根据本公开的各方面的液体绝缘电气部件的示意性横截面图;
图2是根据本公开的各方面的具有可变主箱容积的液体绝缘电气部件的示意性横截面图;以及
图3是根据本公开的各方面的具有牵引变压器的铁路车辆的示意性横截面图。
具体实施方式
现在将详细参考各种实施例,各种实施例的一个或多个示例在每幅图中示出。每个示例均是通过解释的方式提供的并不意味着限制。例如,作为一个实施例的部分示出或描述的特征可用于任何其他实施例或与任何其他实施例结合使用以产生又一实施例。本公开旨在包括这种修改和变化。
在以下对附图的描述中,相同的附图标记指代相同或相似的部件。一般地,仅描述相对于各个实施例的差异。除非另有说明,否则对一个实施例中的一部分或方面的描述也可以应用于另一实施例中的相应部分或方面。
本公开主要涉及液体绝缘电气部件,特别是液体绝缘变压器。参考图1,其示出了液体绝缘电气部件的侧视图。电气部件3位于主箱1内,并且主箱1填充有绝缘液体,使得整个电气部件3浸没在绝缘液体内。浸没于绝缘液体内允许控制例如电气部件3和主箱1之间的电绝缘并抑制电弧。
在本公开的范畴中,术语“液体”和“绝缘液体”可以指用于使电气部件电绝缘的任何液体。现有技术中存在其他类型的电气部件绝缘,例如干式绝缘替代品;然而,非液体绝缘溶液不在本公开的范围内。例如,绝缘液体可以包括油,特别是包含矿物油、酯油或硅油的组的一种。然而,本公开不限于此。本公开的液体可以包括被认为适合于电绝缘电气部件的任何液体。
液体绝缘电气部件的主箱1被设置为围绕电气部件3并容纳足够量的绝缘液体以便浸没电气部件3。主箱1可以以本领域任何已知的方式构造用于容纳绝缘液体和电气部件。例如,主箱1可由金属、塑料或复合材料形成。特别地,主箱1可以由焊接在一起的金属片部件制造,以形成密封箱。主箱1还可包括设置在主箱1的内壁上的内衬。
液体绝缘电气部件的介电性能在很大程度上取决于在主箱1中将电气部件3保持于浸没状态的绝缘液体。如果绝缘液体的液位下降到电气部件3暴露至空气时,绝缘液体不再能防止电气部件3和例如主箱1之间的电弧。这是液体绝缘电气部件、特别是液体绝缘变压器的常见故障模式。
然而,由于液体绝缘电气部件的温度波动以及因此绝缘液体在操作中的温度波动,绝缘液体的可变液位通常是不可避免的。电气部件3通常可以是在操作期间引起绝缘液体温度升高的热源。例如,在电气部件3是变压器的情况下,变压器中的电损可以作为热量排出到周围绝缘液体中。加热绝缘液体导致其体积增加,并且反之,允许绝缘液体冷却导致其体积减少。
除了绝缘液体的体积波动之外,在液体绝缘电气部件的整个寿命期间的正常操作期间,可能发生泄漏,使得绝缘液体从液体绝缘电气部件泄漏。这在主箱1由焊接形成时尤其相关,这是由于焊接结构的循环膨胀和收缩可能导致焊缝疲劳和故障,从而产生泄漏源。通常,泄漏只能通过以下两种方式中的一种来检测-通过在预防性维护期间检查液体绝缘电气部件,或通过使用液位传感器来检测低液体液位或临界液体液位。然而,严格的检查会增加操作和维护成本,并且使用液位传感器只允许在泄漏最初发生后很长时间才能检测到大泄漏。由于变压器无法操作直至向箱中添加额外液体,因此可能会发生高成本的操作延迟。
为了适应液体体积的波动,液体绝缘电气部件包括至少一个膨胀箱2。膨胀箱2通过管4流体连接到主箱1。在本公开的范畴中,任何数量的膨胀箱2可以流体连接到主箱1。膨胀箱2还可以包括通气器8以允许在绝缘液体的膨胀和收缩期间平衡压力。与主箱1类似,膨胀箱2可以以本领域已知的任何方式构造用于容纳绝缘液体。例如,膨胀箱2可由金属、塑料或复合材料形成。特别地,膨胀箱2可以由焊接在一起的金属板部件制成以形成密封箱。膨胀箱2还可以包括设置在膨胀箱2的内壁上的内衬。
在液体绝缘电气部件的操作期间,主箱1中的绝缘液体可被电气部件3产生的热量加热。绝缘液体随后膨胀,并且膨胀的绝缘液体流动通过管4并进入膨胀箱2。如图1示例性所示,在操作温度下液体绝缘电气部件中的液体液位可以处于由L1表示的液位处。在操作期间,绝缘液体的温度可以变化,并且液体绝缘电气部件中的液位L随后变化。如图1示例性所示,在较低温度下,例如当液体绝缘电气部件不操作并且随后冷却到环境温度时,液体绝缘电气部件中的液位可以处于L2表示的低液位处。
从以上讨论和图1中示例性示出的内容可以明显看出,通过使用主箱1或膨胀箱2中的液位传感器测量液体绝缘电气部件中的液体量可存在问题且不可靠。即使在没有发生泄漏时,例如液体绝缘电气部件在操作时的液体液位L1与液体绝缘电气部件已经冷却时的液体液位L2之间的变化也很大。在绝缘液体已经冷却和收缩之后,对应于操作期间的液位L1的足以将电气部件3保持在浸没状态的液体量可能是不够的。此外,如上所讨论的,涉及油温度的测量和/或进出系统的空气流率的测量的现有技术中的解决方案可能是不可靠的。
在从预防性维护策略转变为预测性维护策略的努力中,已经设计了通过测量液体量同时还考虑温度波动的影响来检测泄漏的解决方案。本公开的实施例允许对液体绝缘部件中存在的液体量进行更准确和可靠的测量。为了克服测量液体液位的缺点,本公开使用多个压力传感器来确定液体量。
根据本公开的实施例,提供了一种用于测量液体绝缘电气部件中的液体量的方法。液体绝缘电气部件包括主箱1和与主箱1流体连接的膨胀箱2。该方法包括测量主箱1中的第一点处的第一压力P1,测量主箱1中的第二点处的第二压力P2,第二点在第一点上方的高度H处,测量膨胀箱2中的第三点处的第三压力P3,并基于第一压力P1、第二压力P2和第三压力P3确定液体绝缘电气部件中的液体量。
如图1示例性所示,液体绝缘电气部件设置有第一压力传感器5和第二压力传感器6。第一压力传感器5被配置用于测量第一压力P1,并且第二压力传感器6被配置用于测量第二压力P2。第一压力传感器5所定位于的点在下文中被称为第一点,并且第二压力传感器6所定位于的点在下文中被称为第二点。
在本公开的范畴中,第一压力P1和第二压力P2可被测量为绝对压力或相对压力。即,第一压力P1和第二压力P2可以是绝对压力,或者第一压力P1和第二压力P2可以是相对压力。在第一压力P1和第二压力P2为相对压力的情况下,参考压力可以是位于主箱1的外部的点处的环境压力。在根据本公开确定液体量时,P1和P2之间的差值被确定,因此第一压力P1和第二压力P2是绝对压力还是相对压力无关紧要。这导致第一压力传感器5和第二压力传感器6可以被配置用于测量绝对压力或相对压力。
在本公开的范畴中,第三压力P3可以被测量为相对压力。特别地,第三压力P3可以被测量为相对于膨胀箱2的顶部中的空气压力的压力。可替代地,第三压力P3可以被测量为相对于位于膨胀箱2的外部的点处的环境压力的压力。这导致第三压力传感器7可以被配置为测量相对压力。特别地,第三压力传感器7可以被配置为测量相对于膨胀箱2的顶部中的空气压力的压力,或者相对于位于膨胀箱2的外部的点处的环境压力的压力。
通过使用第一压力P1、第二压力P2和第三压力P3的值,可以确定液体绝缘电气部件中的液体量。以下公开内容概述了用于确定液体量的多种方法。对于基本不可压缩的液体,假设该液体处于静液状态,则位于液柱的基部的点处的静液压力P由下面的等式(1)提供,并且液柱中的液体质量m由下面的等式(2)提供:
P=ρ×g×h (1)
m=ρ×h×A (2)
其中ρ是液体的平均密度,g是大约9.81m/s2的重力加速度,h是液柱的高度,A是液柱的面积。结合等式(1)和(2)允许将液体质量m确定作为压力P的函数,如下面的等式(3)所示:
m=P×(A/g) (3)
根据可与本文所述的其他实施例结合的实施例,液体的量可基于液体总质量(mtotal)、膨胀箱中的液体质量(mexp)、主箱中的液体质量(mmain)和主箱中液体平均密度(ρavg)中的至少一个。
上述等式(1)可用于确定主箱1中液体平均密度。主箱1设置有第一压力传感器5和第二压力传感器6,其被分别配置用于测量第一点处的第一压力P1以及第二点处的第二压力P2。第二点设置在第一点上方的高度H处。结合等式(1)的两个实例得出以下等式(4)以用于确定主箱中液体平均密度ρavg
ρavg=(P2-P1)/(g×H) (4)
由等式(4)确定的液体平均密度ρavg对应于液柱中第一点和第二点之间的液体平均密度。第一点和第二点可以分别设置在与主箱1的底部和主箱1的顶部不对应的点处。在这种情况下,当绝缘流体假定为不可压缩且均质时,第一点和第二点之间的液体平均密度近似对应于主箱1的整个高度上的主箱中液体平均密度ρavg
因此,等式(2)和等式(4)可以组合以确定主箱中的液体质量mmain,如下面的等式(5)所提供的:
mmain=Vmain×(P2-P1)/(g×H) (5)
其中Vmain是主箱1的容积,特别是主箱1能够围绕电气部件3容纳的绝缘液体的体积。
可以实施上述等式(3)来确定膨胀箱2中的液体质量。膨胀箱2设置有第三压力传感器7,其被配置用于测量第三点处的第三压力P3。因此,膨胀箱2中第三点上方的液体质量mexp可以由等式(6)确定:
mexp=P3×(Aexp/g) (6)
其中,Aexp为膨胀箱2的平面横截面积。在第三点设置在膨胀箱2的基部处的情况下,即甚至于膨胀箱2中没有液体位于第三点下方的点处的情况下,则由等式(6)提供的膨胀箱2中的液体质量mexp基本上等于膨胀箱2中的液体总质量。
组合以上等式(5)和等式(6)允许使用以下等式(7)确定液体绝缘部件中的液体总质量:
mtotal=mmain+mexp=Vmain×(P2-P1)/(g×H)+P3×(Aexp/g) (7)
为了进一步简化液体绝缘电气部件中液体量的确定,等式(7)的已知常数可以概括为预定参数α、β,其可以考虑主箱和膨胀箱的常数和几何形状,即Vmain、H和Aexp。这种预定参数α、β还可以包括转换因子,以用于转换为通用液体总量值Qtotal,该值对应于液体绝缘电气部件中的总液体量。因此,通用液体总量Qtotal可以表示为以下等式(A):
Qtotal=α×P3+β×(P2-P1) (A)
其中α和/或β是预定值。例如,α可以对应于基于膨胀箱的几何形状的预定值,即Aexp,并且β可以对应于基于主箱的几何形状的预定值,即H和Vmain
预定值α、β可以包括转换因子使得通用液体总量Qtotal对应于特定液体量。例如,预定值α、β可以包括用于确定液体绝缘电气部件中的液体总质量、膨胀箱中的液体高度或液体绝缘电气部件中的液体体积中之一的转换因子。然而,本公开不限于此。例如,在确定液体绝缘部件中液体总质量时,可以设置用于确定总质量的预定值αm、βm使得:
αm=Aexp/g且βm=Vmain/(g×H)
使得液体绝缘部件中的液体总质量由以下等式(8)确定:
mtotal=αm×P3m×(P2-P1) (7)
通常,第一压力传感器5和第二压力传感器6可以设置在主箱1中的任何竖直高度处。第一点和第二点之间的绝缘液体柱的平均密度ρavg可以在主箱1中的任意两个点之间确定,只要第一点和第二点之间的高度H是已知的。然而,可以进一步提高确定平均密度ρavg的准确度。
根据可以与这里描述的其他实施例结合的实施例,第一点可以设置在主箱1的基部,或者第二点可以设置在主箱1的顶部。特别地,第一点可以设置在主箱1的基部,并且第二点可以设置在主箱1的顶部。术语“设置在基部”是指尽可能合理靠近主箱1的基部的位置。被称为“处于基部”的点可以位于主箱1的底板部分上或者位于主箱1的基本上靠近主箱1的底板部分的侧壁部分上。特别地,第一点可以位于主箱1的竖直高度的距底部10%处,尤其是主箱1的竖直高度的距底部5%。类似地,术语“设置在顶部”是指尽可能合理靠近主箱的顶部的位置。被称为“处于顶部”的点可以位于主箱1的顶部部分上或者位于主箱1的基本上靠近主箱1的顶部部分的侧壁部分上。特别地,第二点可以位于主箱1的竖直高度的距顶部10%处,尤其是处于主箱1的竖直高度的距顶部5%处。
在主箱1的基部设置第一点或在主箱1的顶部设置第二点,允许测量跨越更大绝缘液体柱的压差ΔP。特别地,在主箱1的基部设置第一点并且在主箱1的顶部设置第二点,允许测量主箱1中跨最大实际绝缘液体柱的压力差。绝缘液体的温度的局部变化,因此密度的局部变化可以通过确定更大绝缘液体柱的平均密度ρavg来补偿。由此,可以更准确地估计主箱1中绝缘液体的平均密ρavg
第三压力传感器7可以设置在膨胀箱2中的任何高度处,只要第三压力传感器7在正常操作期间浸没在绝缘流体中。换言之,第三点可设置在膨胀箱中低于预期最低液体液位的任何点处。膨胀箱2中低于第三点的任何绝缘流体都可以被认为是“冗余液体”,在确定液体绝缘电气部件中的液体量时不考虑该“冗余液体”。然而,这种“冗余液体”会导致液体绝缘电气部件中的绝缘液体质量过多,并且可以进一步减少液体绝缘电气部件中绝缘液体质量。
根据可与本文所述的其他实施例结合的实施例,第三点可设置在膨胀箱2的基部处。术语“设置在基部”是指尽可能合理地靠近膨胀箱2的基部。被称为“处于基部”的点可以位于膨胀箱2的底板部分上,或者处于膨胀箱2的基本上靠近膨胀箱2的底板部分的侧壁部分上。特别地,第三点可以处于膨胀箱2的竖直高度的距底部10%,特别是膨胀箱2的竖直高度的距底部5%处。
在膨胀箱2的基部提供第三点使膨胀箱中在第三点下方包含的“冗余液体”量最小化。因此,可以减少绝缘液体质量,并且可以减少液体绝缘电气部件的总质量,这可以进一步导致操作成本的降低。
根据可与本文描述的其他实施例组合的实施例,用于测量液体量的方法还包括使用低通滤波器过滤第一压力P1、第二压力P2、第三压力P3以及液体量中的至少一个。具体地,低通滤波器为无限脉冲响应(IIR)滤波器或有限脉冲响应(FIR)滤波器。
液体绝缘电气部件在操作期间可能受到一系列基于频率的干扰。例如,液体绝缘电气部件可能经受机械振动或杂散电场。当测量压力P1、P2、P3以确定液体量时,这种干扰会导致压力传感器5、6、7所测量的值中的信号干扰。通常,这些干扰的频率明显高于被测量得压力P1、P2、P3的变化率。因此,可以通过使用低通滤波器来滤除这种干扰,从而使压力传感器5、6、7提供的信号可靠且准确。特别地,低通滤波器可以包括无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器中的至少一种。IIR滤波器相比于FIR滤波器可以是有利的,因为IIR滤波器通常需要更少的计算资源来执行类似滤波操作,并且可以比FIR滤波器更快地执行滤波操作。尽管IIR滤波器的缺点是非线性相位响应,但被过滤的信号不是周期性的并且代表频率低,因此消除了这些缺点。可替代地,实现FIR滤波器的容易性可能是优选的。
迄今为止,上述用于测量液体量的方法假设主箱1的容积保持恒定。更具体地,主箱1能够在电气部件3周围容纳的绝缘液体的体积保持恒定。然而,由于电气部件5和绝缘液体的加热和冷却,主箱1和/或电气部件3在液体绝缘电气部件的操作期间也可以经受热膨胀和收缩。因此,主箱1的容积,特别是主箱1能够在电气部件3周围容纳的绝缘液体的体积可以是可变的。如图2示例性所示,主箱1的热膨胀和收缩用表示主箱1的“鼓胀”的虚线示出,而电气部件3的热膨胀和收缩用表示变压器的线圈膨胀的虚线示出。因此,液体液位L1和L2可能受主箱1和/或电气部件3的热膨胀和收缩影响。
根据可与本文描述的其他实施例组合的实施例,用于测量液体绝缘电气部件中的液体量的方法还可包括使用预定模型基于第一压力P1和第二压力P2的值确定实际主箱容积Vmain,actual
回到上面的等式(7),已知的主箱容积Vmain可以用实际主箱容积Vmain,actual的变量代替。因此,使用下面的等式(8)确定液体绝缘部件中的液体总质量:
mtotal=mmain+mexp=Vmain,actual×(P2-P1)/(g×H)+P3×(Aexp/g) (8)
为了进一步简化液体绝缘电气部件中液体量的确定,等式(8)的已知常数可以概括为预定参数α、γ。这种预定参数α、γ还可以包括转换因子以用于转换为通用液体总量Qtotal,该值对应于液体绝缘电气部件中的总液体量。因此,通用液体总量Qtotal可以表示为以下等式(B):
Qtotal=α×P3+γ×Vmain,actual×(P2-P1) (B)
其中α和/或γ是预定值。
预定值α、γ可以包括转换因子,使得通用液体总量Qtotal对应于特定液体量。例如,预定值α、γ可以包括用于确定液体绝缘电气部件中的液体总质量、膨胀箱中的液体高度或液体绝缘电气部件中的液体体积之一的转换因子。然而,本公开不限于此。例如,当确定液体绝缘部件中的液体总质量时,用于确定总质量的预定值αm、γm可以设置为:
αm=Aexp/g且γm=1/(g×H)
使得液体绝缘部件中的液体总质量由以下等式(9)确定:
mtotal=αm×P3m×Vmain,actual×(P2-P1) (9)
主箱实际容积Vmain,actual取决于绝缘液体的温度,特别是主箱1中液体的平均温度Tavg。由于主箱1和电气部件3的几何形状不同,主箱的容积Vmain,actual与主箱1中液体的平均温度Tavg之间的直接数学关系将难以获得。因此,可以使用包括校准曲线或查找表的预定模型来确定主箱的容积Vmain,actual
通常,可以从绝缘液体的制造商或通过实验获得与绝缘液体的特性相关的准确数据,特别是平均密度ρavg和平均温度Tavg之间的关系。主箱中绝缘液体的平均密度ρavg可由上述等式(4)确定,绝缘液体的平均温度Tavg可由所述数据确定。例如,基于计算出的主箱1中绝缘油的平均密度ρavg,可以使用查找表来确定平均温度Tavg
然而,可以通过使用基于第一压力P1和第二压力P2的Vmain,actual的预定模型来进一步简化确定。上面已经用等式(4)表明主箱中绝缘液体的平均密度ρavg取决于ΔP或第二压力P2和第一压力P1之间的差值。由于主箱中绝缘液体的平均密度ρavg取决于主箱1中液体的平均温度Tavg,Tavg和ΔP之间的关系是双射的。因此,基于ΔP或更具体地基于第一压力P1和第二压力P2的Vmain,actual的预定模型或查找表可用于更准确和更可靠地测量液体绝缘电气部件中的液体量。
Vmain,actual的预定模型可以通过实验预先确定。例如,液体绝缘电气部件可能需要在安装和操作之前进行预认证测试。在此预认证测试期间,液体绝缘电气部件是无泄漏的,并且Vmain,actual的预定模型可以使用已知质量的绝缘液体并在一定操作温度范围内测量压力P1和P2来通过实验确定或校准。然后,校准曲线、查找表或任何其他预定模型可以专门定制为经受预认证测试的部件,使得基于压力P1和P2的Vmain,actual的值可以被准确且可靠地确定。
为了实施预测性维护方法来操作根据本公开的液体绝缘电气部件,将通过本文描述的方法测量的液体量与一个或多个阈值进行比较可能是有利的。此外,确定液体绝缘电气部件中的液体量的变化率可能是有利的,从而可以基于预测的液体量来调整未来的维护。
根据可与本文描述的其他实施例组合的实施例,用于测量液体绝缘电气部件中的液体量的方法还包括将液体量与至少一个预定阈值进行比较,并且当液体量高于或低于至少一个预定阈值时产生至少一个信号。
至少一个预定阈值可以是预定值,或者是基于压力P1、P2和P3中的至少一个呈曲线的预定阈值。例如,可以确定阈值,使得第一阈值对应于液体绝缘电气部件在服务中,即绝缘液体处于较高温度时的阈值值,而第二阈值对应于液体绝缘电气部件在不使用时,即绝缘液体处于较低温度时的阈值值。至少一个预定阈值可以在液体绝缘电气部件的预认证测试期间被预定,使得预定阈值尤其针对被认证的部件进行定制。
至少一个信号可以包括包含警告信号、临界关闭信号和溢出信号的组中的至少一个。例如,至少一个信号可以是警告信号,其向操作员提供已经超过预定阈值的视觉或听觉警告,从而向操作员发出可能需要预防性维护的信号。作为进一步示例,至少一个信号可以被传输到另一个位置,例如远程服务器,从而向远程维护人员提供已经超过预定阈值并且可能需要预防性维护的信号。此外,所述至少一个信号可以是临界关闭信号,其向断路器提供电信号,所述断路器被配置用于在超过临界阈值并且电气部件3有暴露在空气中的严重危险的情况下断开对液体绝缘电气部件的供电。进一步地,所述至少一个信号可以是溢出信号,其向操作者指示液体绝缘电气部件中存在过量绝缘液体,当液体绝缘电气部件被带到操作温度时,这可能导致液体溢流。
根据可以与本文所述的其他实施例结合的实施例,用于测量液体绝缘电气部件中的液体量的方法还包括在确定液体量之后等待至少一个预定时间段,在至少一个预定时间段之后确定至少一个第二液体量,确定液体量的变化率,并基于液体量和液体量的变化率评估是否应该进行维护。
如果确定液体量的变化率基本接近于零,则可以确定为没有绝缘液体泄漏,并且可以继续遵循定期维护计划。然而,如果确定绝缘液体量的非零变化率,这表明正在发生或已经发生泄漏,并且可能需要改变维护计划。非零变化率可用于以多种方式确定泄漏是否正在发生或已经发生。例如,可以将液体量的变化率与至少一个预定阈值进行比较。可替代地,直到液体量变得临界的时间可以基于实际液体量、最小允许液体量和液体量变化率来确定。然后可以确定紧急程度,向操作员或维护人员指示是否应该提前安排维护活动来修理或重新填充液体绝缘电气部件,或者操作是否可以继续直到紧急程度达到需要维护的水平。
根据本公开的第二方面,提供了一种液体绝缘的电气部件。液体绝缘电气部件包括容纳电气部件3的主箱1、流体连接到主箱1的膨胀箱2、设置在主箱1中并被配置用于测量第一压力P1的第一压力传感器5、设置在主箱1中并被配置用于测量第二压力P2的第二压力传感器6,第二压力传感器6设置在第一压力传感器5上方的高度H处,设置在膨胀箱2中用于测量第三压力P3的第三压力传感器7,以及用于实施根据第一方面的实施例的测量液体量的方法的确定单元。
压力传感器5、6、7可以包括用于测量液体绝缘电气部件内的绝缘液体的压力的任何合适的压力传感器。特别地,压力传感器5、6、7可以包括压电、电容、电磁、光学或应变计压力传感器中的至少一种。然而,本公开不限于此,可以使用可产生与液体的压力相对应的电信号的任何压力传感器。
用于实施根据本文描述的实施例的测量液体量的方法的确定单元可以包括中央处理单元(CPU)、存储器以及例如支持电路。为了便于确定液体量,CPU可以是任何形式的通用计算机处理器中的一种。存储器联接到CPU。存储器或计算机可读介质可以是一个或多个容易获得的存储器装置,例如随机存取存储器、只读存储器、软盘、硬盘或本地或远程的任何其他形式数字存储。支持电路可以联接到CPU以用于以常规方式支持处理器。这些电路包括缓存、电源、时钟电路、输入/输出电路和相关子系统等。用于根据本文所述的实施例确定液体量的软件例程以及预定值、模型和其他数据通常可以存储在存储器中。当由CPU执行时,软件例程将通用计算机转换为根据本公开的任何实施例确定液体量的专用确定单元。
可替代地,本文公开的一些方法操作可以在硬件中以及由软件控制器执行。因此,实施例可以以在计算机系统上执行的软件来实现,并且可以以硬件作为专用集成电路或其他类型的硬件来实现,或者软件和硬件的组合来实现。
液体绝缘电气部件还可以包括至少一个过滤装置,其被配置用于过滤由压力传感器5、6、7产生的电信号。过滤装置可以是设置用于过滤至少一个压力传感器的单独过滤装置。可替代地,过滤装置可以集成到确定单元中。滤波装置可以包括低通滤波器,特别是无限脉冲响应(IIR)滤波器或有限脉冲响应(FIR)滤波器。
现在将参考图3,其示出了根据本公开的铁路车辆的示意图。根据可与本文描述的其他实施例结合的实施例,液体绝缘电气部件是变压器。特别地,液体绝缘电气部件是用于铁路车辆的牵引变压器。根据进一步的实施例,提供了一种铁路车辆,该铁路车辆包括根据本文描述的实施例的液体绝缘电气部件。
如图3中示例性地所示,铁路车辆100设置有根据本文描述的实施例的牵引变压器101。牵引变压器101电连接到电源并且被配置用于将电源提供的电源电压转换成适合提供给一个或多个牵引马达102的牵引电压。牵引马达102可以通过整流器103和逆变器104电连接到牵引变压器101。如图3示例性所示的铁路车辆100被示为由电气化架空线105和受电弓106供电;然而,本公开不限于此。例如,铁路车辆100可替代地设置有马达发电机单元,例如连接到发电机的迪塞尔发动机,其用作向牵引变压器101供应电源电压的电源。
根据可与本文描述的其他实施例组合的实施例,用于测量液体绝缘电气部件中的,特别是用于铁路车辆的牵引变压器中的液体量的方法在铁路车辆以恒定速度行驶或铁路车辆静止时执行。铁路车辆100可以设置有速度测量装置107,其被配置为测量铁路车辆100的速度V。速度测量装置107可以电联接到牵引变压器101的确定单元,使得确定单元被提供有铁路车辆100的速度的信号。
使用由速度测量装置107提供的速度信号,可以确定是否应该执行对牵引变压器101中的液体量的测量。当铁路车辆100运动时,牵引变压器101中的绝缘液体也可能运动,使得液体量的可靠测量变得有问题。例如,如果铁路车辆100不是以恒定速度行驶,即加速或减速,则绝缘液体可以在牵引变压器101的主箱或膨胀箱内晃动或涌动。因此,可以通过仅当铁路车辆100以恒定速度行驶时进行测量来获得液体量的更可靠测量。特别地,当铁路车辆100已经以恒定速度行驶至少10秒,更特别地至少1分钟,甚至更特别地至少5分钟时,可以进行液体量的测量。
可靠地测量液体量可能由于振动而有问题。当铁路车辆100运动时,牵引变压器101可经受振动,这可能导致牵引变压器101中的压力传感器5、6、7测量的压力P1、P2、P3中的一个的读数不准确或不可靠。因此,可以通过仅在铁路车辆100静止时,即速度为零时执行测量实现对液体量的更可靠测量。特别地,当铁路车辆100已经静止至少10秒,更特别地至少1分钟,甚至更特别地至少5分钟时,可以进行液体量的测量。例如,液体量的测量可以在路线上的预定停靠期间、操作员休息期间或当铁路车辆长时间停靠(例如在终点站)时进行。
速度测量装置107可以是适合于测量铁路车辆100的速度V的任何装置。特别地,速度测量装置107可以包括全球定位系统(GPS)接收器。更具体地,速度测量装置107可以包括惯性测量装置。
在操作期间,即在将电源电压转换成牵引电压期间,牵引变压器101产生被牵引变压器101的绝缘液体和其他部件吸收的热量。牵引变压器101产生的热量可以以局部的方式加热绝缘液体,使得产生不均匀温度分布,并且实现准确和可靠的液体量测量可能更成问题。因此,可以通过仅在牵引变压器101的能量输出低或基本为零时执行测量来实现对液体量的更可靠测量。在这种状态下,牵引变压器101不操作以将电源电压转换为牵引电压,并且产生的明显更少量的热量。例如,当牵引变压器101未操作时,空载损耗产生的热量可以小于牵引变压器101以标称功率操作时负载损耗产生的热量的10%。因此,当牵引变压器101处于这种状态时,绝缘液体的局部加热显著减少并且绝缘液体的密度更加均匀,从而导致对液体量的更可靠和准确测量。
虽然前述内容是针对本公开的方面和实施例,但是在不脱离其基本范围的情况下可以设计本公开的其他和进一步的实施例,并且其范围由所附权利要求书确定。

Claims (14)

1.用于测量液体绝缘电气部件中的液体量的方法,所述液体绝缘电气部件包括主箱(1)以及与所述主箱(1)流体连接的膨胀箱(2),所述方法包括:
测量液体在所述主箱(1)中的第一点处的第一压力(P1);
测量液体在所述主箱(1)中的第二点处的第二压力(P2),所述第二点在高于所述第一点的高度(H)处;
测量液体在所述膨胀箱(2)中的第三点处的第三压力(P3);以及
基于所述第一压力(P1)、第二压力(P2)、第三压力(P3)确定所述液体绝缘电气部件中的液体量,包括:
根据如下等式来确定所述液体量:Qtotal=α×P3+β×(P2-P1),其中,α和β是预定的值,或者
根据如下等式来确定所述液体量:Qtotal=α×P3+γ×Vmain,actual×(P2-P1),其中,α和γ是预定的值,并且Vmain,actual是使用预定模型基于所述第一压力P1
和第二压力P2的值所确定的实际主箱容积。
2.根据权利要求1的方法,其中,所述第一点在所述主箱(1)的基部处,所述第二点在所述主箱(1)的顶部处,和/或所述第三点在所述膨胀箱(2)的基部处。
3.根据权利要求1至2中任一项所述的方法,其中,所述液体量基于以下各项中的至少一项:液体总质量(mtotal)、所述膨胀箱中的液体质量(mexp)、所述主箱中的液体质量(mmain)和所述主箱中的液体平均密度(ρavg)。
4.根据权利要求1至2中任一项所述的方法,所述方法还包括使用低通滤波器来过滤所述第一压力P1、所述第二压力P2、所述第三压力P3和所述液体量中的至少一个。
5.根据权利要求1至2中任一项所述的方法,所述方法还包括使用无限脉冲响应(IIR)滤波器或有限脉冲响应(FIR)滤波器来过滤所述第一压力P1、所述第二压力P2、所述第三压力P3和所述液体量中的至少一个。
6.根据权利要求1至2中任一项所述的方法,其中,所述液体绝缘电气部件安装至铁路车辆(100)。
7.根据权利要求6所述的方法,其中,所述液体绝缘电气部件是铁路车辆(100)的牵引变压器(101)。
8.根据权利要求6的方法,其中,当所述铁路车辆(100)以恒定的速度(V)行驶时或当所述铁路车辆(100)静止时,执行所述方法。
9.根据权利要求1至2中任一项所述的方法,所述方法还包括将所述液体量与至少一个预定的阈值进行比较,并且当所述液体量高于或低于所述至少一个预定的阈值时,生成至少一个信号。
10.根据权利要求1至2中任一项所述的方法,所述方法还包括:
在确定所述液体量之后等待至少一个预定的时间段;
在所述至少一个预定的时间段之后,确定至少一个第二液体量;
确定所述液体量的变化率;以及
基于所述液体量和所述液体量的变化率来评估是否进行维护以及何时进行维护。
11.一种液体绝缘电气部件,包括:
主箱(1),所述主箱容纳所述电气部件(3);
膨胀箱(2),所述膨胀箱流体连接至所述主箱(1);
第一压力传感器(5),所述第一压力传感器设置在所述主箱(1)中并且被配置用于测量液体的第一压力(P1);
第二压力传感器(6),所述第二压力传感器设置在所述主箱(1)中并且被配置用于测量所述液体的第二压力(P2),所述第二压力传感器(6)设置在高于所述第一压力传感器(5)的高度(H)处;
第三压力传感器(7),所述第三压力传感器设置在所述膨胀箱(2)中,用于测量所述液体的第三压力(P3);以及
确定单元,所述确定单元被配置用于实施根据权利要求1至10中任一项所述的用于测量液体绝缘电气部件中的液体量的方法。
12.根据权利要求11所述的液体绝缘电气部件,其中,所述液体绝缘电气部件是变压器。
13.根据权利要求12所述的液体绝缘电气部件,其中,所述变压器是用于铁路车辆(100)的牵引变压器(101)。
14.铁路车辆(100),所述铁路车辆包括根据权利要求12所述的液体绝缘电气部件。
CN202080039340.9A 2019-05-29 2020-05-27 测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部件以及具有液体绝缘电气部件的铁路车辆 Active CN113966461B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19177321.7 2019-05-29
EP19177321.7A EP3745098B1 (en) 2019-05-29 2019-05-29 Method for measuring a quantity of liquid in a liquid-insulated electrical component, liquid-insulated electrical component and railroad vehicle having the same
PCT/EP2020/064767 WO2020239872A1 (en) 2019-05-29 2020-05-27 Method for measuring a quantity of liquid in a liquid-insulated electrical component, liquid-insulated electrical component and railroad vehicle having the same

Publications (2)

Publication Number Publication Date
CN113966461A CN113966461A (zh) 2022-01-21
CN113966461B true CN113966461B (zh) 2024-03-15

Family

ID=66676397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080039340.9A Active CN113966461B (zh) 2019-05-29 2020-05-27 测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部件以及具有液体绝缘电气部件的铁路车辆

Country Status (4)

Country Link
US (1) US20220254564A1 (zh)
EP (2) EP3745098B1 (zh)
CN (1) CN113966461B (zh)
WO (1) WO2020239872A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377341B1 (en) * 2013-04-12 2016-06-28 Joe David Watson Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
CN108666098A (zh) * 2018-06-23 2018-10-16 南通涵宇新能源电力工程有限公司 变压器装置和用于控制充液变压器中的压力的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400320B2 (en) 2009-12-30 2013-03-19 Eduardo Pedrosa Santos System for monitoring oil level and detecting leaks in power transformers, reactors, current and potential transformers, high voltage bushings and the like
US20140305201A1 (en) * 2013-04-12 2014-10-16 Joe David Watson Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
JP2015046458A (ja) 2013-08-28 2015-03-12 中国電力株式会社 変圧器の微小漏油検出装置
EP3192087B1 (en) * 2014-09-12 2020-04-29 ABB Power Grids Switzerland AG Traction transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377341B1 (en) * 2013-04-12 2016-06-28 Joe David Watson Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
CN108666098A (zh) * 2018-06-23 2018-10-16 南通涵宇新能源电力工程有限公司 变压器装置和用于控制充液变压器中的压力的方法

Also Published As

Publication number Publication date
CN113966461A (zh) 2022-01-21
EP3745098B1 (en) 2023-07-26
EP4224121A1 (en) 2023-08-09
US20220254564A1 (en) 2022-08-11
WO2020239872A1 (en) 2020-12-03
EP3745098A1 (en) 2020-12-02
EP3745098C0 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
EP2995869B1 (en) Arrangement and method for cooling liquid-cooled electronics
US9128477B2 (en) Bushing diagnosis
US7140237B2 (en) Transformer monitoring system
US9377341B1 (en) Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
US9372012B2 (en) Determining heating element and water heater status based on galvanic current
US20140305201A1 (en) Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
CN113966461B (zh) 测量液体绝缘电气部件中的液体量的方法、液体绝缘电气部件以及具有液体绝缘电气部件的铁路车辆
WO2017010075A1 (ja) 液化水素用二重管の寿命判定方法及び寿命判定装置
US20220400584A1 (en) Liquid immersion cooling platform and components thereof
JP2007303890A (ja) 絶縁性液体の電荷密度診断装置およびその方法
JP2015046458A (ja) 変圧器の微小漏油検出装置
KR20210141635A (ko) 가스 리크 검출 시스템 및 가스 리크 검출 방법
JP2016205874A (ja) 樹脂の劣化計測センサおよび劣化計測システム
JP2005259785A (ja) 油入電気機器
JP5559124B2 (ja) ガス診断装置およびガス診断方法
JPH05182838A (ja) 油入電器の異常監視装置
JP2017133817A (ja) 冷凍サイクルにおける冷媒漏洩検知装置
JP2006222417A (ja) 超伝導磁石装置監視システム、超電導磁石装置監視方法及びmri装置
JP7433276B2 (ja) 発電装置
JPH0415904A (ja) 液体入機器
JPH0828299B2 (ja) 油入機器の油漏れ検出装置
JPH1151577A (ja) 誘導加熱装置の寿命予測方法及び装置
WO2022261470A1 (en) Liquid immersion cooling platform and components thereof
JP2722813B2 (ja) ガス絶縁開閉装置の故障点標定方法
CN117055126A (zh) 一种变压器的激光数字化检测气体的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240110

Address after: Zurich, SUI

Applicant after: Hitachi Energy Co.,Ltd.

Address before: Swiss Baden

Applicant before: Hitachi energy Switzerland AG

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant