CN113944053B - 一种极端环境下具有探测应用的MOFs材料的制备方法 - Google Patents

一种极端环境下具有探测应用的MOFs材料的制备方法 Download PDF

Info

Publication number
CN113944053B
CN113944053B CN202111391442.XA CN202111391442A CN113944053B CN 113944053 B CN113944053 B CN 113944053B CN 202111391442 A CN202111391442 A CN 202111391442A CN 113944053 B CN113944053 B CN 113944053B
Authority
CN
China
Prior art keywords
fiber
rare earth
ligand
mofs
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111391442.XA
Other languages
English (en)
Other versions
CN113944053A (zh
Inventor
刘瑞娜
王树军
苏玲玲
姚春蕊
孙悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langfang Normal University
Original Assignee
Langfang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Normal University filed Critical Langfang Normal University
Priority to CN202111391442.XA priority Critical patent/CN113944053B/zh
Publication of CN113944053A publication Critical patent/CN113944053A/zh
Application granted granted Critical
Publication of CN113944053B publication Critical patent/CN113944053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/123Polyaldehydes; Polyketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于MOFs材料应用技术领域,尤其涉及一种极端环境下具有探测应用的MOFs材料的制备方法。与现有技术相比,本发明的优点和积极效果在于,本发明提供一种极端环境下具有探测应用的MOFs材料,通过将高强纤维和MOFs进行复合,利用高强纤维和MOFs的优点,使复合材料具有、优异的稳定性、耐腐蚀性、耐高温型以及耐辐射性,使其能够满足在极端复杂环境下的稳定性的需要;另外,通过蛋白溶液做诱导剂进行矿化反应,使金属离子和配体能够在室温下快速完成组装,同时,更好的附着在高强纤维上,从而使其在极端环境下对于特定的目标具有优异的探测效果。

Description

一种极端环境下具有探测应用的MOFs材料的制备方法
技术领域
本发明属于MOFs材料应用技术领域,尤其涉及一种极端环境下具有探测应用的MOFs材料的制备方法。
背景技术
金属-有机框架(MOFs)作为一类由金属离子和有机配体通过配位键形成的多孔框架材料,通过选择不同的金属离子和有机配体,能够构筑结构丰富多样的MOFs,对金属离子或有机配体进行修饰,易使MOFs功能化。而MOFs的发光特性紧密依赖于它们的空间结构特点、金属离子的配位环境、孔表面的性质以及它们与客体分子的相互作用,因此,在荧光识别方面具有非常诱人的应用前景。
目前,MOFs在发光、显示、吸附、分离、生物医用、探测应用等领域具有广阔的应用前景。尤其是在探测传感领域,信号明显、灵敏度高、响应快、选择性好,引起了人们极大的研究兴趣。但是,现有的MOFs的应用都在较为简单的环境中,实现相应的探测,在极端环境下,MOFs是否依然具有优异的探测传感性能,是值得探索的新方向,也拓宽了MOFs的实际应用领域。
比如在化工厂普遍存在的高盐废水环境下,MOFs是否能对水质中的各种有害离子实现探测,以便更好的实现废水的处理;亦或者在复杂气体的环境下,对易燃易爆气体进行有效的探测,从而有效避免危险的发生。
发明内容
本发明针对上述的MOFs材料在极端环境下探测应用所存在的技术问题,提出一种配方合理、方法简单且能够在极端环境下实现探测应用的极端环境下具有探测应用的MOFs材料的制备方法。
为了达到上述目的,本发明采用的技术方案为,一种极端环境下具有探测应用的MOFs材料的制备方法,包括以下有效步骤:
a、将高强配体纤维进行处理,使其方便MOFs在高强配体纤维表面组装,将处理后的高强配体纤维备用;
b、将小分子有机配体和蛋白大分子配体溶解液充分溶解在水中,备用;
c、将稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子的硝酸盐或盐酸盐溶解在水中,在其中加入1步骤处理后的高强配体纤维,搅拌使高强配体纤维均匀分散在稀土离子溶液中;
d、待均匀分散后,再将b步骤得到的混合溶液以每滴/5秒的速度滴入c步骤中得到的混合溶液中,滴完后,静置1~10min,待蛋白诱导的矿化反应在短纤表面完成后,过滤取出,制备得到极端环境下具有探测应用的MOFs材料。
作为优选,所述高强配体纤维为耐强腐蚀的含氟纤维、耐高温阻燃纤维、耐辐射纤维、高强度高模量纤维、高弹性纤维或特种功能纤维。
作为优选,所述高强配体纤维的形态为颗粒、短纤、长纤、织物或纸基形态。
作为优选,所述b步骤中,蛋白大分子配体溶解液为丝素蛋白、羊毛蛋白、羊绒蛋白、羽绒蛋白、蛋清蛋白、玉米蛋白或大豆蛋白中的一种。
作为优选,所述b步骤中,有机配体为带羧基、羟基、杂环类的天然生物小分子。
作为优选,所述a步骤中,采用原子层沉积技术,在高强配体纤维表面沉积不同循环次数的TiO2或Al2O3薄膜。
作为优选,所述b步骤中,用1%~10%的戊二醛溶液和0.1%~10%的壳聚糖溶液,交替浸压高强配体纤维,压力为1KPa~1MPa,次数为10~100次,每交替浸压一次后,放置几分钟,多次浸压完成后,室温晾干,得到亲水性改善的高强配体纤维。
作为优选,稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子与有机配体的摩尔比为1:1~3。
作为优选,稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子的硝酸盐或盐酸盐与高强配体的质量比为1:1~100。
与现有技术相比,本发明的优点和积极效果在于,
1、本发明提供一种极端环境下具有探测应用的MOFs材料,通过将高强纤维和MOFs进行复合,利用高强纤维和MOFs的优点,使复合材料具有、优异的稳定性、耐腐蚀性、耐高温型以及耐辐射性,使其能够满足在极端复杂环境下的稳定性的需要;另外,通过蛋白溶液做诱导剂进行矿化反应,使金属离子和配体能够在室温下快速完成组装,同时,更好的附着在高强纤维上,从而使其在极端环境下对于特定的目标具有优异的探测效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1提供的聚四氟乙烯纤维基Tb-MOFs高强复合材料的扫描电镜图;
图2为实施例1提供的聚四氟乙烯纤维基Tb-MOFs高强复合材料对金属离子探测的荧光谱图;
图3为实施例2提供的芳纶纤维基Eu-MOFs高强复合材料的SEM图;
图4为实施例2提供的芳纶纤维基Eu-MOFs高强复合材料对气体CO探测的荧光谱图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开说明书的具体实施例的限制。
实施例1,本实施例提供一种聚四氟乙烯短纤维制备的聚四氟乙烯纤维基Tb-MOFs高强复合材料
首先将聚四氟乙烯短纤维进行预处理,具体的说,将1g短纤用丙酮浸泡25min,再冲洗,这样的做法的主要目的就是去除聚四氟乙烯短纤维的脂溶性和水溶性杂质,待浸泡完成后,取出,然后,在70℃温度下进行干燥,干燥7h,然后,取出备用。
用1%的戊二醛溶液和10%的壳聚糖溶液,交替浸压备用聚四氟乙烯短纤,压力为0.8MPa,次数为40次,每交替浸压一次后,放置几分钟,多次浸压完成后,室温晾干,此步骤的主要目的就是使疏水性的聚四氟乙烯短纤表面亲水,利于后续的矿化反应,使矿化反应更好的进行。
将甘露糖(0.6mmol)和2mg/mL羽绒蛋白溶解液充分溶解在10ml H2O中,同时在另一个小烧杯中,将Tb(NO3)3·6H2O(0.2mmol)溶解在10ml H2O中,在其中放置0.2g经处理过的聚四氟乙烯短纤,搅拌使短纤均匀分散在稀土离子溶液中,再将甘露糖和蛋白溶液的混合溶液以每滴/5秒的速度滴入稀土离子和短纤的混合溶液中,采用滴入的方式,主要是为了更为方便进行蛋白诱导,滴完后,静置1~10min,待蛋白诱导的矿化反应在短纤表面完成后,过滤取出,即可以得到聚四氟乙烯纤维基Tb-MOFs高强复合材料。
通过图1所提供的聚四氟乙烯纤维基Tb-MOFs高强复合材料的扫描电镜图可以明显看出聚四氟乙烯短纤维表面生长大量Tb-MOFs晶态材料,因有纤维参与MOFs组装,所以晶体不是很规整的形状,但依然可以很明显看出是晶态材料。
试验检测,将制备得到的聚四氟乙烯纤维基Tb-MOFs高强复合材料在含有大量Na+,K+,Ca2+,Mg2+的高盐废水中对Pb2+进行探测,判断聚四氟乙烯纤维基Tb-MOFs高强复合材料在高盐废水中探测传感性能。
选择材料特征发射波长为550nm处的荧光强度对比(激发波长为365nm)
如图2所示,高盐废水中聚四氟乙烯纤维基Tb-MOFs高强复合材料对有毒Pb2+具有明显的荧光探测性能,在Na+,K+,Ca2+,Mg2+等离子浓度分别为1mol/L的较高浓度下,也基本不会使Tb-MOFs材料的荧光强度降低,同时,聚四氟乙烯纤维基Tb-MOFs高强复合材料高盐废水中稳定存在,但有毒Pb2+浓度仅为0.001mol/L时,也会很明显淬灭Tb-MOFs材料的荧光,从而实现Pb2+的荧光探测。
通过上述试验可以,聚四氟乙烯纤维基Tb-MOFs高强复合材料结合了高强纤维和MOFs的优点,使其具有优异的稳定性和耐腐蚀性,满足在高盐废水的极端环境下的稳定性,同时,能够对水质中的各种有害金属离子具有较好的探测效果。
实施例2本实施例提供一种芳纶纤维基Eu-MOFs高强复合材料
首先,采用粉末原子层沉积技术(PALD)在芳纶纤维粉上沉积纳米层厚的二氧化钛层,PALD技术是目前粉末状基底材料表面改性最先进的技术之一,能够实现纳米层的人为可调控。反应温度为150℃,PALD沉积循环次数为200轮,沉积完后备用,这样,芳纶纤维粉经过PALD修饰后,其表面含有大量O的反应位点,O易于与金属离子,尤其是稀土离子配位,利于后续MOFs在芳纶纤维粉表面的层层自组装。
将草酸(0.2mmol)、柠檬酸(0.2mmol)和0.1g得到的芳纶纤维粉置于10mL去离子水中,搅拌10min后转移到20mL水热釜中,往水热釜中再加入2mL Eu(NO3)3·6H2O(0.2mmol)的水溶液,盖好水热釜置于烘箱中,140℃反应72h,再以2℃/1h(每小时降2℃)的速率下降至室温,过滤取出,制备得到芳纶纤维基Eu-MOFs高强复合材料。在本实施例中,以2℃/1h的速率下降至室温,能够使MOFs晶态材料生长层较厚,同时,晶体为微纳米级的长片状,能够大量组装在纤维粉表面上。
通过图3所提供的芳纶纤维基Eu-MOFs高强复合材料的SEM图可以看出,芳纶纤维粉的长度大约几十μm,直径大约几μm,经PALD技术修饰后,表面较多O的反应位点与Eu离子配位,在芳纶纤维粉表面组装大量Eu-MOFs晶态材料,晶态材料生长层较厚,晶体为微纳米级的长片状,大量组装在纤维粉表面。
将芳纶纤维基Eu-MOFs高强复合材料在水蒸气、氨气、高温环境下对一氧化碳的探测试验
实验在2L的密闭玻璃容器中进行,材料特征发射波长为617nm处的荧光强度对比(激发波长为365nm)
结果如图4所示,先通入高温水蒸气,再通入氨气,并没有影响MOFs的荧光强度,随即通入微量CO,很明显淬灭了Eu-MOFs材料的荧光,从而实现CO的荧光探测,而无高强配体的MOFs材料对高温水蒸汽、酸碱等环境非常不稳定,很难实现探测效果。
实施例3,本实施例提供一种耐高温阻燃纤维基EuMn-MOFs高强复合材料
首先将耐高温阻燃纤维长纤进行预处理,具体的说,将1g耐高温阻燃纤维长纤用丙酮浸泡30min,再冲洗,这样的做法的主要目的就是去除聚耐高温阻燃纤维长纤的脂溶性和水溶性杂质,待浸泡完成后,取出,然后,在80℃温度下进行干燥,干燥10h,然后,取出备用。
用5%的戊二醛溶液和5%的壳聚糖溶液,交替浸压备用耐高温阻燃纤维长纤,压力为1MPa,次数为80次,每交替浸压一次后,放置几分钟,多次浸压完成后,室温晾干,此步骤的主要目的就是使疏水性的耐高温阻燃纤维长纤表面亲水,利于后续的矿化反应,使矿化反应更好的进行。
将甘露糖(0.6mmol)和2mg/mL玉米蛋白溶解液充分溶解在10ml H2O中,同时在另一个小烧杯中,将EuCl3·6H2O(0.1mmol)和Mn Cl2·4H2O(0.1mmol)溶解在10ml H2O中,在其中放置0.2g经处理过的耐高温阻燃纤维,搅拌使耐高温阻燃纤维均匀分散在稀土离子和过渡金属离子的混合溶液中,再将甘露糖和玉米蛋白溶解液的混合溶液以每滴/5秒的速度滴入稀土离子和过渡金属离子的混合溶液中,采用滴入的方式,主要是为了更为方便进行蛋白诱导,滴完后,静置10min,待蛋白诱导的矿化反应在短纤表面完成后,过滤取出,即可以得到耐高温阻燃纤维基EuMn-MOFs高强复合材料。
经过试验,在水蒸气、氨气、高温高湿的环境内,对甲烷有优异的探测作用,可以用于瓦斯气体的检测。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (7)

1.一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,包括以下有效步骤:
a、将高强配体纤维进行处理,使其方便MOFs在高强配体纤维表面组装,将处理后的高强配体纤维备用;
b、将小分子有机配体和蛋白大分子配体溶解液充分溶解在水中,备用;
c、将稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子的硝酸盐或盐酸盐溶解在水中,在其中加入1步骤处理后的高强配体纤维,搅拌使高强配体纤维均匀分散在稀土离子溶液中;
d、待均匀分散后,再将b步骤得到的混合溶液以每滴/5秒的速度滴入c步骤中得到的混合溶液中,滴完后,静置1~10min,待蛋白诱导的矿化反应在短纤表面完成后,过滤取出,制备得到极端环境下具有探测应用的MOFs材料;
其中,所述a步骤中,用1%~10%的戊二醛溶液和0.1%~10%的壳聚糖溶液,交替浸压高强配体纤维,压力为1KPa~1MPa,次数为10~100次,每交替浸压一次后,放置几分钟,多次浸压完成后,室温晾干,得到亲水性改善的高强配体纤维。
2.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,所述高强配体纤维为耐强腐蚀的含氟纤维、耐高温阻燃纤维、耐辐射纤维、高强度高模量纤维、高弹性纤维或特种功能纤维。
3.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,所述高强配体纤维的形态为颗粒、短纤、长纤、织物或纸基形态。
4.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,所述b步骤中,蛋白大分子配体溶解液为丝素蛋白、羊毛蛋白、羊绒蛋白、羽绒蛋白、蛋清蛋白、玉米蛋白或大豆蛋白中的一种。
5.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,所述b步骤中,有机配体为带羧基、羟基、杂环类的天然生物小分子。
6.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子与有机配体的摩尔比为1:1~3。
7.根据权利要求1所述的一种极端环境下具有探测应用的MOFs材料的制备方法,其特征在于,稀土离子、过渡金属离子、稀土离子与稀土离子的混配离子或稀土离子与过渡金属离子的混配离子的硝酸盐或盐酸盐与高强配体的质量比为1:1~100。
CN202111391442.XA 2021-11-19 2021-11-19 一种极端环境下具有探测应用的MOFs材料的制备方法 Active CN113944053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111391442.XA CN113944053B (zh) 2021-11-19 2021-11-19 一种极端环境下具有探测应用的MOFs材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111391442.XA CN113944053B (zh) 2021-11-19 2021-11-19 一种极端环境下具有探测应用的MOFs材料的制备方法

Publications (2)

Publication Number Publication Date
CN113944053A CN113944053A (zh) 2022-01-18
CN113944053B true CN113944053B (zh) 2024-03-01

Family

ID=79338613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111391442.XA Active CN113944053B (zh) 2021-11-19 2021-11-19 一种极端环境下具有探测应用的MOFs材料的制备方法

Country Status (1)

Country Link
CN (1) CN113944053B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178954A1 (fr) * 2012-05-31 2013-12-05 Centre National De La Recherche Scientifique - Cnrs - Solide hybride organique inorganique amelioee à surface externe modifiée
CN105801878A (zh) * 2016-04-11 2016-07-27 武汉纺织大学 一种丝素蛋白基纳米MOFs的制备方法
CN106621834A (zh) * 2016-12-21 2017-05-10 南京工业大学 吸水性金属有机骨架材料‑壳聚糖混合基质膜及制备和应用
KR20180122819A (ko) * 2017-05-04 2018-11-14 국방과학연구소 독성물질의 제거를 위한 금속유기얼개/섬유 복합소재 및 그 제조방법
CN109021264A (zh) * 2018-06-26 2018-12-18 中国科学院青岛生物能源与过程研究所 一种MOFs-壳聚糖纳米纤维复合膜的制备方法
CN110368904A (zh) * 2019-06-26 2019-10-25 浙江跃维新材料科技有限公司 一种固态多孔的气体吸附材料的制备方法及其应用
WO2020256450A1 (ko) * 2019-06-19 2020-12-24 한국과학기술원 이산화탄소 포집을 위한 구조화된 금속-유기 골격체 파이버 흡착제 및 이의 제조방법
KR20210004201A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 금속 유기 구조체-셀룰로오스 나노섬유 복합 소재의 제조방법
CN112755968A (zh) * 2020-12-31 2021-05-07 廊坊师范学院 吸附截留水中微纳米塑料的MOFs纤维膜及其制备方法
US11007516B1 (en) * 2017-06-19 2021-05-18 National Technology & Engineering Solutions Of Sandia, Llc Tunable metal-organic framework compositions and methods thereof
CN112892489A (zh) * 2020-12-25 2021-06-04 廊坊师范学院 一种MOFs/碳气凝胶吸附过滤材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178954A1 (fr) * 2012-05-31 2013-12-05 Centre National De La Recherche Scientifique - Cnrs - Solide hybride organique inorganique amelioee à surface externe modifiée
CN105801878A (zh) * 2016-04-11 2016-07-27 武汉纺织大学 一种丝素蛋白基纳米MOFs的制备方法
CN106621834A (zh) * 2016-12-21 2017-05-10 南京工业大学 吸水性金属有机骨架材料‑壳聚糖混合基质膜及制备和应用
KR20180122819A (ko) * 2017-05-04 2018-11-14 국방과학연구소 독성물질의 제거를 위한 금속유기얼개/섬유 복합소재 및 그 제조방법
US11007516B1 (en) * 2017-06-19 2021-05-18 National Technology & Engineering Solutions Of Sandia, Llc Tunable metal-organic framework compositions and methods thereof
CN109021264A (zh) * 2018-06-26 2018-12-18 中国科学院青岛生物能源与过程研究所 一种MOFs-壳聚糖纳米纤维复合膜的制备方法
WO2020256450A1 (ko) * 2019-06-19 2020-12-24 한국과학기술원 이산화탄소 포집을 위한 구조화된 금속-유기 골격체 파이버 흡착제 및 이의 제조방법
CN110368904A (zh) * 2019-06-26 2019-10-25 浙江跃维新材料科技有限公司 一种固态多孔的气体吸附材料的制备方法及其应用
KR20210004201A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 금속 유기 구조체-셀룰로오스 나노섬유 복합 소재의 제조방법
CN112892489A (zh) * 2020-12-25 2021-06-04 廊坊师范学院 一种MOFs/碳气凝胶吸附过滤材料及其制备方法
CN112755968A (zh) * 2020-12-31 2021-05-07 廊坊师范学院 吸附截留水中微纳米塑料的MOFs纤维膜及其制备方法

Also Published As

Publication number Publication date
CN113944053A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
Emam et al. Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF)
Gao et al. A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium
Zhang et al. Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe 3+ in aqueous solution
Liang et al. Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks
Li et al. From powder to cloth: Facile fabrication of dense MOF-76 (Tb) coating onto natural silk fiber for feasible detection of copper ions
Wang et al. Eu-metal organic framework@ TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions
CN110565398B (zh) 一种基于稀土掺杂mof的染色荧光织物及其制备方法
Dou et al. Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions
CN108409758B (zh) 含双核稀土簇合物的晶态材料及其制备方法和应用
Yan et al. Polyacrylonitrile fluorescent nanofibers for selective and reversible copper detection in aqueous solutions
CN109505167B (zh) 一种稀土金属骨架多功能染色荧光棉织物的制备方法
CN108264579B (zh) 一种含大环稀土配合物的水凝胶材料、制备方法及应用
Wang et al. Tb (iii) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing
Yu et al. Polyphenylene sulfide paper-based sensor modified by Eu-MOF for efficient detection of Fe3+
CN109355931A (zh) 一种基于mof的多功能染色荧光棉织物的制备方法
CN109810272A (zh) 一种氧化纳米纤维素二维金属有机骨架复合荧光薄膜及其制备方法
CN113944053B (zh) 一种极端环境下具有探测应用的MOFs材料的制备方法
Ghosh et al. Ultrafast and nanomolar level detection of H 2 S in aqueous medium using a functionalized UiO-66 metal–organic framework based fluorescent chemosensor
Chen et al. Eu doped Zn-MOF nanofiber fluorescent membrane and its multifunctional detection of nitroaromatic compounds and Fe3+
CN112844322B (zh) 一种Fe-MOFs和纤维复合材料的制备方法及其染料废水处理应用
CN109233807A (zh) 一种稀土复合发光水凝胶材料及其制备方法与应用
CN113117418A (zh) 具有光催化解毒功能的纳米纤维过滤防护材料及其制备方法
Zhou et al. Enhanced fluorescence and ion adsorption/sensing properties of europium (III) complex with porous structure
CN110359295B (zh) 一种基于Cd-MOF的多功能长波长长寿命荧光棉织物的制备方法
CN105603714B (zh) 一种二氧化钛基银-氧化镁-二氧化钛复合纳米纤维毡的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant