CN113932396A - 一种空调器和控制方法 - Google Patents

一种空调器和控制方法 Download PDF

Info

Publication number
CN113932396A
CN113932396A CN202010670538.9A CN202010670538A CN113932396A CN 113932396 A CN113932396 A CN 113932396A CN 202010670538 A CN202010670538 A CN 202010670538A CN 113932396 A CN113932396 A CN 113932396A
Authority
CN
China
Prior art keywords
voltage
change rate
preset
power supply
voltage change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010670538.9A
Other languages
English (en)
Other versions
CN113932396B (zh
Inventor
尹发展
安丰德
高思云
陈建兵
牛建勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Shandong Air Conditioning Co Ltd
Original Assignee
Hisense Shandong Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Shandong Air Conditioning Co Ltd filed Critical Hisense Shandong Air Conditioning Co Ltd
Priority to CN202010670538.9A priority Critical patent/CN113932396B/zh
Publication of CN113932396A publication Critical patent/CN113932396A/zh
Application granted granted Critical
Publication of CN113932396B publication Critical patent/CN113932396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Abstract

本发明公开了一种空调器和控制方法,所述空调器包括冷媒循环回路、压缩机、室内热交换器和变频控制器。变频控制器被配置为预先获取电源频率和有效电压;当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。通过应用以上技术方案,能够在不增加额外成本和不改变PCB布局的情况下,克服干扰因素对空调变频控制器PFC控制的影响。

Description

一种空调器和控制方法
技术领域
本申请涉及空调控制技术领域,更具体地,涉及一种空调器和控制方法。
背景技术
PFC(Power Factor Correction,功率因数校正)是为了提高用电设备功率因数的技术,功率因数指的是有效功率与总耗电量之间的关系,也就是有效功率除以总耗电量的比值。功率因数是用来衡量用电设备用电效率的参数,当功率因数值越大,代表其电力利用率越高。
变频控制器在进行PFC控制时,要以交流电压为参考波形进行电流的控制,通常的控制方法有两种,一种是通过采用标准正弦波并根据交流电压的过零点进行校准的方式进行控制,一种方法是根据输入交流电压的实时采样数据进行控制。第一种方法的优点是参考波形精准,缺点是当输入电压发生畸变过零点偏移时,将导致电流控制也发生偏移,影响控制结果;第二种方法的优点是对输入电压的跟踪性很强,缺点是当电压采样有干扰信号发生时,也将影响电流的控制结果。
目前对于空调变频控制器PFC控制中,通常变频控制器的强电与采样的弱电的地为公共地,这就导致在IGBT或IPM等功率器件在进行开关动作时极易造成对弱电采样部分电路的干扰,影响采样结果,进而会影响到电流的控制。现有技术中为解决干扰问题一般通过调整PCB布局或滤波电路来实现干扰的屏蔽,也有通过增加光耦的方式进行强弱电隔离,但这些方式需增加较多的额外成本。并且在一些特殊控制器场合,受到功率器件布局的影响也难以通过调整PCB解决干扰。
因此,如何在空调器不改变PCB布局和不增加额外成本的情况下,克服干扰因素对空调变频控制器PFC控制的影响是目前有待解决的技术问题。
发明内容
由于现有技术中在不增加额外成本的情况下难以通过改变PCB布局解决空调变频控制器PFC控制的干扰问题,本发明提供了一种空调器,包括:
冷媒循环回路,使冷媒在压缩机、冷凝器、膨胀阀、蒸发器、四通阀和减压器组成回路中进行循环;
压缩机,用于进行将低温低压冷媒气体压缩成高温高压冷媒气体并排至冷凝器的工作;
室内热交换器,作为冷凝器或蒸发器进行工作;
变频控制器被配置为,预先获取电源频率和有效电压;
当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;
根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
一些实施例中,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
一些实施例中,所述变频控制器具体被配置为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
一些实施例中,所述变频控制器还被配置为:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
一些实施例中,所述变频控制器还被配置为:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
相应的,本发明还提供了一种空调器控制方法,所述方法应用于包括冷媒循环回路、压缩机、室内热交换器和变频控制器的空调器中,所述方法包括:
预先获取电源频率和有效电压;
当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;
根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
一些实施例中,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
一些实施例中,根据所述实际电压变化率与对应的参考电压变化率确定控制电压,具体为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
一些实施例中,所述方法还包括:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
一些实施例中,所述方法还包括:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
本发明公开了一种空调器和控制方法,所述空调器包括冷媒循环回路、压缩机、室内热交换器和变频控制器。变频控制器被配置为预先获取电源频率和有效电压;当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。通过应用以上技术方案,能够在不增加额外成本和不改变PCB布局的情况下,克服干扰因素对空调变频控制器PFC控制的影响。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出本发明实施例提出的一种空调器的结构示意图;
图2是示出本发明实施例提出的一种空调器控制方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为进一步对本申请的方案进行描述,如图1所示为本申请实施例提出的一种空调器的结构示意图,具体为:
冷媒循环回路101,使冷媒在压缩机、冷凝器、膨胀阀、蒸发器、四通阀和减压器组成回路中进行循环。
在本申请的优选实施例中,空调器通过使用压缩机、冷凝器、膨胀阀和蒸发器来执行空调器的制冷循环。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机102,用于进行将低温低压冷媒气体压缩成高温高压冷媒气体并排至冷凝器的工作。
在本申请的优选实施例中,压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
室内热交换器103,作为冷凝器或蒸发器进行工作。
在本申请的优选实施例中,空调器的室外单元包含制冷循环的包括压缩机和室外热交换器的部分,空调器的室内单元包括室内热交换器,并且膨胀阀可以提供在室内单元或室外单元中。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调器可以调节室内空间的温度。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调器用作制热模式的加热器,当室内热交换器用作蒸发器时,空调器用作制冷模式的冷却器。
变频控制器104被配置为,预先获取电源频率和有效电压;
当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;
根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
在具体实施场景中,由于变频控制器开始工作前电流很小,没有功率器件动作,很少有干扰,此时获取的电源频率和实际输入电压的有效值可作为无干扰存在的电源频率和有效电压。例如可以预先在变频控制器上电前几个电周期中获取电源频率和有效电压。
预设电源频率与预设拟合公式是相互对应的,预设电源频率可以预设一个或多个,相应的预设拟合公式也存在一个或多个,将它们写入存储器中,方便变频控制器调用以适用多种应用场景。当获取的电源频率与预设电源频率相同时,即表示变频控制器可以调用对应的预设拟合公式计算参考电压变化率,以进行PFC抗干扰控制。
实际电压变化率可以根据当前采样电压与前一次采样电压的差值直接确定,例如当前实际采样电压为117V,前一次采样电压为115.5V,二者差值1.5V即为实际电压变化率。
实际电压变化率对应的参考电压变化率可以根据有效电压和预设拟合公式确定。由于交流电压的标准波形为正弦波,因此在正常情况下,已知有效电压、电源频率和电压采样频率,是可以获知每次采样电压相比于前一次采样电压的最大电压变化率的。在实际应用中存在电压波动及波形畸变的情况,电压会在一定范围内进行波动(通常情况下电压波动范围不会高于20%),参考电压变化率就是在电压波动及波形畸变的情况下的当前采样电压相比于前一次采样电压的最大电压变化率。
根据正弦波的特性,在电周期0度附近参考电压变化率数值最大,在90度附近参考电压变化率数值最小,并逐渐变化。同时90度到180度与0到90相对称,180度到360度与0到180度对称,因此只需要计算1/4电周期的参考电压变化率(如0度到90度之间的电压变化率),便可轻易获知整个电周期的参考电压变化率。预设拟合公式就是拟合了1/4电周期的参考电压变化率的公式,根据预设拟合公式可以计算出每次采样电压相比于前一次采样电压的参考电压变化率的数值。
为了准确计算实际电压变化率对应的参考电压变化率,在本申请的优选实施例中,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
在具体实施场景中,由于交流电的特性,电压幅值即交流电最大电压,是有效电压的1.414(2的算术平方根)倍。由于在实际应用中存在电压波动及波形畸变的情况,其实际电压幅值会更高,因此可以根据有效电压和预设电压波动阈值确定在电压波动及波形畸变的情况下的电压幅值,预设电压波动阈值可根据具体实施情况设置。例如预设电压波动阈值为20%,有效电压为220V,则电压幅值为Vacmax=220*(1+20%)*1.414=375V。
x为所述当前采样电压对应的电压采样次序,即当前采样电压是计算周期内相对于计算周期起始点的第x次电压采样,计算周期是预设拟合公式所拟合的1/4电周期。例如需要计算电周期0度到90度之间的第10次电压采样得到的采样电压对应的参考电压变化率时,x取值为10。
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的,具体的,根据预设电源频率和预设电压采样频率计算出参考电压变化率,将参考电压变化率代入预设参数未知的拟合公式中计算出预设参数;将预设参数写入存储器中构成相应的预设拟合公式。因此预设电源频率与预设拟合公式是相互对应,不同的预设电源频率对应不同预设参数,不同的预设参数构成不同的预设拟合公式。
下面将举例说明根据预设电源频率和预设电压采样频率计算参考电压变化率的方法,已知电源频率50Hz,有效电压为220V,PFC控制所需的电压采样频率为20KHz,该方法具体为:
通过电压采样频率除以电源频率可计算一个电周期内电压采样次数为400次;
由于一个电周期的角度为360度,则每次电压采样角度变化为0.9度;
根据有效电压可以计算出电压幅值为311V,考虑电压波动及波形畸变,以预设电压波动阈值20%为例,此时最大电压幅值为375V;
根据正弦波的特性波的特性计算每一次电压采样得到的采样电压对应的参考电压变化率,如在电周期0度到90度之间的第1次电压采样的参考电压变化率为375*sin(0.9)=5.89V。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他获取用于计算参考电压变化率的预设拟合公式的方式均属于本申请的保护范围。
在具体实施场景中,由于干扰的存在导致采样电压出现异常,若直接将采样电压作为控制电压进行PFC控制,将影响电流的控制结果。因此需要根据所述实际电压变化率与对应的参考电压变化率来进一步确定控制电压。
为了控制电压能够实现PFC抗干扰控制,在本申请的优选实施例中,根据所述实际电压变化率与对应的参考电压变化率确定控制电压,具体为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
在具体实施场景中,通过当前采样电压与前一次采样电压的差值确定实际电压变化率,若实际电压变化率超出对应的参考电压变化率时,说明当前采样电压受到外在干扰因素的影响,因此不能直接使用当前采样电压作为控制电压进行PFC控制。为了克服干扰因素的影响,可以将前一次采样电压加上当前采样电压对应的参考电压变化率的数值作为控制电压进行PFC控制。由于参考电压变化率是就是在电压波动及波形畸变的情况下的当前采样电压相比于前一次采样电压的最大电压变化率,因此前一次采样电压加上该参考电压变化率的数值得到的电压值就是不影响实际控制结果的最大电压值,将该最大电压值作为控制电压,可以有效避免外在干扰因素对变频控制器进行PFC控制的影响。同时将受干扰影响的采样电压记录下来,标注为异常电压,以便后续进行设备安全管理和数据溯源。
若实际电压变化率未超出对应的参考电压变化率时,说明当前采样电压是有效的,未受到外在干扰因素的影响,因此可以直接使用当前采样电压作为控制电压进行PFC控制。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他根据所述实际电压变化率与对应的参考电压变化率确定控制电压的方式均属于本申请的保护范围。
为了防止由于干扰影响或其他原因导致的电压异常使空调器损坏,在本申请的优选实施例中,所述变频控制器还被配置为:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
在具体实施场景中,当异常电压高于过压阈值或低于低压阈值,且连续多次出现,说明空调器出现过压故障或电压跌落的情况,可能导致空调器部件出现严重的损伤,需要启动相应的故障处理措施。上述预设阈值、过压阈值和低压阈值可以根据具体实施情况进行设置,具体的故障处理措施本领域技术人员可根据具体实施情况进行操作,在此不再赘述。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他针对电压异常进行安全管理的方式均属于本申请的保护范围。
为了保证空调器在各种应用环境中使用,在本申请的优选实施例中,所述变频控制器还被配置为:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
在具体实施场景中,可能会出现电源频率与预设电源频率不相同的情况,此时变频控制器无可调用的预设拟合公式来计算参考电压变化率,无法进行PFC抗干扰控制。为了保证空调器能够正常运行,则可以直接将当前采样电压作为,根据所述电源频率和所述控制电压进行无抗干扰的PFC控制;或者根据电源频率生成新的预设拟合公式,由于此时电源频率与新生成的预设拟合公式对应的预设电源频率相同,可按照本发明的PFC抗干扰控制的方案进行PFC控制。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他保证空调器在各种应用环境中使用的方式均属于本申请的保护范围。
本发明公开了一种空调器和控制方法,所述空调器包括冷媒循环回路、压缩机、室内热交换器和变频控制器。变频控制器被配置为预先获取电源频率和有效电压;当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。通过应用以上技术方案,能够在不增加额外成本和不改变PCB布局的情况下,克服干扰因素对空调变频控制器PFC控制的影响。
与本申请实施例中的空调器相对应,本申请实施例还提出了一种空调器控制方法,所述方法应用于包括冷媒循环回路、压缩机、室内热交换器和变频控制器的空调器中,如图2所示,所述方法包括:
步骤201,预先获取电源频率和有效电压。
步骤202,当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率。
步骤203,根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
为了准确计算实际电压变化率对应的参考电压变化率,在本申请的优选实施例中,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他获取用于计算参考电压变化率的预设拟合公式的方式均属于本申请的保护范围。
为了控制电压能够实现PFC抗干扰控制,在本申请的优选实施例中,根据所述实际电压变化率与对应的参考电压变化率确定控制电压,具体为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他根据所述实际电压变化率与对应的参考电压变化率确定控制电压的方式均属于本申请的保护范围。
为了防止由于干扰影响或其他原因导致的电压异常使空调器损坏,在本申请的优选实施例中,所述方法还包括:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他针对电压异常进行安全管理的方式均属于本申请的保护范围。
为了保证空调器在各种应用环境中使用,在本申请的优选实施例中,所述方法还包括:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
需要说明的是,以上优选实施例的方案仅为本申请所提出的一种具体实现方案,其他保证空调器在各种应用环境中使用的方式均属于本申请的保护范围。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

1.一种空调器,其特征在于,包括:
冷媒循环回路,使冷媒在压缩机、冷凝器、膨胀阀、蒸发器、四通阀和减压器组成回路中进行循环;
压缩机,用于进行将低温低压冷媒气体压缩成高温高压冷媒气体并排至冷凝器的工作;
室内热交换器,作为冷凝器或蒸发器进行工作;
变频控制器被配置为,预先获取电源频率和有效电压;
当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;
根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
2.如权利要求1所述的空调器,其特征在于,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
3.如权利要求1所述的空调器,其特征在于,所述变频控制器具体被配置为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
4.如权利要求3所述的空调器,其特征在于,所述变频控制器还被配置为:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
5.如权利要求1所述的空调器,其特征在于,所述变频控制器还被配置为:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
6.一种空调器控制方法,其特征在于,所述方法应用于包括冷媒循环回路、压缩机、室内热交换器和变频控制器的空调器中,所述方法包括:
预先获取电源频率和有效电压;
当所述电源频率与预设电源频率相同时,根据当前采样电压与前一次采样电压的差值确定实际电压变化率;
根据所述实际电压变化率与对应的参考电压变化率确定控制电压,并根据所述控制电压进行PFC控制,所述对应的参考电压变化率是根据所述有效电压和预设拟合公式确定的。
7.如权利要求6所述的方法,其特征在于,所述预设拟合公式具体为:
dFv=Vacmax×(ax2+bx+c);
其中,dFv为参考电压变化率,Vacmax为电压幅值,x为所述当前采样电压对应的电压采样次序,a/b/c为预设参数;
所述预设参数是根据所述预设电源频率和预设电压采样频率确定的。
8.如权利要求6所述的方法,其特征在于,根据所述实际电压变化率与对应的参考电压变化率确定控制电压,具体为:
若所述实际电压变化率超出所述对应的参考电压变化率,则将前一次采样电压加上所述对应的参考电压变化率的数值作为所述控制电压,并记录所述当前采样电压为异常电压;
若所述实际电压变化率未超出所述对应的参考电压变化率,则将所述当前采样电压作为所述控制电压。
9.如权利要求8所述的方法,其特征在于,所述方法还包括:
若所述异常电压高于过压阈值且连续出现次数超过预设阈值,则确认出现过压故障;
若所述异常电压低于低压阈值且连续出现次数超过预设阈值,则确认出现电压跌落。
10.如权利要求6所述的方法,其特征在于,所述方法还包括:
当所述电源频率与预设电源频率不相同时,根据所述电源频率和所述当前采样电压进行PFC控制。
CN202010670538.9A 2020-07-13 2020-07-13 一种空调器和控制方法 Active CN113932396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010670538.9A CN113932396B (zh) 2020-07-13 2020-07-13 一种空调器和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010670538.9A CN113932396B (zh) 2020-07-13 2020-07-13 一种空调器和控制方法

Publications (2)

Publication Number Publication Date
CN113932396A true CN113932396A (zh) 2022-01-14
CN113932396B CN113932396B (zh) 2023-08-04

Family

ID=79273705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010670538.9A Active CN113932396B (zh) 2020-07-13 2020-07-13 一种空调器和控制方法

Country Status (1)

Country Link
CN (1) CN113932396B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117232098A (zh) * 2023-11-14 2023-12-15 广东精冷源建设有限公司 一种基于变频器能源控制的自动调节方法及系统

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259643A (zh) * 1999-01-07 2000-07-12 三星电子株式会社 空调器的功率因数改善装置
EP1022844A2 (en) * 1999-01-19 2000-07-26 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
JP2006288134A (ja) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd 電源装置
CN101080864A (zh) * 2004-12-15 2007-11-28 富士通将军股份有限公司 电源装置
CN101087103A (zh) * 2007-04-13 2007-12-12 珠海格力电器股份有限公司 直流电源装置、提高其功率因数及调节其输出电压的方法
KR20080047694A (ko) * 2006-11-27 2008-05-30 엘지전자 주식회사 역률 보상 기능이 구비된 공기조화기
CN201096392Y (zh) * 2007-07-13 2008-08-06 张亦翔 功率因数补偿型空调综合节能器
CN101325367A (zh) * 2007-06-14 2008-12-17 海尔集团公司 一种部分有源功率因数校正电路
CN101344300A (zh) * 2007-07-13 2009-01-14 张亦翔 功率因数补偿型空调综合节能器
CN101656467A (zh) * 2008-08-18 2010-02-24 海尔集团公司 部分有源电源功率因数校正电路
CN101741234A (zh) * 2008-11-06 2010-06-16 富士电机系统株式会社 功率因数改善电路的控制系统
CN102684470A (zh) * 2012-04-01 2012-09-19 中南大学 一种变频空调整功率因数稳定运行控制方法
CN102857087A (zh) * 2012-09-17 2013-01-02 海信(山东)空调有限公司 一种功率因数自适应控制方法
CN202818091U (zh) * 2012-09-17 2013-03-20 海信(山东)空调有限公司 一种有源功率因数校正装置
JP2014052180A (ja) * 2012-07-18 2014-03-20 Mitsubishi Electric Corp 冷凍サイクル装置
CN103780075A (zh) * 2014-01-09 2014-05-07 重庆邮电大学 一种用于功率因数校正器的数字变频控制方法
CN104218787A (zh) * 2013-05-31 2014-12-17 浙江三花股份有限公司 一种功率因数校正的控制方法及设备
JP2015080317A (ja) * 2013-10-16 2015-04-23 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
CN105071650A (zh) * 2015-08-20 2015-11-18 珠海格力电器股份有限公司 功率因数校正电路的控制方法和装置以及空调器
CN105594110A (zh) * 2013-10-16 2016-05-18 大金工业株式会社 功率转换装置
CN105656319A (zh) * 2016-02-04 2016-06-08 浙江雷亚电子有限公司 一种基于输出电路功率因数测控的逆变控制器
CN106787673A (zh) * 2016-12-20 2017-05-31 四川长虹电器股份有限公司 一种变频空调pfc控制方法
CN108521215A (zh) * 2018-05-11 2018-09-11 珠海格力电器股份有限公司 Pfc电路的控制方法及控制装置
CN109539496A (zh) * 2018-10-19 2019-03-29 青岛海尔空调器有限总公司 一种空调器自适应控制方法和空调器
CN109617388A (zh) * 2019-01-14 2019-04-12 四川虹美智能科技有限公司 一种功率因数矫正控制方法
CN110048597A (zh) * 2018-01-15 2019-07-23 株式会社村田制作所 功率因数校正电路的控制方法、控制器及系统
CN111256275A (zh) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
CN111371307A (zh) * 2020-03-18 2020-07-03 青岛海尔空调器有限总公司 变频空调器中pfc电路的控制方法与变频空调器
US20200220452A1 (en) * 2019-01-04 2020-07-09 Infineon Technologies Austria Ag Enhanced power factor correction

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259643A (zh) * 1999-01-07 2000-07-12 三星电子株式会社 空调器的功率因数改善装置
EP1022844A2 (en) * 1999-01-19 2000-07-26 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
CN101080864A (zh) * 2004-12-15 2007-11-28 富士通将军股份有限公司 电源装置
JP2006288134A (ja) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd 電源装置
KR20080047694A (ko) * 2006-11-27 2008-05-30 엘지전자 주식회사 역률 보상 기능이 구비된 공기조화기
CN101087103A (zh) * 2007-04-13 2007-12-12 珠海格力电器股份有限公司 直流电源装置、提高其功率因数及调节其输出电压的方法
CN101325367A (zh) * 2007-06-14 2008-12-17 海尔集团公司 一种部分有源功率因数校正电路
CN201096392Y (zh) * 2007-07-13 2008-08-06 张亦翔 功率因数补偿型空调综合节能器
CN101344300A (zh) * 2007-07-13 2009-01-14 张亦翔 功率因数补偿型空调综合节能器
CN101656467A (zh) * 2008-08-18 2010-02-24 海尔集团公司 部分有源电源功率因数校正电路
CN101741234A (zh) * 2008-11-06 2010-06-16 富士电机系统株式会社 功率因数改善电路的控制系统
CN102684470A (zh) * 2012-04-01 2012-09-19 中南大学 一种变频空调整功率因数稳定运行控制方法
JP2014052180A (ja) * 2012-07-18 2014-03-20 Mitsubishi Electric Corp 冷凍サイクル装置
CN102857087A (zh) * 2012-09-17 2013-01-02 海信(山东)空调有限公司 一种功率因数自适应控制方法
CN202818091U (zh) * 2012-09-17 2013-03-20 海信(山东)空调有限公司 一种有源功率因数校正装置
CN104218787A (zh) * 2013-05-31 2014-12-17 浙江三花股份有限公司 一种功率因数校正的控制方法及设备
US20160248365A1 (en) * 2013-10-16 2016-08-25 Daikin Industries, Ltd. Power converter
JP2015080317A (ja) * 2013-10-16 2015-04-23 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
CN105594110A (zh) * 2013-10-16 2016-05-18 大金工业株式会社 功率转换装置
CN103780075A (zh) * 2014-01-09 2014-05-07 重庆邮电大学 一种用于功率因数校正器的数字变频控制方法
CN105071650A (zh) * 2015-08-20 2015-11-18 珠海格力电器股份有限公司 功率因数校正电路的控制方法和装置以及空调器
CN105656319A (zh) * 2016-02-04 2016-06-08 浙江雷亚电子有限公司 一种基于输出电路功率因数测控的逆变控制器
CN106787673A (zh) * 2016-12-20 2017-05-31 四川长虹电器股份有限公司 一种变频空调pfc控制方法
CN110048597A (zh) * 2018-01-15 2019-07-23 株式会社村田制作所 功率因数校正电路的控制方法、控制器及系统
CN108521215A (zh) * 2018-05-11 2018-09-11 珠海格力电器股份有限公司 Pfc电路的控制方法及控制装置
CN109539496A (zh) * 2018-10-19 2019-03-29 青岛海尔空调器有限总公司 一种空调器自适应控制方法和空调器
CN111256275A (zh) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
US20200220452A1 (en) * 2019-01-04 2020-07-09 Infineon Technologies Austria Ag Enhanced power factor correction
CN109617388A (zh) * 2019-01-14 2019-04-12 四川虹美智能科技有限公司 一种功率因数矫正控制方法
CN111371307A (zh) * 2020-03-18 2020-07-03 青岛海尔空调器有限总公司 变频空调器中pfc电路的控制方法与变频空调器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙丰涛;杨帆;: "单相大功率无桥有源PFC在变频空调中的应用", 日用电器, no. 07 *
徐政;孙健;陈锐坚;李友春;: "变频空调中数字式PFC电路设计与应用", 电力电子技术, no. 05 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117232098A (zh) * 2023-11-14 2023-12-15 广东精冷源建设有限公司 一种基于变频器能源控制的自动调节方法及系统
CN117232098B (zh) * 2023-11-14 2024-02-06 广东精冷源建设有限公司 一种基于变频器能源控制的自动调节方法及系统

Also Published As

Publication number Publication date
CN113932396B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN108731322B (zh) 一种超低温热泵控制系统
CN107477933A (zh) 多联式空调的控制方法、系统及计算机可读存储介质
EP3643977A1 (en) Refrigeration cycle device
JP2020091079A (ja) 空気調和システム
CN105402853A (zh) 电子膨胀阀的控制方法及装置
CN113932396A (zh) 一种空调器和控制方法
CN109855251A (zh) 空调的排气过热度修正方法、装置、计算机产品及空调
CN113328661A (zh) 一种变频空调器及一种直流母线电压的控制电路和方法
WO2023005594A1 (zh) 空调器和用于空调器的pfc电路的控制方法
CN114857742A (zh) 空调器和供电电路的故障控制方法
WO2022083055A1 (zh) 变频系统
CN113266887A (zh) 空调室外机及空调器
CN111578464B (zh) 一种空调器
WO2023124012A1 (zh) 压缩机控制方法、控制装置及空调器
CN113124501A (zh) 空调室外机及空调器
CN115200185B (zh) 空调器及空调器的pfc电路控制方法
CN213402839U (zh) 一种硅桥并联电路及空调器
CN112910231B (zh) 空调系统
CN219918714U (zh) 功率因数校正电路及空调器
US11644226B2 (en) Variable speed drive input current control
CN216215870U (zh) 变频器电解电容串联均压电路、变频器及空调器
CN110360719B (zh) 一种中央空调紧急控制方法
JP2020020557A (ja) 空気調和機
CN115076938B (zh) 室内外机通信电路、空调器和空调器的通信控制方法
CN213542795U (zh) 一种室内机待机功耗控制电路和空调器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.1, Hisense Road, Nancun Town, Pingdu City, Qingdao City, Shandong Province 266700

Applicant after: Hisense Air Conditioning Co.,Ltd.

Address before: No.1, Hisense Road, Nancun Town, Pingdu City, Qingdao City, Shandong Province 266700

Applicant before: HISENSE (SHANDONG) AIR-CONDITIONING Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant