CN113956043B - 氟化物红外复相透明陶瓷及其制备方法 - Google Patents
氟化物红外复相透明陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN113956043B CN113956043B CN202111432917.5A CN202111432917A CN113956043B CN 113956043 B CN113956043 B CN 113956043B CN 202111432917 A CN202111432917 A CN 202111432917A CN 113956043 B CN113956043 B CN 113956043B
- Authority
- CN
- China
- Prior art keywords
- ceramic
- fluoride
- mgf
- infrared
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/553—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种新的红外复相透明陶瓷及其制备方法,该陶瓷以MgF2为基,组成通式是AFx‑MgF2,其中A为金属元素,且A形成的对应的氟化物与MgF2不能产生固溶,采用含有AFx的纳米粉末,MgF2的纳米粉末组成纳米复合粉体采用热压烧结制备成型,最终实现氟化物红外复相透明陶瓷的制备,该材料在近红外和中红外部分具有较高的透过率,同时该复相透明陶瓷也有着高于单相氟化物陶瓷的强度,其在3‑5μm处的最高透过率可以达80‑90%。
Description
技术领域
本发明涉及红外复相透明陶瓷体系,特别是一种氟化物红外复相透明陶瓷及其制备方法。
背景技术
红外窗口的性能优异是保证红外制导精确的必要条件。良好的热,光,机械性能都是红外窗口所需要的,随着超音速飞行器从超音速向着高超因素不断地发展,对红外窗口的性能也提出了新的要求,高的透过率,较低的热发射率都是红外光窗所需要的。
近几年来,氧化物的红外透明复相陶瓷已经再红外光窗领域崭露头角,其利用两相不固溶的特性,实现钉扎效应以此抑制晶粒的长大,最终实现良好的机械性能与光学性能;而有着更高透过率的氟化物却未有进行实现复相的尝试,氟化物大都拥有极高的透过率但同样其机械性能不足,可以采用类似氧化物改性的方法引入第二相氟化物,从而在保留高透过率的同时尝试提高整体的机械性能,实现红外透明的氟化物纳米复相陶瓷的制备。
通过溶胶凝胶燃烧法制备喷雾热解法制备Y2O3-MgO复合纳米粉体并结合放电等离子体烧结、热压烧结或热等静压辅助烧结可以获得中红外透过的Y2O3-MgO纳米复相陶瓷。另外氧化物复相也引入了Gd2O3-MgO复相这类新的复相体系。美国康涅狄格大学的EricH.Jordan等人[Jiwen Wang,Dianying Chen,Eric H.Jordan,Maurice Gell,Journal ofthe American Ceramic Society,93,3535(2010)]以醋酸镁和硝酸钇为原料采用溶胶凝胶法制备复合纳米粉体,通过热等静压辅助烧结的方式获得了Y2O3-MgO 纳米复相陶瓷。美国加利福尼亚大学的DongTao Jiang[DongTao Jiang, AmiyaK.Mukherjee,Journal of theAmerican Ceramic Society,93,769(2010)]采用喷雾热解法制备Y2O3-MgO纳米粉体,经放电等离子体烧结获得Y2O3-MgO纳米复相陶瓷。中国东北大学的Nan Wu等人Fabrication ofGd2O3-MgO nanocomposite optical ceramics with varied crystallographicmodifications of Gd2O3 constituent,第一次制备了 Gd2O3-MgO复相陶瓷。但是这些复相陶瓷都仅限于在氧化物的体系,氟化物同样有着出色透过率和低发射率,暂时还没有相关制作红外透明复相陶瓷的报导。
发明内容
本发明的目的在于提供一种红外透明复相陶瓷及其制备方法,该方法能制备氟化物红外复相透明陶瓷,该方法采用混合均匀的氟化物复合粉体,原料获取便捷、制备方式简单;相较于氧化物复相陶瓷,氟化物可以有更低的烧结温度,节省能源的同时还可以获得较小的晶粒尺寸,该氟化物红外复相透明陶瓷在近红外和中红外部分具有较高的透过率,该复相透明陶瓷也有着高于单相氟化物陶瓷的强度,其在 3-5μm处的最高透过率可以达80-90%。
本发明的技术方案如下:
一种红外复相透明陶瓷,其特点在于,该陶瓷以MgF2为基,其组成通式是 AFx-MgF2;其中A是Ca、Y、La、或其他金属元素,且A形成的对应的氟化物与MgF2不能产生固溶,所述的通式中的x应随着A的元素不同、化学价态不同而改变,且制备的陶瓷在XRD表征下仅有AFx,MgF2两相。
上述红外复相透明陶瓷的制备方法,包括下列步骤:
1)选用需要的A的金属元素,制备AFx,采用纯度不低于99%的AFx的纳米粉末和MgF2的纳米粉末,所述的纳米粉末的颗粒粒径为5-100nm,将AFx、MgF2按1: 1~1:4体积比称量后混合均匀;
2)采用马弗炉对所述纳米粉体进行预烧,预设温度为100-500℃,升温速率为 1-10℃/min,升温至预设温度后进行保温得到粉体;
3)将所述的粉体放入模具中,进行真空热压烧结,即在真空环境下进行热压烧结:升温速率为5-50℃/min,预设温度为600-800℃,保温时间为0.5h-5h,待冷却脱模后即可得到陶瓷样品;
4)对所述的样品进行两面抛光,获得红外透明的氟化物复相陶瓷。
与现有技术比,本发明的技术效果:
采用氟化物作为原料制备红外透明的复相陶瓷,与原有体系不同,开创了一种制备红外透明复相陶瓷的新思路。
采用混合均匀的氟化物复合粉体,原料获取便捷、制备方式简单;相较于氧化物复相陶瓷,氟化物可以有更低的烧结温度,节省能源的同时还可以获得较小的晶粒尺寸,该氟化物红外复相透明陶瓷在近红外和中红外部分具有较高的透过率,该复相透明陶瓷也有着高于单相氟化物陶瓷的强度,其在3-5μm处的最高透过率可以达80-90%。
附图说明
图1为实施例1使用的混合均匀的氟化物纳米粉体MgF2-CaF2的XRD图。
图2为实施例1使用的混合均匀的氟化物纳米粉体MgF2-CaF2的SEM图。
图3为实施例1制备出的氟化物复相陶瓷MgF2-CaF2的SEM形貌图。
图4为实施例1制备出的氟化物复相陶瓷的红外透过率曲线图。
图5为实施例1制备出的氟化物复相陶瓷MgF2-CaF2的XRD块体衍射图。
图6为实施例2制备出的氟化物复相纳米粉体MgF2-YF3的红外透过率曲线
图7为实施例3制备出的氟化物复相纳米陶瓷的红外透过率曲线。
具体实施方式
下面结合实施例和附图说明对本发明进行进一步说明,这些实例仅用于说明本发明但不应以此限制本发明的保护范围。
实施例1
称取纯度不低于99%的氟化镁27.9g,氟化钙27.3g,换算成体积比后两者比值约为1:1,将其混合均匀,可以得到初始的陶瓷粉体,然后对粉体进行预烧去除一些有机物杂质,预烧温度为200摄氏度,取出冷却后将其放入Φ40mm热压模具后进行真空热压升温速率控制在10℃/min,烧结温度设置在650摄氏度,烧结时间为2h,同时施压以200MPa,冷却后脱模取出进行两面的抛光,获得厚度为1mm的MgF2- CaF2的致密的氟化物红外透明复相陶瓷。
图1为实施例1使用的混合均匀的氟化物纳米粉体MgF2-CaF2的XRD图;从图中可以看到氟化镁与氟化钙的衍射峰对应。
图2为实施例1氟化物纳米粉体MgF2-CaF2的SEM图。
图3为实施例1制备出的氟化物复相陶瓷MgF2-CaF2的SEM形貌图;可以看出晶粒尺寸小于100nm。
图4为实施例1制备出的氟化物复相陶瓷的红外透过率曲线图,中红外3-5μm处最高透过率可达90%,同时截止波长可达10μm。
图5为实施例1制备出的氟化物复相陶瓷MgF2-CaF2的XRD块体衍射图;可以看到块体的XRD衍射图也清晰反应出氟化镁与氟化钙的衍射峰。
实施例2
称取纯度不低于99%的氟化镁31.5g,氟化钇40.1g,换算为体积比约为1:1,将其混合均匀后得到初始粉体,再将其进行预烧,预烧温度为400℃,将预烧后的粉体放入Φ30mm热压模具后以10℃/min的升温速率进行真空热压烧结,烧结温度设置在700摄氏度,烧结时间为2h,同时施压以200MPa,冷却后取出脱模获得陶瓷样品,之后对其进行抛光获得厚度为1mm的MgF2-YF3的致密氟化物红外透明复相陶瓷。
实施例3
称取纯度不低于99%的氟化镁47.22g,氟化钙15.9g,换算体积比后为1:4,将其均匀混合后得到初始的陶瓷粉体并对其进行预烧,预烧温度为500,之后取9.79g 粉体放入Φ30mm热压模具后进行真空热压烧结,烧结温度设置在800摄氏度,烧结时间为2h,同时施压以30MPa,冷却后取出脱模,对两面进行精确抛光,最后获得厚度为1mm的MgF2-CaF2的致密氟化物红外透明复相陶瓷。
实验表明,本发明能制备氟化物红外复相透明陶瓷,该氟化物红外复相透明陶瓷在近红外和中红外部分具有较高的透过率,该复相透明陶瓷也有着高于单相氟化物陶瓷的强度,其在3-5μm处的最高透过率可以达80-90%。
Claims (5)
1.一种红外复相透明陶瓷的制备方法,其特征在于,包括下列步骤:
1)该陶瓷以MgF2为基,其组成通式是AFx-MgF2;其中A是Ca、Y、La,x随着A的元素不同、化学价态不同而变化,采用纯度不低于99%的AFx纳米粉末和MgF2纳米粉末,按1:1~1:4体积比称量后混合均匀;
2)采用马弗炉对所述纳米粉末 进行预烧,升温至预设温度后进行保温得到粉体;
3)将所述的粉体放入模具中,进行真空热压烧结,待冷却脱模后即可得到陶瓷样品;
4)对所述的陶瓷样品进行两面抛光,获得红外透明的氟化物复相陶瓷,该陶瓷在3-5μm处的透过率为80-90%。
2.如权利要求1所述的红外复相透明陶瓷的制备方法,其特征在于,A形成的对应的氟化物与MgF2不能产生固溶,且经过XRD表征仅有AFx 和MgF2 两相。
3.如权利要求1所述的红外复相透明陶瓷的制备方法,其特征在于,所述的纳米粉末的颗粒粒径为5-100nm。
4.如权利要求1所述的红外复相透明陶瓷的制备方法,其特征在于,所述步骤2)所述的预烧,且预设温度为100-500℃,升温速率为1-10℃/min。
5.如权利要求1所述的红外复相透明陶瓷的制备方法,其特征在于,所述步骤3)在真空环境下进行热压烧结,升温速率为5-50℃/min,预设温度为600-800℃,保温时间为0.5h-5h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111432917.5A CN113956043B (zh) | 2021-11-29 | 2021-11-29 | 氟化物红外复相透明陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111432917.5A CN113956043B (zh) | 2021-11-29 | 2021-11-29 | 氟化物红外复相透明陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113956043A CN113956043A (zh) | 2022-01-21 |
CN113956043B true CN113956043B (zh) | 2023-02-10 |
Family
ID=79472391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111432917.5A Active CN113956043B (zh) | 2021-11-29 | 2021-11-29 | 氟化物红外复相透明陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113956043B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10550041B1 (en) * | 2018-10-25 | 2020-02-04 | Raytheon Company | Fluoride-based nanocomposite materials for infrared window applications |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR890002695B1 (ko) * | 1985-12-06 | 1989-07-24 | 가부시키가이샤 히타치세이사쿠쇼 | 고열 팽창 세라믹스 및 이 세라믹스와 금속과의 복합구조물 |
CN102963915B (zh) * | 2012-11-14 | 2014-07-02 | 西安理工大学 | 一种低氟溶液法制备MgF2薄膜的方法 |
US10961160B2 (en) * | 2013-07-08 | 2021-03-30 | University Of Tsukuba | Fluoride sintered body for neutron moderator and method for producing the same |
US9789335B2 (en) * | 2014-09-24 | 2017-10-17 | Techno Eye Corporation | MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same |
CN107619280B (zh) * | 2017-10-12 | 2021-01-15 | 信阳师范学院 | 一种层状氟化钙透明陶瓷的制备方法 |
KR102300502B1 (ko) * | 2019-09-24 | 2021-09-09 | (주)그린광학 | 중적외선 윈도우용 다결정 세라믹 소결체 제조방법 |
-
2021
- 2021-11-29 CN CN202111432917.5A patent/CN113956043B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10550041B1 (en) * | 2018-10-25 | 2020-02-04 | Raytheon Company | Fluoride-based nanocomposite materials for infrared window applications |
Also Published As
Publication number | Publication date |
---|---|
CN113956043A (zh) | 2022-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107352994B (zh) | 一种镁铝尖晶石透明陶瓷的制备方法 | |
CN112374892B (zh) | 一种可控碳化铌-碳化钽固溶体微米立方体及其制备方法 | |
CN108640672A (zh) | 一种镁铝尖晶石透明陶瓷的制备方法 | |
CN110776311A (zh) | 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法 | |
KR102134054B1 (ko) | 투광성 금속 산화물 소결체의 제조 방법 및 투광성 금속 산화물 소결체 | |
WO2012153645A1 (ja) | 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法 | |
CN114105639A (zh) | 一种红外透明陶瓷材料及其制备方法 | |
CN115466114A (zh) | 一种高韧性长寿命超高温热障涂层材料及其制备方法和应用 | |
Fang et al. | Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics | |
Yoshida et al. | Production of transparent yttrium oxide ceramics by the combination of low temperature spark plasma sintering and zinc cation-doping | |
Hu et al. | Fabrication of infrared-transparent 3Y-TZP ceramics with small grain size by pre-sintering in an oxygen atmosphere and hot isostatic pressing | |
Chen et al. | Fabrication of YAG transparent ceramics by two-step sintering | |
JP7056624B2 (ja) | 焼結用セラミックス成形体の作製方法及びセラミックス焼結体の製造方法 | |
An et al. | Fabrication of transparent La2Zr2O7 by reactive spark plasma sintering | |
CN113956043B (zh) | 氟化物红外复相透明陶瓷及其制备方法 | |
CN104402450A (zh) | 一种基于热爆反应低温快速制备Ti2AlN陶瓷粉体的方法 | |
CN110835264A (zh) | 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 | |
Zavareh et al. | Fabrication of TiB2-TiC composites optimized by different amount of carbon in the initial Ti-BC powder mixture | |
Huang et al. | Sintering behaviour and properties of zirconia ceramics prepared by pressureless sintering | |
CN110183229A (zh) | 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法 | |
CN111704445B (zh) | 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法 | |
Chandra et al. | Large negative thermal expansion and phase transition in (Pb 1-x Ca x) TiO 3 (0.30≤ x≤ 0.45) ceramics | |
CN110041079B (zh) | 十二硼化锆陶瓷材料的制备方法 | |
CN108585878B (zh) | 一种高硬度MgAlON透明陶瓷及其制备方法 | |
CN105837212A (zh) | 一种化学式为La3TaO7的热障涂层表面陶瓷层材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |