CN113964119A - 半导体元件 - Google Patents

半导体元件 Download PDF

Info

Publication number
CN113964119A
CN113964119A CN202010704978.1A CN202010704978A CN113964119A CN 113964119 A CN113964119 A CN 113964119A CN 202010704978 A CN202010704978 A CN 202010704978A CN 113964119 A CN113964119 A CN 113964119A
Authority
CN
China
Prior art keywords
disposed
hemt
capacitor
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010704978.1A
Other languages
English (en)
Inventor
李国兴
薛胜元
吴建良
廖国佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN202010704978.1A priority Critical patent/CN113964119A/zh
Priority to US16/994,646 priority patent/US11688800B2/en
Publication of CN113964119A publication Critical patent/CN113964119A/zh
Priority to US18/144,822 priority patent/US11973133B2/en
Priority to US18/144,811 priority patent/US20230275146A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Abstract

本发明公开一种半导体元件,其主要包含一电子迁移率晶体管(high electron mobility transistor,HEMT)区以及一电容区定义于基底上、一第一平台隔离设于该HEMT区上、一HEMT设于第一平台隔离上、一第二平台隔离设于电容区以及一电容设于第二平台隔离上。半导体元件另包含一缓冲层设于基底、第一平台隔离以及第二平台隔离之间,其中第一平台隔离底部切齐第二平台隔离底部。

Description

半导体元件
技术领域
本发明涉及一种半导体元件,尤其是涉及一种整合电子迁移率晶体管(highelectron mobility transistor,HEMT)以及电容的半导体元件。
背景技术
以氮化镓基材料(GaN-based materials)为基础的高电子迁移率晶体管具有于电子、机械以及化学等特性上的众多优点,例如宽能隙、高击穿电压、高电子迁移率、大弹性模数(elastic modulus)、高压电与压阻系数(high piezoelectric and piezoresistivecoefficients)等与化学钝性。上述优点使氮化镓基材料可用于如高亮度发光二极管、功率开关元件、调节器、电池保护器、面板显示驱动器、通讯元件等应用的元件的制作。
发明内容
本发明一实施例揭露一种半导体元件,其主要包含一电子迁移率晶体管(highelectron mobility transistor,HEMT)区以及一电容区定义于基底上、一第一平台隔离设于该HEMT区上、一HEMT设于第一平台隔离上、一第二平台隔离设于电容区以及一电容设于第二平台隔离上。半导体元件另包含一缓冲层设于基底、第一平台隔离以及第二平台隔离之间,其中第一平台隔离底部切齐第二平台隔离底部。
本发明另一实施例揭露一种半导体元件,其主要一HEMT区以及一电容区定义于基底上、一平台隔离(mesa isolation)设于该HEMT区上、一HEMT设于该平台隔离上、一电容设于该电容区以及一缓冲层设于该平台隔离、该电容以及该基底之间。
本发明又一实施例揭露一种半导体元件,其主要一HEMT区以及一电容区定义于基底上、一平台隔离(mesa isolation)设于该HEMT区上、一HEMT设于该平台隔离上、一硬掩模环绕HEMT并延伸至电容区以及一电容设于硬掩模上。
附图说明
图1至图3为本发明一实施例制作一半导体元件的方法示意图;
图4至图6为本发明一实施例制作一半导体元件的方法示意图;
图7至图9为本发明一实施例制作一半导体元件的方法示意图。
主要元件符号说明
12:基底
14:HEMT区
16:电容区
18:缓冲层
20:阻障层
22:P型半导体层
24:平台隔离
26:平台隔离
28:硬掩模
30:源极电极
32:漏极电极
34:源极电极延伸
36:漏极电极延伸
38:下电极
40:硬掩模
42:电容介电层
44:栅极电极
46:上电极
48:层间介电层
50:接触插塞
52:HEMT
54:电容
具体实施方式
请参照图1至图3,图1至图3为本发明一实施例制作一半导体元件的方法示意图。如图1所示,首先提供一基底12,例如一由硅、碳化硅或氧化铝(或可称蓝宝石)所构成的基底,其中基底12可为单层基底、多层基底、梯度基底或上述的组合。依据本发明其他实施例基底12又可包含一硅覆绝缘(silicon-on-insulator,SOI)基底。然后于基底12上定义出一电子迁移率晶体管(high electron mobility transistor,HEMT)区14以及一电容区16。
然后于基底12表面形成一缓冲层18。在一实施利中,缓冲层18包含III-V族半导体例如氮化镓,其厚度可介于0.5微米至10微米之间。在一实施利中,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于基底12上形成缓冲层18。
接着形成一阻障层20于缓冲层18表面。在本实施例中阻障层20较佳包含III-V族半导体例如氮化铝镓(AlxGa1-xN),其中0<x<1,x较佳小于等于20%,且阻障层20较佳包含一由外延成长制作工艺所形成的外延层。如同上述形成缓冲层18的方式,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于缓冲层18上形成阻障层20。需注意的是,本实施例中阻障层20虽直接设置于缓冲层18表面,但依据本发明另一实施例又可选择于缓冲层18与阻障层20之间额外形成一金属氮化层(图未示)包含例如但不局限于氮化铝,此变化型也属本发明所涵盖的范围。
然后形成一P型半导体层22于阻障层20上。在一实施利中,P型半导体层22较佳包含P型氮化镓(pGaN),且可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemical vapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vaporphase epitaxy,HVPE)制作工艺或上述组合于阻障层20表面形成P型半导体层22。
随后进行一平台隔离(MESA isolation)制作工艺以于HEMT区14以及电容区16分别形成平台隔离24、26,使元件之间可独立运作而不致受到彼此交互影响。在本实施例中,平台隔离制作工艺可利用一光刻暨蚀刻制作工艺图案化或以蚀刻去除部分P型半导体层22、部分阻障层20以及部分缓冲层18,其中被图案化的P型半导体层22、阻障层20以及缓冲层18较佳具有相同宽度且两者之间的边缘较佳相互切齐,而剩余且未被图案化的部分缓冲层18则与基底12包含相同宽度。另外本实施例的各平台隔离24、26较佳包含图案化的缓冲层18,其中图案化的缓冲层18厚度约300纳米,图案化的阻障层20厚度约10纳米,而图案化的P型半导体层22的厚度则约100纳米。
接着如图2所示,先进行一光刻暨蚀刻制作工艺去除HEMT区14的部分P型半导体层22以及电容区16的所有P型半导体层22,使剩余的P型半导体层22仅设于HEMT区14的阻障层20上而电容区16的阻障层20表面则无留下任何P型半导体层22,其中被图案化的P型半导体层22较佳作为后续HEMT元件的部分栅极结构。然后共形地(conformally)形成一硬掩模28于缓冲层18上并覆盖HEMT区14以及电容区16的平台隔离24、26。在本实施例中硬掩模28较佳包含但不局限于氮化硅,且硬掩模28的厚度约略200纳米但不局限于此。
随后进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模28以及部分阻障层20以形成多个凹槽(图未示),然后形成导电材料于HEMT区14的凹槽内与硬掩模28表面以及电容区16的硬掩模28上,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内的导电材料较佳作为源极电极30以及漏极电极32,HEMT区14设于源极电极30以及漏极电极32上方并延伸至两侧硬掩模28表面的导电材料则作为源极电极延伸34以及漏极电极延伸36,而电容区16中被图案化并覆盖于硬掩模28表面的导电材料则作为电容下电极38。接着形成另一硬掩模40于HEMT区14的硬掩模28表面并延伸至电容区16的电容下电极38上,其中电容区16的硬掩模40较佳作为一电容介电层42。在本实施例中,电容介电层42的厚度约20-100纳米,但不局限于此。
如图3所示,然后进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模40及部分硬掩模28以形成凹槽(图未示)并暴露出P型半导体层22,形成另一导电材料于HEMT区14的硬掩模40上填满凹槽并覆盖HEMT区14以及电容区16的硬掩模40表面,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内以及设于部分硬掩模40表面的导电材料较佳作为栅极电极44而电容区16中被图案化的导电材料则成为电容上电极46。
在本实施例中,栅极电极44、源极电极30以及漏极电极32较佳由金属所构成,其中栅极电极44较佳由萧特基金属所构成而源极电极30与漏极电极32较佳由欧姆接触金属所构成。依据本发明一实施例,栅极电极44、源极电极30及漏极电极32可各自包含金、银、铂、钛、铝、钨、钯或其组合。在一些实施例中,可利用电镀制作工艺、溅镀制作工艺、电阻加热蒸镀制作工艺、电子束蒸镀制作工艺、物理气相沉积(physical vapor deposition,PVD)制作工艺、化学气相沉积制作工艺(chemical vapor deposition,CVD)制作工艺、或上述组合于上述凹槽内形成导电材料,然后再利用单次或多次蚀刻将电极材料图案化以形成栅极电极44、源极电极30以及漏极电极32。
随后可进行一接触插塞制作工艺形成接触插塞分别电连接HEMT区14的栅极电极44、源极电极30以及漏极电极32以及电容区16的下电极38以及上电极46。在本实施例中,形成接触插塞的方式可先形成一层间介电层48并覆盖HEMT区14以及电容区16的硬掩模40,然后去除部分层间介电层48以及部分硬掩模40形成接触洞(图未示),再依序沉积一阻隔层(图未示)以及一金属层(图未示)并填满接触洞。接着利用一平坦化制作工艺,例如CMP去除部分金属层、部分阻隔层甚至部分层间介电层48,以于接触洞中形成接触插塞50,其中各接触插塞50顶表面较佳与层间介电层48顶表面切齐。在本实施例中,阻隔层较佳选自由钛、钽、氮化钛、氮化钽以及氮化钨所构成的群组,金属层较佳选自由铝、钛、钽、钨、铌、钼以及铜所构成的群组,但不局限于此。
请再参照图3,图3又揭露本发明一实施例的一半导体元件的结构示意图。如图3所示,半导体元件主要包含HEMT区14以及电容区16定义于基底12上、平台隔离24设于HEMT区14、HEMT 52设于平台隔离24上、另一平台隔离26设于电容区16、缓冲层18设于基底12及平台隔离24、26之间以及一电容54设于平台隔离26上,其中平台隔离24底部切齐该平台隔离26底部且两个平台隔离24、26均包含氮化镓。
另外HEMT 52主要包含阻障层20设于平台隔离24上、P型半导体层22设于阻障层20上、栅极电极44设于P型半导体层22上、源极电极30及漏极电极32设于栅极电极44两侧、源极电极延伸34设于源极电极30上、漏极电极延伸36设于漏极电极32上以及硬掩模28设于平台隔离24及平台隔离26上并环绕源极电极30及漏极电极32。
电容54则包含一下电极38设于硬掩模28上、一电容介电层42设于下电极38上并延伸至HEMT区14的硬掩模28顶部及侧壁以及一上电极46设于电容介电层42上,其中下电极38底部切齐源极电极延伸34底部且上电极46顶部切齐栅极电极44顶部。
请参照图4至图6,图4至图6为本发明一实施例制作一高电子迁移率晶体管的方法示意图,其中为了简便说明,本实施例与前述实施例中所揭露的相同元件较佳沿用相同标号。如图4所示,首先提供一基底12,例如一由硅、碳化硅或氧化铝(或可称蓝宝石)所构成的基底,其中基底12可为单层基底、多层基底、梯度基底或上述的组合。依据本发明其他实施例基底12又可包含一硅覆绝缘(silicon-on-insulator,SOI)基底。然后于基底12上定义出一电子迁移率晶体管(high electron mobility transistor,HEMT)区14以及一电容区16。
然后于基底12表面形成一缓冲层18。在一实施利中,缓冲层18包含III-V族半导体例如氮化镓,其厚度可介于0.5微米至10微米之间。在一实施利中,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于基底12上形成缓冲层18。
接着形成一阻障层20于缓冲层18表面。在本实施例中阻障层20较佳包含III-V族半导体例如氮化铝镓(AlxGa1-xN),其中0<x<1,x较佳小于等于20%,且阻障层20较佳包含一由外延成长制作工艺所形成的外延层。如同上述形成缓冲层18的方式,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于缓冲层18上形成阻障层20。需注意的是,本实施例中阻障层20虽直接设置于缓冲层18表面,但依据本发明另一实施例又可选择于缓冲层18与阻障层20之间额外形成一金属氮化层(图未示)包含例如但不局限于氮化铝,此变化型也属本发明所涵盖的范围。
然后形成一P型半导体层22于阻障层20上。在一实施利中,P型半导体层22较佳包含P型氮化镓(pGaN),且可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemical vapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vaporphase epitaxy,HVPE)制作工艺或上述组合于阻障层20表面形成P型半导体层22。
随后进行一平台隔离(MESA isolation)制作工艺以于HEMT区14形成平台隔离24。在本实施例中,平台隔离制作工艺可利用一光刻暨蚀刻制作工艺图案化或以蚀刻去除部分P型半导体层22、部分阻障层20以及部分缓冲层18,其中被图案化的P型半导体层22、阻障层20以及缓冲层18较佳具有相同宽度且两者之间的边缘较佳相互切齐,而剩余且未被图案化的部分缓冲层18则与基底12包含相同宽度。另外本实施例的平台隔离24较佳包含图案化的缓冲层18,其中图案化的缓冲层18厚度约300纳米,图案化的阻障层20厚度约10纳米,而图案化的P型半导体层22的厚度则约100纳米。
接着如图5所示,先进行一光刻暨蚀刻制作工艺去除HEMT区14的部分P型半导体层22,其中被图案化的P型半导体层22较佳作为后续HEMT元件的栅极结构。然后共形地(conformally)形成一硬掩模28于HEMT区14的平台隔离24以及缓冲层18上并延伸至电容区16的缓冲层18上。在本实施例中硬掩模28较佳包含但不局限于氮化硅,且硬掩模20的厚度约略200纳米但不局限于此。
随后进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模28与部分阻障层20以及电容区16的大部分硬掩模28,以于HEMT区14及电容区16形成多个凹槽(图未示),然后形成导电材料于HEMT区14以及电容区16的凹槽内,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内的导电材料较佳作为源极电极30以及漏极电极32,HEMT区14设于源极电极30以及漏极电极32上方并延伸至两侧硬掩模28表面的导电材料则作为源极电极延伸34以及漏极电极延伸36,而电容区16中填入凹槽内的导电材料则作为电容下电极38。接着形成另一硬掩模40于HEMT区14的硬掩模40表面并延伸至电容区16的电容下电极38上,其中电容区16的硬掩模40较佳作为一电容介电层42。在本实施例中,电容介电层42的厚度约20-100纳米,但不局限于此。
如图6所示,然后进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模40及部分硬掩模28以形成凹槽(图未示)并暴露出P型半导体层22,形成另一导电材料于HEMT区14的硬掩模40上填满凹槽并覆盖HEMT区14以及电容区16的硬掩模40表面,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内以及设于部分硬掩模40表面的导电材料较佳作为栅极电极44而电容区16中被图案化的导电材料则成为电容上电极46。
如同前述实施例,栅极电极44、源极电极30以及漏极电极32较佳由金属所构成,其中栅极电极44较佳由萧特基金属所构成而源极电极30与漏极电极32较佳由欧姆接触金属所构成。依据本发明一实施例,栅极电极44、源极电极30及漏极电极32可各自包含金、银、铂、钛、铝、钨、钯或其组合。在一些实施例中,可利用电镀制作工艺、溅镀制作工艺、电阻加热蒸镀制作工艺、电子束蒸镀制作工艺、物理气相沉积(physical vapor deposition,PVD)制作工艺、化学气相沉积制作工艺(chemical vapor deposition,CVD)制作工艺、或上述组合于上述凹槽内形成导电材料,然后再利用单次或多次蚀刻将电极材料图案化以形成栅极电极44、源极电极30以及漏极电极32。
随后可进行一接触插塞制作工艺形成接触插塞分别电连接HEMT区14的栅极电极44、源极电极30以及漏极电极32以及电容区16的下电极38以及上电极46。在本实施例中,形成接触插塞的方式可先形成一层间介电层48并覆盖HEMT区14以及电容区16的硬掩模40,然后去除部分层间介电层48以及部分硬掩模40形成接触洞(图未示),再依序沉积一阻隔层(图未示)以及一金属层(图未示)并填满接触洞。接着利用一平坦化制作工艺,例如CMP去除部分金属层、部分阻隔层甚至部分层间介电层48,以于接触洞中形成接触插塞50,其中各接触插塞50顶表面较佳与层间介电层48顶表面切齐。在本实施例中,阻隔层较佳选自由钛、钽、氮化钛、氮化钽以及氮化钨所构成的群组,金属层较佳选自由铝、钛、钽、钨、铌、钼以及铜所构成的群组,但不局限于此。
请再参照图6,图6又揭露本发明一实施例的一半导体元件的结构示意图。如图6所示,半导体元件主要包含HEMT区14以及电容区16定义于基底12上、平台隔离24设于HEMT区14、HEMT 52设于平台隔离24上、电容54设于电容区16以及一缓冲层18设于平台隔离24、电容54以及基底12之间,其中平台隔离24以及缓冲层18包含氮化镓。
另外HEMT 52主要包含阻障层20设于平台隔离24上、P型半导体层22设于阻障层20上、栅极电极44设于P型半导体层22上、源极电极30及漏极电极32设于栅极电极44两侧、源极电极延伸34设于源极电极30上、漏极电极延伸36设于漏极电极32上以及硬掩模28设于平台隔离24及平台隔离26上并环绕源极电极30及漏极电极32。
电容54则包含一下电极38设于缓冲层18上、一电容介电层42设于下电极38上并延伸至HEMT区14的硬掩模28顶部及侧壁以及一上电极46设于电容介电层42上。相较于前述实施例中的HEMT区14以及电容区16均设有平台隔离24、26,本实施例中仅有HEMT区14设有平台隔离24电容区16则无任何平台隔离,且电容下电极38较佳直接接触缓冲层18顶部并具有约略T形的剖面。另外本实施例中的下电极38整体厚度约略等于HEMT区14中源极电极30与源极电极延伸34的加总高度或漏极电极32与漏极电极延伸36的加总高度例如但不局限于300纳米,电容介电层42的厚度较佳约20-100纳米,上电极46的厚度则约略100纳米。
请参照图7至图9,图7至图9为本发明一实施例制作一高电子迁移率晶体管的方法示意图,其中为了简便说明,本实施例与前述实施例中所揭露的相同元件较佳沿用相同标号。如图7所示,首先提供一基底12,例如一由硅、碳化硅或氧化铝(或可称蓝宝石)所构成的基底,其中基底12可为单层基底、多层基底、梯度基底或上述的组合。依据本发明其他实施例基底12又可包含一硅覆绝缘(silicon-on-insulator,SOI)基底。然后于基底12上定义出一电子迁移率晶体管(high electron mobility transistor,HEMT)区14以及一电容区16。
然后于基底12表面形成一缓冲层18。在一实施利中,缓冲层18包含III-V族半导体例如氮化镓,其厚度可介于0.5微米至10微米之间。在一实施利中,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于基底12上形成缓冲层18。
接着形成一阻障层20于缓冲层18表面。在本实施例中阻障层20较佳包含III-V族半导体例如氮化铝镓(AlxGa1-xN),其中0<x<1,x较佳小于等于20%,且阻障层20较佳包含一由外延成长制作工艺所形成的外延层。如同上述形成缓冲层18的方式,可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemicalvapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vapor phase epitaxy,HVPE)制作工艺或上述组合于缓冲层18上形成阻障层20。需注意的是,本实施例中阻障层20虽直接设置于缓冲层18表面,但依据本发明另一实施例又可选择于缓冲层18与阻障层20之间额外形成一金属氮化层(图未示)包含例如但不局限于氮化铝,此变化型也属本发明所涵盖的范围。
然后形成一P型半导体层22于阻障层20上。在一实施利中,P型半导体层22较佳包含P型氮化镓(pGaN),且可利用分子束外延制作工艺(molecular-beam epitaxy,MBE)、有机金属气相沉积(metal organic chemical vapor deposition,MOCVD)制作工艺、化学气相沉积(chemical vapor deposition,CVD)制作工艺、氢化物气相外延(hydride vaporphase epitaxy,HVPE)制作工艺或上述组合于阻障层20表面形成P型半导体层22。
随后进行一平台隔离(MESA isolation)制作工艺以于HEMT区14形成平台隔离24。在本实施例中,平台隔离制作工艺可利用一光刻暨蚀刻制作工艺图案化或以蚀刻去除部分P型半导体层22、部分阻障层20以及部分缓冲层18,其中被图案化的P型半导体层22、阻障层20以及缓冲层18较佳具有相同宽度且两者之间的边缘较佳相互切齐,而剩余且未被图案化的部分缓冲层18则与基底12包含相同宽度。另外本实施例的平台隔离24较佳包含图案化的缓冲层18,其中图案化的缓冲层18厚度约300纳米,图案化的阻障层20厚度约10纳米,而图案化的P型半导体层22的厚度则约100纳米。
接着先进行一光刻暨蚀刻制作工艺去除HEMT区14的部分P型半导体层22,其中被图案化的P型半导体层22较佳作为后续HEMT元件的栅极结构,然后共形地(conformally)形成一硬掩模28于HEMT区16的平台隔离24以及缓冲层18上并延伸至电容区16的缓冲层18上。在本实施例中硬掩模28较佳包含但不局限于氮化硅,且硬掩模28的厚度约略200纳米但不局限于此。
接着如图8所示,进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模28与部分阻障层20以于HEMT区14形成多个凹槽(图未示),然后形成导电材料于HEMT区14的凹槽内并覆盖HEMT区14以及电容区16的硬掩模28表面,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内的导电材料较佳作为源极电极30以及漏极电极32,HEMT区14设于源极电极30以及漏极电极32上方并延伸至两侧硬掩模28表面的导电材料则作为源极电极延伸34以及漏极电极延伸36,而电容区16中设于硬掩模28表面的导电材料则作为电容下电极38。接着形成另一硬掩模40于HEMT区16的硬掩模28表面并延伸至电容区16的电容下电极38上,其中电容区16的硬掩模40较佳作为一电容介电层42。在本实施例中,电容介电层42的厚度约20-100纳米,但不局限于此。
如图9所示,然后进行一道或一道以上光刻暨蚀刻制作工艺去除HEMT区14的部分硬掩模40及部分硬掩模28以形成凹槽(图未示)并暴露出P型半导体层22,形成另一导电材料于HEMT区14的硬掩模40上填满凹槽并覆盖HEMT区14以及电容区16的硬掩模40表面,再搭配进行一图案转移制作工艺去除部分导电材料,其中HEMT区14中填入凹槽内以及设于部分硬掩模40表面的导电材料较佳作为栅极电极44而电容区16中被图案化的导电材料则成为电容上电极46。
如同前述实施例,栅极电极44、源极电极30以及漏极电极32较佳由金属所构成,其中栅极电极44较佳由萧特基金属所构成而源极电极30与漏极电极32较佳由欧姆接触金属所构成。依据本发明一实施例,栅极电极44、源极电极30及漏极电极32可各自包含金、银、铂、钛、铝、钨、钯或其组合。在一些实施例中,可利用电镀制作工艺、溅镀制作工艺、电阻加热蒸镀制作工艺、电子束蒸镀制作工艺、物理气相沉积(physical vapor deposition,PVD)制作工艺、化学气相沉积制作工艺(chemical vapor deposition,CVD)制作工艺、或上述组合于上述凹槽内形成导电材料,然后再利用单次或多次蚀刻将电极材料图案化以形成栅极电极44、源极电极30以及漏极电极32。
随后可进行一接触插塞制作工艺形成接触插塞分别电连接HEMT区14的栅极电极44、源极电极30以及漏极电极32以及电容区16的下电极38以及上电极46。在本实施例中,形成接触插塞的方式可先形成一层间介电层48并覆盖HEMT区14以及电容区16的硬掩模40,然后去除部分层间介电层48以及部分硬掩模40形成接触洞(图未示),再依序沉积一阻隔层(图未示)以及一金属层(图未示)并填满接触洞。接着利用一平坦化制作工艺,例如CMP去除部分金属层、部分阻隔层甚至部分层间介电层48,以于接触洞中形成接触插塞50,其中各接触插塞50顶表面较佳切齐层间介电层48顶表面。在本实施例中,阻隔层较佳选自由钛、钽、氮化钛、氮化钽以及氮化钨所构成的群组,金属层较佳选自由铝、钛、钽、钨、铌、钼以及铜所构成的群组,但不局限于此。
请再参照图9,图9又揭露本发明一实施例的一半导体元件的结构示意图。如图9所示,半导体元件主要包含HEMT区14以及电容区16定义于基底12上、平台隔离24设于HEMT区14、HEMT 52设于平台隔离24上、硬掩模28环绕HEMT 52并延伸至电容区16、电容54设于电容区16以及一缓冲层18设于平台隔离24、电容54以及基底12之间,其中平台隔离24以及缓冲层18包含氮化镓。
另外HEMT 52主要包含阻障层20设于平台隔离24上、P型半导体层22设于阻障层20上、栅极电极44设于P型半导体层22上、源极电极30及漏极电极32设于栅极电极44两侧、源极电极延伸34设于源极电极30上以及漏极电极延伸36设于漏极电极32上。
电容54则包含一下电极38设于硬掩模28上、一电容介电层42设于下电极38上并延伸至HEMT区14的硬掩模28顶部及侧壁以及一上电极46设于电容介电层42上。相较于前述实施例中的电容下电极38是设于缓冲层18上且下电极38的整体厚度约略等于HEMT区14中源极电极30与源极电极延伸34的加总高度或漏极电极32与漏极电极延伸36的加总高度,本实施例中的下电极38厚度仅较佳等于HEMT区14中源极电极延伸34或漏极电极延伸36的高度例如但不局限于100纳米,电容介电层42的厚度较佳约20-100纳米,上电极46的厚度约略100纳米。
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。

Claims (20)

1.一种半导体元件,其特征在于,包含:
基底,包含电子迁移率晶体管(high electron mobility transistor,HEMT)区以及电容区;
第一平台隔离(mesa isolation),设于该HEMT区;
HEMT,设于该第一平台隔离上;
第二平台隔离,设于该电容区;以及
电容,设于该第二平台隔离上。
2.如权利要求1所述的半导体元件,另包含缓冲层,设于该基底、该第一平台隔离以及该第二平台隔离之间。
3.如权利要求1所述的半导体元件,其中该第一平台隔离底部切齐该第二平台隔离底部。
4.如权利要求1所述的半导体元件,其中该第一平台隔离以及该第二平台隔离包含氮化镓。
5.如权利要求1所述的半导体元件,其中该HEMT包含:
阻障层,设于该第一平台隔离上;
P型半导体层,设于该阻障层上;
栅极电极,设于该P型半导体层上;
源极电极以及漏极电极,设于该栅极电极两侧;
源极电极,延伸设于该源极电极上;以及
漏极电极,延伸设于该漏极电极上。
6.如权利要求5所述的半导体元件,另包含硬掩模,设于该第一平台隔离以及该第二平台隔离上并环绕该源极电极以及该漏极电极。
7.如权利要求6所述的半导体元件,其中该电容包含:
下电极,设于该硬掩模上;
电容介电层,设于该下电极上并延伸至该HEMT区的该硬掩模;以及
上电极,设于该电容介电层上。
8.如权利要求7所述的半导体元件,其中该下电极底部切齐该源极电极延伸底部。
9.如权利要求7所述的半导体元件,其中该上电极顶部切齐该栅极电极顶部。
10.一种半导体元件,其特征在于,包含:
基底,包含电子迁移率晶体管(high electron mobility transistor,HEMT)区以及电容区;
平台隔离(mesa isolation),设于该HEMT区;
HEMT,设于该平台隔离上;
电容,设于该电容区;以及
缓冲层,设于该平台隔离、该电容以及该基底之间。
11.如权利要求10所述的半导体元件,其中该平台隔离以及该缓冲层包含氮化镓。
12.如权利要求10所述的半导体元件,其中该HEMT包含:
阻障层,设于该平台隔离上;
P型半导体层,设于该阻障层上;
栅极电极,设于该P型半导体层上;
源极电极以及漏极电极,设于该栅极电极两侧;
源极电极,延伸设于该源极电极上;以及
漏极电极,延伸设于该漏极电极上。
13.如权利要求12所述的半导体元件,另包含硬掩模,设于该第一平台隔离上并环绕该源极电极以及该漏极电极。
14.如权利要求13所述的半导体元件,其中该电容包含:
下电极,设于该缓冲层上;
电容介电层,设于该下电极上并延伸至该HEMT区的该硬掩模;以及
上电极,设于该电容介电层上。
15.一种半导体元件,其特征在于,包含:
基底,包含电子迁移率晶体管(high electron mobility transistor,HEMT)区以及电容区;
平台隔离(mesa isolation),设于该HEMT区;
HEMT,设于该平台隔离上;
硬掩模,环绕该HEMT并延伸至该电容区;以及
电容,设于该硬掩模上。
16.如权利要求15所述的半导体元件,另包含缓冲层,设于该平台隔离、该硬掩模以及该基底之间。
17.如权利要求16所述的半导体元件,其中该平台隔离以及该缓冲层包含氮化镓。
18.如权利要求15所述的半导体元件,其中该HEMT包含:
阻障层,设于该平台隔离上;
P型半导体层,设于该阻障层上;
栅极电极,设于该P型半导体层上;
源极电极以及漏极电极,设于该栅极电极两侧;
源极电极,延伸设于该源极电极上;以及
漏极电极,延伸设于该漏极电极上。
19.如权利要求18所述的半导体元件,其中该硬掩模环绕该P型半导体层、该栅极电极、该源极电极以及该漏极电极。
20.如权利要求15所述的半导体元件,其中该电容包含:
下电极,设于该硬掩模上;
电容介电层,设于该下电极上并延伸至该HEMT区的该硬掩模;以及
上电极,设于该电容介电层上。
CN202010704978.1A 2020-07-21 2020-07-21 半导体元件 Pending CN113964119A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010704978.1A CN113964119A (zh) 2020-07-21 2020-07-21 半导体元件
US16/994,646 US11688800B2 (en) 2020-07-21 2020-08-16 High electron mobility transistor and method for fabricating the same
US18/144,822 US11973133B2 (en) 2020-07-21 2023-05-08 High electron mobility transistor and method for fabricating the same
US18/144,811 US20230275146A1 (en) 2020-07-21 2023-05-08 High electron mobility transistor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010704978.1A CN113964119A (zh) 2020-07-21 2020-07-21 半导体元件

Publications (1)

Publication Number Publication Date
CN113964119A true CN113964119A (zh) 2022-01-21

Family

ID=79459966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010704978.1A Pending CN113964119A (zh) 2020-07-21 2020-07-21 半导体元件

Country Status (2)

Country Link
US (3) US11688800B2 (zh)
CN (1) CN113964119A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440674B (zh) * 2022-09-23 2023-11-17 上海新微半导体有限公司 Hemt器件和电容器的集成结构及其集成方法、功率放大器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118958B2 (en) * 2005-03-03 2006-10-10 Texas Instruments Incorporated Method of manufacturing a metal-insulator-metal capacitor using an etchback process
JP2007201062A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
KR100827437B1 (ko) * 2006-05-22 2008-05-06 삼성전자주식회사 Mim 커패시터를 구비하는 반도체 집적 회로 장치 및이의 제조 방법
US9012993B2 (en) * 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013026540A (ja) * 2011-07-25 2013-02-04 Renesas Electronics Corp 半導体集積回路装置
US8659066B2 (en) * 2012-01-06 2014-02-25 International Business Machines Corporation Integrated circuit with a thin body field effect transistor and capacitor
TWI604609B (zh) * 2012-02-02 2017-11-01 半導體能源研究所股份有限公司 半導體裝置
US8916424B2 (en) * 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9099433B2 (en) * 2012-04-23 2015-08-04 Freescale Semiconductor, Inc. High speed gallium nitride transistor devices
US9685345B2 (en) * 2013-11-19 2017-06-20 Nxp Usa, Inc. Semiconductor devices with integrated Schottky diodes and methods of fabrication
WO2015181997A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN104158503A (zh) 2014-08-20 2014-11-19 无锡研奥电子科技有限公司 一种基于GaN的X波段功率放大器
US9905610B2 (en) * 2014-12-30 2018-02-27 Win Semiconductors Corp. Integrated structures of acoustic wave device and varactor, and acoustic wave device, varactor and power amplifier, and fabrication methods thereof
US10403646B2 (en) * 2015-02-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2017015225A1 (en) 2015-07-17 2017-01-26 Cambridge Electronics, Inc. Field-plate structures for semiconductor devices
TWI563631B (en) * 2015-07-21 2016-12-21 Delta Electronics Inc Semiconductor Device
WO2019111113A1 (ja) * 2017-12-06 2019-06-13 株式会社半導体エネルギー研究所 半導体装置
US11276764B1 (en) * 2020-08-09 2022-03-15 Global Communication Semiconductors, Llc Method of making high frequency InGaP/GaAs HBTs

Also Published As

Publication number Publication date
US20230275147A1 (en) 2023-08-31
US11973133B2 (en) 2024-04-30
US20230275146A1 (en) 2023-08-31
US20220029005A1 (en) 2022-01-27
US11688800B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
TWI767726B (zh) 改良之氮化鎵結構
EP2722890B1 (en) Schottky diode structure and method of fabrication
US10971579B2 (en) Semiconductor device and fabrication method thereof
CN114127951B (zh) 氮化物基半导体装置以及制造其的方法
US10854734B1 (en) Manufacturing method of semiconductor device
US20240038852A1 (en) Semiconductor device and method for manufacturing the same
US11973133B2 (en) High electron mobility transistor and method for fabricating the same
US20240047451A1 (en) Nitride-based semiconductor ic chip and method for manufacturing the same
US20230361207A1 (en) High electron mobility transistor and method for fabricating the same
CN112652659B (zh) 高电子迁移率晶体管及其制作方法
CN114823888A (zh) 高电子迁移率晶体管及其制作方法
CN113224153A (zh) 高电子迁移率晶体管及其制作方法
CN112242443A (zh) 高电子迁移率晶体管及其形成方法
CN112928161B (zh) 高电子迁移率晶体管及其制作方法
TWI692039B (zh) 半導體裝置的製作方法
TWI801671B (zh) 高電子遷移率電晶體及其製作方法
CN114026699A (zh) 半导体装置和其制造方法
CN112242441A (zh) 高电子迁移率晶体管
US20230065509A1 (en) Group iii-v ic with different sheet resistance 2-deg resistors
US20240006468A1 (en) Resistor structure and method for fabricating the same
CN114503261B (zh) 氮化物基半导体电路及其制造方法
US20240047554A1 (en) Semiconductor device and manufacturing method thereof
CN111276538B (zh) 半导体装置及其制造方法
TWM623644U (zh) 半導體裝置
CN110707153A (zh) 半导体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination