CN113956030A - 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法 - Google Patents

一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法 Download PDF

Info

Publication number
CN113956030A
CN113956030A CN202111458042.6A CN202111458042A CN113956030A CN 113956030 A CN113956030 A CN 113956030A CN 202111458042 A CN202111458042 A CN 202111458042A CN 113956030 A CN113956030 A CN 113956030A
Authority
CN
China
Prior art keywords
sintering
mechanical strength
high mechanical
power ferrite
pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111458042.6A
Other languages
English (en)
Inventor
刘娜
吕海波
张静
高喜英
王竹超
李想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Seven Star Flight Electronic Co ltd
Original Assignee
Beijing Seven Star Flight Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Seven Star Flight Electronic Co ltd filed Critical Beijing Seven Star Flight Electronic Co ltd
Priority to CN202111458042.6A priority Critical patent/CN113956030A/zh
Publication of CN113956030A publication Critical patent/CN113956030A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,制备方法包括:S1、称取主配方料Fe2O3,MnO,ZnO;S2、主配方料湿混后干燥;S3、干燥后一次粉碎然后预烧得预烧物料;S4、向预烧物料中掺入杂质并二次粉碎然后干燥,得到掺杂物料;杂质包括CuO;S5、向掺杂物料中加入PVA溶液进行喷雾造粒,得到磁粉料;S6、将磁粉料压为罐形生坯;S7、烧结,具体工艺为:25℃‑900℃一段烧结;900℃~1100℃,氧分压0~0.1%致密化烧结,升温速率0.5~1℃/min,1100℃保温1h~2h;保持该氧分压,2~3℃/min升温至1300℃~1340℃,以5~6%的氧分压保持4h~5h;以2~3℃/min降温速率,氧分压为0.04~2.0%降温到1000℃,1000℃~200℃纯氮气降温,得到最终烧结坯件;S8、将最终烧结坯件加工为成品罐型磁心。

Description

一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法
技术领域
本发明涉及材料领域,具体涉及一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法。
背景技术
MnZn功率铁氧体罐形磁心属于软磁铁氧体材料。MnZn功率铁氧体材料具有高饱和磁通密度、低功率损耗的特点,用该种材料所生产各类不同形状及大小的磁心,如环形、罐形、RM型等,应用于功率变压器及功率电感器中,是市场上应用广泛的材料。其中罐形磁心因具有体积小、感抗高、绕线方便、磁屏蔽及散热效果均衡,抗干扰能力强的特点,在电源系统中被广泛应用。尤其近年来,随着电子信息产业的迅速且高质量发展,行业对产品外观、电磁性能、抗压强度都有较为严苛的要求,因此作为铁氧体生产企业来说,满足用户需求、提高产品可靠性是企业发展的源动力。
罐型磁心不同于其它磁心的特点是其具有罩式结构,壁和底均较薄。尤其是较小尺寸的磁心壁及底厚最小者甚至可达仅0.6mm。厚度越小,所能承受的机械压力的能力越差。MnZn功率铁氧体罐形磁心的机械强度主要与产品的密度以及磁心晶粒间的作用情况有关,同时也与烧结工艺密切相关。现有的MnZn功率铁氧体罐形磁心由于在制备工艺等方面存在缺陷,故在安装或封装或受到外力作用加强时,超出磁心机械强度所能承受的范围时,磁心会出现裂纹、断裂等现象,导致器件失效;小型化、高频化的产品中,对磁心的尺寸要求更加严格,而现有的MnZn功率铁氧体罐形磁心难以满足其要求。
发明内容
因此,本发明实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法,以解决上述背景技术中存在的问题。
为了实现上述目的,本发明实施例提供如下技术方案:
第一方面,本发明实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,包括以下步骤:
S1、按摩尔百分比称取主配方料,主配方料具体含有以下组分:
Fe2O3:53~54mol%,MnO:36~38mol%,ZnO:9~11mol%;
S2、向S1中称取的主配方料中加入其总质量1~1.5倍的水,一次湿混30min~60min,然后干燥;
S3、将S2中干燥后的主配方料一次粉碎至30目后进行预烧,得到预烧物料;
S4、向S3中得到的预烧物料中掺入杂质并进行二次粉碎,然后干燥,得到掺杂物料;杂质包括质量为预烧物料0.02~0.06wt%的CuO;
S5、向掺杂物料中加入质量为预烧物料6%~12wt%的8wt%PVA溶液进行喷雾造粒,得到磁粉料;
S6、用模具将S5中喷雾造粒得到的磁粉料干压成型为罐形生坯;
S7、控制烧结工艺,设置平衡气氛曲线,在烧结设备中烧结;烧结的具体工艺为:
将温度由25℃升温至900℃,完成一段烧结;在900℃~1100℃采用氧分压为0~0.1%的致密化烧结,升温速率为0.5~1℃/min,并在1100℃保温1h~2h,使一段烧结后的罐型生坯充分反应,完成大部分铁氧体化;然后保持该氧分压并以2~3℃/min升温速率升至烧结温度1300℃~1340℃,并以5~6%的氧分压保持4h~5h;再以2~3℃/min的降温速率,氧分压为0.04~2.0%降温到1000℃;1000℃~200℃区间采用纯氮气降温,得到最终烧结坯件;
S8、按照技术图纸的尺寸要求将最终烧结坯件加工为成品高机械强度MnZn功率铁氧体罐形磁心。
优选地,S3中,进行预烧时的具体参数包括:
预烧温度为880~930℃,保温时间2.5h~3h。
优选地,S4中,杂质还包括总质量为预烧物料0.02~0.06wt%的V2O5、Nb2O5的混合物。
优选地,S4中,二次粉碎具体是进行0.5h~1h球磨粉碎。
优选地,S5中,喷雾造粒的含水量控制在0.4±0.1%。
优选地,S5中,进行喷雾造粒时,按磁粉料成型重量的0.03~0.05%的比例添加硬脂酸锌作为润滑剂。
优选地,S6中,进行干压成型时,罐形生坯的密度应保持在3.0±0.1g/cm3,罐形生坯的成型线应靠近产品高度中心处,防止烧结时产生较大变形量。
优选地,S7中,烧结设备具体是智能钟罩式可控气氛电阻炉。
优选地,S7中,一段烧结的具体工艺是:
在25℃~900℃区间,升温速率0.6~4℃/min,保证负压烧结,使罐型生坯的胶水等充分挥发,完成一段烧结。
第二方面,本发明实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心,其是由上述制备方法得到。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明提供的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,在二次粉碎时掺入了特定含量的CuO,可在700℃~800℃开始形成铜铁氧体,在1200℃下开始熔融;加入该杂质可以在烧结时起到良好的助熔作用,降低烧结温度、细化晶粒,并与其它组分协同生效,获得较高密度的铁氧体,从而提高罐形磁心的机械强度。
(2)本发明提供的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,在烧结过程中降低烧结温度1300℃~1340℃,保温4~5h,并在900℃~1100℃增加氧分压为0~0.1%的致密化烧结,结合其它特定的制备工艺,从而更进一步提高了罐形磁心的机械强度。通过改善产品的微观结构而大幅提升了其综合性能。
(3)本发明利用掺杂离子的除了保证产品的功率特性外,同时加入可以改善产品的微观结构,细化晶粒,提高产品磁导率以及机械强度。
附图说明
为了更清楚地说明本发明的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的附图。
以下附图仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,任何形式的调整,在不影响本发明所能产生的功效及所能达成的目的的前提下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
图1为本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心在进行力学实验时的示意图。
在图1中:1-压头,2-垫片,3-本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心,4-圆棒支座,F代表施加的机械压力,A代表3-本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心的底面半径。其中,4-圆棒支座和1-压头的半径均为2mm。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,若存在术语“包括”、“具有”以及它们的任何变形,其意图皆在于覆盖不排他的包含,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于已明确列出的那些步骤或单元,而是还可包含虽然并未明确列出的但对于这些过程、方法、产品或设备固有的其它步骤或单元,或者基于本发明构思进一步的优化方案所增加的步骤或单元。
实施例1
本实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心,其制备工艺如下:
1.主配方改良
①主配方:Fe2O3:53mol%,MnO:36mol%,ZnO:11mol%。
②一次湿混:将主配方中按重量比1:1.2加入去离子水,经一次湿混40分钟后,烘干。
③预烧:将烘干的配方料经30目粉碎后预烧,预烧温度为880~930℃,保温三小时,得到预烧物料。
④二次球磨:二次球磨时除掺入预烧物料的正常添加的常规杂质(预烧物料0.02~0.06wt%的V2O5、Nb2O5等的混合物,还可添加CaCO3、TiO2等)外,另外加入预烧物料0.04wt%的CuO进行1h球磨粉碎,并干燥,得到掺杂物料。二次球磨时适当加入氧化铜(CuO),700℃~800℃开始形成铜铁氧体,在1200℃下开始熔融。加入该杂质可以在烧结时起到良好的助熔作用,降低烧结温度、细化晶粒,并与其它组分协同生效获得较高密度的铁氧体,从而提高罐形磁心的机械强度。
⑤喷雾造粒:加入质量为预烧物料12wt%的(浓度为8wt%)PVA,喷雾造粒,得到磁粉料;喷雾造粒的含水量控制在0.4±0.1%,并按磁粉料成型重量0.03~0.05%的比例添加硬脂酸锌作为润滑剂。
2.罐形坯件成型
采用硬质合金制成的罐形模具将上述喷雾造粒的磁粉料干压成型为罐形生坯,罐形生坯密度保持在3.0±0.1g/cm3,罐形生坯的成型线应靠近产品高度中心处,防止烧结时产生较大变形量。该生产步骤应保证了铁氧体产品正常的生产工艺。
3.烧结方案
本实施例的烧结方法区别于以往的烧结温度及气氛曲线。控制烧结工艺,设置平衡气氛曲线,在智能钟罩式可控气氛电阻炉中烧结。在25℃~900℃区间,升温速率0.6~4℃/min,保证负压烧结,使坯件的胶水等充分挥发;在900℃~1100℃采用氧分压为0~0.1%的致密化烧结升温速率为0.5~1℃/min,并在1100℃保温1h,使产品充分反应,完成大部分铁氧体化;然后保持该氧分压并以2~3℃/min升温速率升至烧结温度1300℃~1340℃,并以5~6%的氧分压保持4h~5h,再以2~3℃/min的降温速率,氧分压为0.04~2.0%降低到1000℃,1000℃~200℃采用纯氮气降温,最终得到烧结坯料。
本实施例产品的制备不同于现有产品的区别包括在900℃~1100℃采用致密化烧结并在1100℃保温1h,保证产品的充分致密化,排除有害气体,减少气孔等缺陷。在保温阶段结合配方中添加的微量助溶剂,降低了烧结时的最高温度,在保证密度的同时,降低烧结温度可以保证产品具有均匀细致的晶粒结构和晶粒尺寸,使晶粒间相互作用增强,配合其它特定制备工艺的协同作用,进而有效提高磁心的机械强度。
对于助溶剂选择也可使用其他的杂质,但应充分结合产品电磁性能的要求。本实施例所采用的助溶剂可有效提高机械强度,并对杂质的含量进行了充分的试验,且电磁性能符合本发明所要求的技术效果。
4.按照技术图纸尺寸要求利用立式磨床磨加工。
实施例2
本实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心,其制备工艺与实施例1基本相同,区别在于:
主配方:Fe2O3:54mol%,MnO:37mol%,ZnO:9mol%;
CuO加入量为0.02wt%。
实施例3
本实施例提供了一种高机械强度MnZn功率铁氧体罐形磁心,其制备工艺与实施例1基本相同,区别在于:
主配方:Fe2O3:53mol%,MnO:38mol%,ZnO:9mol%;
CuO加入量为0.06wt%。
以实施例1为实验组,现有的普通工艺制成的MnZn功率铁氧体罐形磁心为对照组,进行力学性能实验。本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心在进行力学实验时的示意图如图1所示。其中,1为压头,2为垫片,3为本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心,4为圆棒支座,F代表施加的机械压力,F所指的箭头为机械压力的施加方向,A代表本发明实施例1提供的高机械强度MnZn功率铁氧体罐形磁心3的底面半径。其中,圆棒支座4和压头1的半径均为2mm。
力学实验结果如下:
实验组:磁心受力底面厚度为1.0mm时,可承受平均130N~140N的机械压力;磁心的受力底面厚度为1.2mm时,可承受平均270~280N的机械压力。
对照组:磁心受力底面厚度为1.0mm时,可承受70~80N的机械压力;磁心的受力底面厚度为1.2mm时,可承受200~220N的机械压力。
实验组:磁心受力底面厚度为0.8mm时,可承受平均90N~110N的机械压力;磁心的受力底面厚度为0.9mm时,可承受平均110N~120N的机械压力。
对照组:磁心受力底面厚度为0.8mm时,可承受60~70N的机械压力;磁心的受力底面厚度为0.9mm时,可承受80~90N的机械压力。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述;这些未明确写出的实施例,也都应当认为是本说明书记载的范围。
上文中通过一般性说明及具体实施例对本发明作了较为具体和详细的描述。应当指出的是,在不脱离本发明构思的前提下,显然还可以对此具体实施例作出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,包括以下步骤:
S1、按摩尔百分比称取主配方料,所述主配方料具体含有以下组分:
Fe2O3:53~54mol%,MnO:36~38mol%,ZnO:9~11mol%;
S2、向S1中称取的所述主配方料中加入其总质量1~1.5倍的水,一次湿混30min~60min,然后干燥;
S3、将S2中干燥后的所述主配方料一次粉碎至30目后进行预烧,得到预烧物料;
S4、向S3中得到的所述预烧物料中掺入杂质并进行二次粉碎,然后干燥,得到掺杂物料;所述杂质包括质量为所述预烧物料0.02~0.06wt%的CuO;
S5、向所述掺杂物料中加入质量为所述预烧物料6%~12wt%的8wt%PVA溶液进行喷雾造粒,得到磁粉料;
S6、用模具将S5中喷雾造粒得到的所述磁粉料干压成型为罐形生坯;
S7、控制烧结工艺,设置平衡气氛曲线,在烧结设备中烧结;所述烧结的具体工艺为:
将温度由25℃升温至900℃,完成一段烧结;在900℃~1100℃采用氧分压为0~0.1%的致密化烧结,升温速率为0.5~1℃/min,并在1100℃保温1h~2h,使一段烧结后的所述罐型生坯充分反应,完成大部分铁氧体化;然后保持该氧分压并以2~3℃/min升温速率升至烧结温度1300℃~1340℃,并以5~6%的氧分压保持4h~5h;再以2~3℃/min的降温速率,氧分压为0.04~2.0%降温至1000℃;1000℃~200℃区间采用纯氮气降温,得到最终烧结坯件;
S8、按照技术图纸的尺寸要求将所述最终烧结坯件加工为成品高机械强度MnZn功率铁氧体罐形磁心。
2.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S3中,进行所述预烧时的具体参数包括:
预烧温度为880~930℃,保温时间2.5h~3h。
3.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,步骤S4中,所述杂质还包括总质量为所述预烧物料0.02~0.06wt%的V2O5、Nb2O5的混合物。
4.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S4中,所述的二次粉碎具体是进行0.5h~1h球磨粉碎。
5.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S5中,所述喷雾造粒的含水量控制在0.4±0.1%。
6.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S5中,进行所述喷雾造粒时,按所述磁粉料成型重量的0.03~0.05%的比例添加硬脂酸锌作为润滑剂。
7.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S6中,进行所述干压成型时,所述罐形生坯的密度应保持在3.0±0.1g/cm3,所述罐形生坯的成型线应靠近产品高度中心处,防止烧结时产生较大变形量。
8.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S7中,所述的烧结设备具体是智能钟罩式可控气氛电阻炉。
9.根据权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法,其特征在于,S7中,所述一段烧结的具体工艺是:
在25℃~900℃区间,升温速率0.6~4℃/min,保证负压烧结,使所述罐型生坯的胶水等充分挥发,完成所述一段烧结。
10.一种高机械强度MnZn功率铁氧体罐形磁心,其特征在于,是由权利要求1所述的一种高机械强度MnZn功率铁氧体罐形磁心的制备方法得到。
CN202111458042.6A 2021-12-01 2021-12-01 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法 Pending CN113956030A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111458042.6A CN113956030A (zh) 2021-12-01 2021-12-01 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111458042.6A CN113956030A (zh) 2021-12-01 2021-12-01 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法

Publications (1)

Publication Number Publication Date
CN113956030A true CN113956030A (zh) 2022-01-21

Family

ID=79472736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111458042.6A Pending CN113956030A (zh) 2021-12-01 2021-12-01 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法

Country Status (1)

Country Link
CN (1) CN113956030A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448711A (zh) * 2022-09-27 2022-12-09 北京七星飞行电子有限公司 一种抑制MnZn高磁导率铁氧体中ZnO挥发的烧结方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436912A (zh) * 2019-09-06 2019-11-12 北京七星飞行电子有限公司 一种高可靠性高磁导率锰锌铁氧体及其制备方法和制成品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436912A (zh) * 2019-09-06 2019-11-12 北京七星飞行电子有限公司 一种高可靠性高磁导率锰锌铁氧体及其制备方法和制成品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏德贵: "《软磁铁氧体制造原理与技术》", 31 December 2010 *
王宏等: "CuO掺杂对高磁导率MnZn软磁铁氧体性能的影响", 《磁性材料及器件》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448711A (zh) * 2022-09-27 2022-12-09 北京七星飞行电子有限公司 一种抑制MnZn高磁导率铁氧体中ZnO挥发的烧结方法
CN115448711B (zh) * 2022-09-27 2023-08-18 北京七星飞行电子有限公司 一种抑制MnZn高磁导率铁氧体中ZnO挥发的烧结方法

Similar Documents

Publication Publication Date Title
US7371271B2 (en) Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
CN113563062B (zh) 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
CN102982946A (zh) 一种含有La2O3的铁磁芯的制造方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN112592170A (zh) 锰锌铁氧体材料及其制备方法和应用
JP2007112695A (ja) Mnフェライトの製造方法
CN113956030A (zh) 一种高机械强度MnZn功率铁氧体罐形磁心及其制备方法
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
CN108987062A (zh) 一种铁氧体-软磁合金复合磁芯及其制备方法
CN113327736B (zh) 一种宽频、五高性能的软磁铁氧体材料及其制备方法
US6296791B1 (en) Process for producing Mn-Zn ferrite
CN110436912B (zh) 一种高可靠性高磁导率锰锌铁氧体及其制备方法和制成品
CN114031388B (zh) 一种Mn-Zn铁氧体材料及其制备方法
CN111116188A (zh) 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
CN107573051B (zh) 一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法
CN112374879B (zh) 一种抗电磁干扰锰锌铁氧体材料制备方法
CN114133231A (zh) 镍锌铁氧体材料及其制造方法
CN112979302A (zh) 锰锌功率铁氧体材料及其制备方法
CN112374881A (zh) 一种锰锌铁氧体大磁芯的制造方法
CN113284731A (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
JP2002299113A (ja) 軟磁性粉末およびそれを用いた圧粉磁心
JP2532159B2 (ja) 高周波電源用トランス磁芯
CN115490507B (zh) 一种宽频高强度耐热冲击镍锌铁氧体磁芯及其制备方法
JPH0353270B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220121