CN113948745B - 质子传导隔离膜 - Google Patents

质子传导隔离膜 Download PDF

Info

Publication number
CN113948745B
CN113948745B CN202110504886.3A CN202110504886A CN113948745B CN 113948745 B CN113948745 B CN 113948745B CN 202110504886 A CN202110504886 A CN 202110504886A CN 113948745 B CN113948745 B CN 113948745B
Authority
CN
China
Prior art keywords
proton
conducting
isocyanurate
urea structure
hydrophilic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110504886.3A
Other languages
English (en)
Other versions
CN113948745A (zh
Inventor
叶俊廷
郑思齐
赖柏宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microcosm Technology Co Ltd
Original Assignee
Microcosm Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microcosm Technology Co Ltd filed Critical Microcosm Technology Co Ltd
Publication of CN113948745A publication Critical patent/CN113948745A/zh
Application granted granted Critical
Publication of CN113948745B publication Critical patent/CN113948745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/02Processes using inorganic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/12Compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种质子传导隔离膜,包含疏水性有机聚合物及质子传导组分。该质子传导组分包括具有脲结构的亲水性材料及由酸性物质与碱性物质所构成的亲水性材料中一者。以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为23wt%至70wt%。该质子传导隔离膜能够用于钒液流电池中,且具有质子传导性、低溶胀性及低钒离子渗透性。

Description

质子传导隔离膜
技术领域
本发明涉及一种隔离膜,特别是涉及一种质子传导隔离膜。
背景技术
钒液流电池(Vanadium Flow Battery,简称VFB),例如全钒液流电池,因具有启动速度快、循环寿命长、安全性高、功率与能量规模设计灵活等优点,而成为近年来广泛被研究的储能装置之一。
在该全钒液流电池中,质子传导隔离膜是影响电池性能的关键材料之一。目前全钒液流电池的质子传导隔离膜大多为杜邦(DuPont)的Nafion隔离膜,然而,该Nafion隔离膜浸泡于电解液中,容易发生体积膨胀的现象,致使全钒液流电池存在有安全性的问题。
发明内容
发明要解决的问题
本发明的目的在于提供一种具有质子传导性、低溶胀性及低钒离子渗透性的质子传导隔离膜。
用于解决问题的方案
本发明的质子传导隔离膜,包含疏水性有机聚合物及质子传导组分,其中,该质子传导组分包括具有脲素结构的亲水性材料及由酸性物质与碱性物质所构成的亲水性材料中一者,且以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为23wt%至70wt%。
本发明的质子传导隔离膜,其中,该疏水性有机聚合物选自聚酰亚胺、环氧树脂、聚苯并咪唑、聚醚酮、聚酰胺、聚氨酯树脂、三聚氰胺-甲醛树脂、丁腈橡胶、聚丙烯、聚乙烯、聚苯乙烯、聚偏二氟乙烯,或上述任意的组合。
本发明的质子传导隔离膜,其中,以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为35wt%至70wt%。
本发明的质子传导隔离膜,其中,该由酸性物质与碱性物质所构成的亲水性材料选自于硫酸三聚氰胺盐、盐酸三聚氰胺盐、三聚氰胺聚磷酸盐、三聚氰胺焦磷酸盐、氰尿酸三聚氰胺盐、三聚氰胺草酸盐、正磷酸金属盐,或上述任意的组合。
本发明的质子传导隔离膜,其中,该具有脲结构的亲水性材料包括具有脲结构的五元杂环亲水性材料及具有脲结构的六元杂环亲水性材料中至少一者。
本发明的质子传导隔离膜,其中,该具有脲结构的亲水性材料选自于异氰尿酸、2-羟基苯并咪唑、异氰脲酸三烯丙酯、三(2-丙烯酰氧乙基)异氰脲酸酯、异氰脲酸双(丙烯酰氧乙基)酯、异氰脲酸三缩水甘油酯、异氰脲酸三[3-(三甲氧基硅烷基)丙基]酯、三(2-羟乙基)异氰脲酸酯、尿囊素、4-苯基-3H-1,2,4-三唑啉-3,5-二酮、尿酸、三氯异氰酸、乙内酰脲、丙二酰脲、紫脲酸、胸腺嘧碇,或上述任意的组合。
本发明的质子传导隔离膜,其中,当该质子传导组分包含该具有脲结构的亲水性材料时,该质子传导组分还包含氨基化合物。
本发明的质子传导隔离膜,其中,该氨基化合物选自于腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶、三聚氰胺、氨基吡啶、氨基哌啶、氨基嘧碇,或上述任意的组合。
本发明的质子传导隔离膜,其中,以该质子传导组分的总量为100wt%计,该具有脲结构的亲水性材料的总量范围为50wt%以上。
发明的效果
本发明的有益效果在于:通过该疏水性有机聚合物、质子传导组分及用量的设计,本发明质子传导隔离膜具有质子传导性及低溶胀性,并能够有效地阻止电解液中的钒离子通过,而具有低钒离子渗透性。此外,该质子传导隔离膜的低溶胀性有助于应用于电池时提升电池的安全性。
具体实施方式
本发明的质子传导隔离膜包含疏水性有机聚合物与质子传导组分,其中,该质子传导组分包括具有脲结构的亲水性材料及由酸性物质与碱性物质所构成的亲水性材料中一者,且以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为23wt%至70wt%。
以下将就本发明内容进行详细说明。
在本发明的一些实施方案中,本发明的质子传导隔离膜浸泡于水后的平衡溶胀比小于1.1。本发明的质子传导隔离膜因具有质子传导性、低溶胀性及低钒离子渗透性,而能够用于钒液流电池(例如全钒液流电池)中。进一步地,本发明的质子传导隔离膜具有结晶相结构。为使本发明的质子传导隔离膜应用于电池中具有更优异的电性表现(例如能量效率或电压效率),较佳地,以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为35wt%至70wt%。
<疏水性有机聚合物>
该疏水性有机聚合物能被有机溶剂溶解,例如具有可溶性的疏水性有机聚合物或具有热塑性的疏水性有机聚合物。该疏水性有机聚合物具有疏水性基团,例如含氟基团、硅氧烷基团、烃基团或亲油基团等。该烃基团例如含有双键的烃基、含有酯基的烃基、含有醚基的烃基、含有氨基的烃基、含有酰胺基的烃基,或芳香烃基等。该疏水性有机聚合物可单独一种使用或混合多种使用,且该疏水性有机聚合物例如聚酰亚胺、环氧树脂、聚苯并咪唑、聚醚酮、聚酰胺、聚氨酯树脂、三聚氰胺-甲醛树脂、丁腈橡胶、聚丙烯、聚乙烯、聚苯乙烯,或聚偏二氟乙烯等,或上述任意的组合。在本发明的一些实施方案中,该疏水性有机聚合物选自聚酰亚胺、环氧树脂、聚苯并咪唑、聚醚酮、聚酰胺、聚氨酯树脂、三聚氰胺-甲醛树脂、丁腈橡胶、聚丙烯、聚乙烯、聚苯乙烯、聚偏二氟乙烯,或上述任意的组合。
<质子传导组分>
该质子传导组分包括由酸性物质与碱性物质所构成的亲水性材料,又或者,该质子传导组分包括具有脲结构的亲水性材料。
[由酸性物质与碱性物质所构成的亲水性材料]
该由酸性物质与碱性物质所构成的亲水性材料是由酸性物质及碱性物质结合而形成的。该酸性物质例如路易斯酸(Lewis acid)或布罗酸(–Lowry acid)等。该布罗酸例如硫酸、盐酸、聚磷酸、焦磷酸、氰尿酸、草酸或正磷酸等。该碱性物质例如路易斯碱(Lewis base)或布罗碱(/>–Lowry base)。该布罗碱例如三聚氰胺。该由酸性物质与碱性物质所构成的亲水性材料具有例如但不限于含胺基团、含硫酸基团,或含磺酸基团等亲酸性基团。该由酸性物质与碱性物质所构成的亲水性材料可单独一种使用或混合多种使用,且该由酸性物质与碱性物质所构成的亲水性材料例如但不限于硫酸三聚氰胺盐、盐酸三聚氰胺盐、三聚氰胺聚磷酸盐、三聚氰胺焦磷酸盐、氰尿酸三聚氰胺盐、三聚氰胺草酸盐,或正磷酸金属盐等。该正磷酸金属盐中的金属例如钠、钾、镁、铁或锰等。
[具有脲结构的亲水性材料]
在本发明质子传导隔离膜中,该质子传导组分的具有脲结构的亲水性材料能够降低该疏水性有机聚合物间的紧密堆叠。该具有脲结构的亲水性材料中的脲结构为该具有脲结构的亲水性材料可单独一种使用或混合多种使用,且该具有脲结构的亲水性材料例如具有脲结构的五元杂环亲水性材料或具有脲结构的六元杂环亲水性材料。
在本发明的一些实施方案中,该具有脲结构的五元杂环亲水性材料具有至少一个羰基(carbonyl group)。该具有脲结构的五元杂环亲水性材料例如2-羟基苯并咪唑、尿囊素、4-苯基-3H-1,2,4-三唑啉-3,5-二酮,或乙内酰脲等。
在本发明的一些实施方案中,该具有脲结构的六元杂环亲水性材料具有至少一个羰基。该具有脲结构的六元杂环亲水性材料例如异氰尿酸、异氰脲酸三烯丙酯、三(2-丙烯酰氧乙基)异氰脲酸酯、异氰脲酸双(丙烯酰氧乙基)酯、异氰脲酸三缩水甘油酯、异氰脲酸三[3-(三甲氧基硅烷基)丙基]酯、三(2-羟乙基)异氰脲酸酯、尿酸、三氯异氰酸、丙二酰脲、紫脲酸,或胸腺嘧碇等。该尿酸例如1,3-二甲基尿酸。
在本发明的一些实施方案中,该具有脲结构的亲水性材料选自于异氰尿酸、2-羟基苯并咪唑、异氰脲酸三烯丙酯、三(2-丙烯酰氧乙基)异氰脲酸酯、异氰脲酸双(丙烯酰氧乙基)酯、异氰脲酸三缩水甘油酯、异氰脲酸三[3-(三甲氧基硅烷基)丙基]酯、三(2-羟乙基)异氰脲酸酯、尿囊素、4-苯基-3H-1,2,4-三唑啉-3,5-二酮、尿酸、三氯异氰酸、乙内酰脲、丙二酰脲、紫脲酸、胸腺嘧碇,或上述任意的组合。
[氨基化合物]
在该质子传导组分包括具有脲结构的亲水性材料的基础上,为更能够使该具有脲结构的亲水性材料分散于该疏水性有机聚合物中,以减少相分离现象,从而助于该质子传导隔离膜的形成,较佳地,该质子传导组分还包含氨基化合物。该氨基化合物可单独一种使用或混合多种使用,且该氨基化合物例如但不限于腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶、三聚氰胺、氨基吡啶、氨基哌啶,或氨基嘧碇等。在本发明的一些实施方案中,该氨基化合物选自于腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶、三聚氰胺、氨基吡啶、氨基哌啶、氨基嘧碇,或上述任意的组合。值得说明的是,在该质子传导隔离膜中,该氨基化合物中的氨基能够与该具有脲结构的亲水性材料中的脲结构通过氢键结合,从而在形成该质子传导隔离膜的加工过程具有加工稳定性。在本发明的一些实施方案中,以该质子传导组分的总量为100wt%计,该氨基化合物的总量范围为小于50wt%。
<质子传导隔离膜的制备方法>
本发明的质子传导隔离膜的制备方法,包含以下步骤:将上述的疏水性有机聚合物、上述的质子传导组分及有机溶剂进行混合处理,获得混合物;使该混合物在基板上形成一层涂膜;对该涂膜施予热处理。
该混合处理的条件(例如温度及时间)依据该疏水性有机聚合物、质子传导组分及有机溶剂进行调整。在本发明的一些实施方案中,该混合处理的温度范围为60℃至100℃,且时间范围为2小时至4小时。该有机溶剂可以单独一种使用或混合多种使用,且该有机溶剂例如但不限于N-甲基吡咯烷酮、2-吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、γ-丁内酯、二氯苯、二氧六环(dioxane)、甲苯、二甲苯、氯仿、丙酮、丁酮、乙醇,或甲醇等。以该有机溶剂的总量为100重量份计,该疏水性有机聚合物与该质子传导组分的用量总和范围为10重量份至30重量份。
该涂膜的形成方式可以采用刮刀涂布法、旋转涂布法或喷涂法等方式。在本发明的一些实施方案中,是将该混合物涂布在基板上形成该涂膜。该热处理的目的在于去除有机溶剂并使该质子传导隔离膜具有致密性。该热处理的温度依据该混合物中的成分进行调整。在本发明的一些实施方案中,该热处理的温度范围为60℃至250℃。
本发明将就以下实施例来作进一步说明,但应了解的是,这些实施例仅用于例示说明,而不应被解释为本发明实施的限制。
实施例1
利用搅拌机,将6.5克(65重量份)的聚苯并咪唑(律胜科技制造;型号:PBI)、3.5克(35重量份)的异氰尿酸及40克(400重量份)的N-甲基吡咯烷酮(景明化工制造)于60℃且1atm的条件下进行2小时的混合处理,形成胶体混合物。将该胶体混合物涂布于玻璃基板上,而在该玻璃基板上形成厚度为500μm的涂膜。对该涂膜进行热处理,其中,该热处理是在140℃进行3分钟的干燥处理,然后,升温至250℃并于该温度进行1小时的熟化处理,获得厚度为50μm的质子传导隔离膜。在该干燥处理中,能够去除大部分N-甲基吡咯烷酮,从而减少在该熟化处理的过程中产生气泡的问题。在该熟化处理中,能够去除残留的N-甲基吡咯烷酮并使所获得的质子传导隔离膜具有致密性。
实施例2至18及比较例1至3
该实施例2至18及比较例1至3是以与该实施例1相同步骤进行的,不同主要在于:改变各成分的种类及用量,参阅表1至表3,其中,聚酰亚胺及环氧树脂为律胜科技制造且型号分别为BT-PI及PIDA,而尿囊素、氰尿酸三聚氰胺、硫酸三聚氰胺及三聚氰胺为景明化工制造。
比较例4
利用搅拌机,将10克(100重量份)的聚苯并咪唑(律胜科技制造;型号:PBI)、3.3克的邻苯二甲酸二丁酯(作为造孔剂;景明化工制造)及40克(400重量份)的N-甲基吡咯烷酮(景明化工制造)于60℃且1atm的条件下进行2小时的混合处理,形成胶体混合物。将该胶体混合物涂布于玻璃基板上,而在该玻璃基板上形成厚度为500μm的涂膜。对该涂膜进行热处理,形成经热处理的涂膜,其中,该热处理是在140℃进行3分钟的干燥处理,然后,升温至250℃并于该温度进行1小时的熟化处理。将该经热处理的涂膜浸泡至甲醇中24小时,接着,取出并于100℃的条件进行1小时的干燥处理,获得多孔质子传导隔离膜。
比较例5
比较例5的质子传导隔离膜的厚度为50μm,杜邦公司制造,商品名为NafionTM 212,成分为磺酸化聚四氟乙烯共聚物。
表1
表2
表3
评价项目
平衡溶胀比测量:将实施例1至18及比较例1至5的质子传导隔离膜裁剪为10cm2x10cm2的待测试片,接着,于真空环境且温度为100℃的条件下进行24小时烘干处理,形成经烘干处理的试片,然后,测量并纪录这些经烘干处理的试片的长度、宽度及厚度,并计算出这些经烘干处理的试片的体积(V0,单位为cm3)。将这些经烘干处理的试片浸泡于80℃的水中,并于该温度浸泡1天,形成经浸泡处理的试片,接着,取出且测量长度、宽度及厚度,并计算出经浸泡处理的试片的体积(V,单位为cm3)。平衡溶胀比为V/V0。
孔隙率(%)测量:使用水银测孔仪(Mercury Porosimeter;厂牌:Micromeritics;型号:IV 9520)对实施例1至18及比较例1至5的质子传导隔离膜进行测量。
抗张强度(MPa)及断裂伸长率(%)测量:利用拉伸试验机(厂牌:LLOYD;型号:LRX)对实施例1至18及比较例1至5的质子传导隔离膜进行测量,其中,拉引速度为100mm/min。
含酸量(%)的测量:将实施例1至18及比较例1至5的质子传导隔离膜进行称重(W1,单位为克),接着,浸泡于温度为40℃的硫酸水溶液(包括硫酸及水,且该硫酸的浓度为3M)中并浸泡7天,然后,取出并擦干附着于表面的硫酸水溶液,形成经浸泡硫酸的质子传导隔离膜,并将经浸泡硫酸的质子传导隔离膜的表面擦干,然后进行称重(W2,单位为克)。含酸量(%)为[(W2-W1)/W1]×100%。
质子导电度(mS/cm)测量:使用美国BekkTECH LLC的四极柱式导电度测量仪,并以交流阻抗分析法,于25℃的条件下对实施例1至18及比较例1至5的质子传导隔离膜进行阻抗值的测量。该质子导电度(S/cm)为1/[(阻抗值×膜的宽度×膜的厚度)/参考电极的间距],其中,该膜的宽度、膜的厚度及参考电极的间距的单位为cm。
钒离子扩散速率(%):将浓度为2.5M的硫酸水溶液与VOSO4混合,形成第一混合液,其中,在该第一混合液中,该VOSO4的浓度为1M,而硫酸的浓度为2.5M。将浓度为2.5M的硫酸水溶液与MgSO4混合,形成第二混合液,其中,在该第二混合液中,该MgSO4的浓度为1M,而硫酸的浓度为2.5M。将实施例1至18及比较例1至5的质子传导隔离膜设置于具有容置空间的容器中,而将该容置空间隔成第一容置空间部(左边)及第二容置空间部(右边)。将该第一混合液及该第二混合液分别导入该第一容置空间部及该第二容置空间部。以波长为766nm的光照射该第一混合液及该第二混合液,并利用紫外光可见光光谱仪、菲克定律(Fick’s Law)及比尔定律(Beer’s Law)计算该第一混合液的吸收度(AV)及该第二混合液的吸收度(AMg),接着,该钒离子开始通过此类质子传导隔离膜,于不同测量时间(t)下重复上述步骤,获得不同测量时间下该第一混合液的吸收度(AV)及该第二混合液的吸收度(AMg)。对ln(AV-2AMg)与测量时间做图且获得第一公式,并利用该第一公式计算出质传系数(ks),接着,将该质传系数带入第二公式,并计算出钒离子扩散速率(D)。该第一公式为ln(AV-2AMg)=lnAV-(2×ks×A×t)/VA,而该第二公式为D=ks×d,其中,A为质子传导隔离膜的接触面积(单位为cm2)、t为测量时间、VA为第二容置空间部的体积(单位为cm3),d为质子传导隔离膜的厚度(单位为cm)。
库伦效率(coulombic efficiencies,单位为%)、电压效率(voltageefficiencies,单位为%)及能量效率(energy efficiencies,单位为%)的测量:利用聚氯乙烯板框、实施例1至18及比较例1至5的质子传导隔离膜、石墨毡电极、双极板,及100毫升的电解液构成有效面积为5cmx5cm的单电池。该电解液是由456克的VOSO4粉末与1000毫升的硫酸水溶液所配制而成的,其中,该硫酸水溶液中的硫酸浓度为3M。利用电池充放电测试机[厂牌:致茂电子(Chroma);型号:Model 17011]对该单电池进行充电及放电并测量电量,然后,依据该电量计算出库伦效率、能量效率及电压效率,其中,电流密度为120mA/cm2、截止电压范围为0.7V至1.6V,且流速为50ml/min。该平均能量效率为将每次充放电所计算出的能量效率进行加总,共进行500次充放电,并计算出平均值。
表4
表5
表6
参阅表4、表5及表6,相较于比较例4及5的质子传导隔离膜,本发明的实施例1至18的质子传导隔离膜具有低平衡溶胀比,这表示本发明的质子传导隔离膜不易膨胀,致使用于电池中能够提升电池的安全性。此外,相较于比较例5的质子传导隔离膜,本发明的实施例1至8及11至16的质子传导隔离膜还具有低钒离子扩散速率,这表示本发明的质子传导隔离膜具有低钒离子渗透性。相较于比较例4的质子传导隔离膜,本发明的实施例1至18的质子传导隔离膜还具有低钒离子扩散速率,这表示本发明的质子传导隔离膜具有低钒离子渗透性。
参阅表4、表5及表6,比较例1至3的隔离膜未使用本发明质子传导组分,致使这些隔离膜的质子传导性不佳,而无法应用于电池中,反观本发明,本发明的实施例1至18的质子传导隔离膜的质子传导组分包括具有脲结构的亲水性材料及由酸性物质与碱性物质所构成的亲水性材料中一者,而具有优异的质子传导度,致使能够有益于应用至电池中。
综上所述,通过该疏水性有机聚合物、质子传导组分及用量的设计,本发明质子传导隔离膜具有质子传导性及低溶胀性,并能够有效地阻止电解液中的钒离子通过,而具有低钒离子渗透性,故确实能达成本发明的目的。

Claims (7)

1.一种质子传导隔离膜,其特征在于包含:疏水性有机聚合物及质子传导组分,且该质子传导组分包括具有脲结构的亲水性材料及氨基化合物,且以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为23wt%至70wt%。
2.根据权利要求1所述的质子传导隔离膜,其特征在于:该疏水性有机聚合物选自聚酰亚胺、环氧树脂、聚苯并咪唑、聚醚酮、聚酰胺、聚氨酯树脂、三聚氰胺-甲醛树脂、丁腈橡胶、聚丙烯、聚乙烯、聚苯乙烯、聚偏二氟乙烯,或上述任意的组合。
3.根据权利要求1所述的质子传导隔离膜,其特征在于:以该质子传导隔离膜的总重为100wt%计,该质子传导组分的含量范围为35wt%至70wt%。
4.根据权利要求1所述的质子传导隔离膜,其特征在于:该具有脲结构的亲水性材料包括具有脲结构的五元杂环亲水性材料及具有脲结构的六元杂环亲水性材料中至少一者。
5.根据权利要求1所述的质子传导隔离膜,其特征在于:该具有脲结构的亲水性材料选自于异氰尿酸、2-羟基苯并咪唑、异氰脲酸三烯丙酯、三(2-丙烯酰氧乙基)异氰脲酸酯、异氰脲酸双(丙烯酰氧乙基)酯、异氰脲酸三缩水甘油酯、异氰脲酸三[3-(三甲氧基硅烷基)丙基]酯、三(2-羟乙基)异氰脲酸酯、尿囊素、4-苯基-3H-1,2,4-三唑啉-3,5-二酮、尿酸、三氯异氰酸、乙内酰脲、丙二酰脲、紫脲酸、胸腺嘧碇,或上述任意的组合。
6.根据权利要求1所述的质子传导隔离膜,其特征在于:该氨基化合物选自于腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶、三聚氰胺、氨基吡啶、氨基哌啶、氨基嘧碇,或上述任意的组合。
7.根据权利要求1所述的质子传导隔离膜,其特征在于:以该质子传导组分的总量为100wt%计,该具有脲结构的亲水性材料的总量范围为50wt%以上。
CN202110504886.3A 2020-07-17 2021-05-10 质子传导隔离膜 Active CN113948745B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109124284 2020-07-17
TW109124284A TWI725896B (zh) 2020-07-17 2020-07-17 質子傳導隔離膜

Publications (2)

Publication Number Publication Date
CN113948745A CN113948745A (zh) 2022-01-18
CN113948745B true CN113948745B (zh) 2023-10-13

Family

ID=76605100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110504886.3A Active CN113948745B (zh) 2020-07-17 2021-05-10 质子传导隔离膜

Country Status (6)

Country Link
US (1) US20220016615A1 (zh)
EP (1) EP3940831A1 (zh)
JP (1) JP7230123B2 (zh)
KR (1) KR20220010429A (zh)
CN (1) CN113948745B (zh)
TW (1) TWI725896B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539579B (zh) * 2022-03-04 2023-09-08 中山大学 一种三聚氰胺-三聚氰酸超分子纳米片表面改性的质子交换膜及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077901A (en) * 1999-05-06 2000-06-20 Bayer Corporation Aqueous compositions containing mixtures of silane-functional resins
JP2003335895A (ja) * 2002-05-22 2003-11-28 Ube Ind Ltd ポリイミド多孔質膜複合材料及びプロトン伝導膜
JP2014097912A (ja) * 2012-11-14 2014-05-29 Asahi Kasei Chemicals Corp 窒素含有炭素材料、その製造方法及び燃料電池用電極
CN111205641A (zh) * 2020-01-11 2020-05-29 山东理工大学 含三聚氰环的三膦酸盐掺杂pbi高温质子交换膜的制备
CN111416140A (zh) * 2020-01-11 2020-07-14 山东理工大学 2,4,6-三氧代-1,3,5-三嗪-三磷酸盐掺杂新型pbi质子交换膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291847A (ja) * 1990-04-09 1991-12-24 Mitsui Petrochem Ind Ltd セパレータの製造方法
JPH1181139A (ja) * 1997-08-28 1999-03-26 Jsr Corp 多孔質材料およびその製造方法
WO2008053864A1 (en) * 2006-10-30 2008-05-08 Nippon Steel Chemical Co., Ltd. Proton conducting compound and proton conducting polymer
US20100193745A1 (en) * 2009-01-30 2010-08-05 Sanyo Electric Co., Ltd. Conductive polymer film, conductive polymeric material and electronic device
EP3404069B1 (en) * 2016-01-12 2022-06-29 Shin-Etsu Polymer Co. Ltd. Conductive polymer dispersion and method for preparing same, and method for manufacturing conductive film
CN106159171A (zh) * 2016-08-29 2016-11-23 无锡市宝来电池有限公司 一种耐腐蚀的锂离子电池隔膜材料
CN108198986A (zh) * 2017-12-29 2018-06-22 上海恩捷新材料科技股份有限公司 一种硅烷交联聚合物隔离膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077901A (en) * 1999-05-06 2000-06-20 Bayer Corporation Aqueous compositions containing mixtures of silane-functional resins
JP2003335895A (ja) * 2002-05-22 2003-11-28 Ube Ind Ltd ポリイミド多孔質膜複合材料及びプロトン伝導膜
JP2014097912A (ja) * 2012-11-14 2014-05-29 Asahi Kasei Chemicals Corp 窒素含有炭素材料、その製造方法及び燃料電池用電極
CN111205641A (zh) * 2020-01-11 2020-05-29 山东理工大学 含三聚氰环的三膦酸盐掺杂pbi高温质子交换膜的制备
CN111416140A (zh) * 2020-01-11 2020-07-14 山东理工大学 2,4,6-三氧代-1,3,5-三嗪-三磷酸盐掺杂新型pbi质子交换膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zahra Rajabi 等.High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells.《New Journal of Chemistry》.2020,第44卷(第13期),第5001-5018页. *

Also Published As

Publication number Publication date
KR20220010429A (ko) 2022-01-25
CN113948745A (zh) 2022-01-18
JP7230123B2 (ja) 2023-02-28
JP2022019606A (ja) 2022-01-27
TW202205721A (zh) 2022-02-01
EP3940831A1 (en) 2022-01-19
TWI725896B (zh) 2021-04-21
US20220016615A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
Chen et al. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries
KR101890747B1 (ko) 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
US11283077B2 (en) Hybrid flow battery for storing electrical energy and use thereof
EP3228644B1 (en) Polymer electrolyte membrane
TWI449741B (zh) Preparation of Solid State Polymer Electrolyte Membrane
US9793567B2 (en) Ion exchange membrane, method of preparing the same, and redox flow battery comprising the same
Bai et al. A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries
Wu et al. A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte
KR20130132107A (ko) 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
KR20150059531A (ko) 레독스 플로우 전지
US7537853B2 (en) Gel electrolyte, electrode for fuel cell, and fuel cell
CN112490477B (zh) 基于含氧化还原活性侧基单元的共轭微孔聚合物负极的水系全有机混合液流电池
CN113948745B (zh) 质子传导隔离膜
EP1381107A2 (en) Proton conductive solid polymer electrolyte
Dong et al. Fabrication of a cost-effective cation exchange membrane for advanced energy storage in a decoupled alkaline-neutral electrolyte system
CN102522575A (zh) 一种液流电池用隔膜及其制备方法
CN109148921A (zh) 一种自控制水分的燃料电池质子交换膜及制备方法
US11342573B2 (en) Ion-imbibed membranes based on proton conducting aromatic polyether type copolymers and their application in redox flow batteries
Li et al. Proton-conducting membranes based on benzimidazole-containing sulfonated poly (ether ether ketone) compared with their carboxyl acid form
EP4213290A2 (en) Separator and application thereof
KR20230073520A (ko) 레독스 흐름전지용 이온교환막 및 이의 제조방법, 및 이를 포함하는 레독스 흐름전지
JP2002313366A (ja) 高分子電解質膜とその製造方法、及び高分子電解質膜を用いた燃料電池
Tseng et al. Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium–Ion Batteries
KR20200116793A (ko) 레독스 흐름 전지용 분리막 및 이를 포함하는 레독스 흐름 전지
KR20230073518A (ko) 레독스 흐름전지용 이온교환 강화복합막, 이의 제조방법, 및 이를 포함하는 레독스 흐름전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant