CN113921652B - 一种iii-v族半导体超晶格量子点的制备方法 - Google Patents

一种iii-v族半导体超晶格量子点的制备方法 Download PDF

Info

Publication number
CN113921652B
CN113921652B CN202110966566.XA CN202110966566A CN113921652B CN 113921652 B CN113921652 B CN 113921652B CN 202110966566 A CN202110966566 A CN 202110966566A CN 113921652 B CN113921652 B CN 113921652B
Authority
CN
China
Prior art keywords
superlattice
group
iii
substrate
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110966566.XA
Other languages
English (en)
Other versions
CN113921652A (zh
Inventor
赵鸿滨
屠海令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN202110966566.XA priority Critical patent/CN113921652B/zh
Publication of CN113921652A publication Critical patent/CN113921652A/zh
Application granted granted Critical
Publication of CN113921652B publication Critical patent/CN113921652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

一种III‑V族半导体超晶格量子点的制备方法,包括:(1)通过分子束外延法(MBE)在衬底表面外延生长缓冲层,在所述缓冲层表面生长至少一层的超晶格外延层;(2)在超晶格外延层表面沉积III族金属液滴,通过升高衬底温度,实现金属液滴向下刻蚀;(3)通入V族分子束流后,冷却至室温,获得超晶格量子点。本发明方式灵活、简单,通过控制金属液滴尺寸可实现对量子点尺寸分布的控制,且改变金属液滴种类及所刻蚀的超晶格材料体系,可获得不同种类的超晶格量子点材料。

Description

一种III-V族半导体超晶格量子点的制备方法
技术领域
本发明涉及半导体纳米光电材料生长领域,具体涉及一种III-V族半导体超晶格量子点的制备方法。
背景技术
近年来,半导体材料科学主要的两个发展方向是不断探索扩展新的半导体材料以及逐步从高维到低维研究已知的半导体材料体系,其中量子点和超晶格材料是其中的主要研究内容之一。半导体材料的量子点是由少量原子组成的准零维纳米量子结构,载流子在量子点的三个维度上运动受尺寸效应限制,量子效应异常显著。因此这种特殊的能级结构,使得量子点表现出特有的光电特性,对于发展新型的光电子器件具有重要意义。半导体超晶格是将两种不同组分或不同掺杂的半导体交替生长在衬底上,其概念由Esaki和Tsu于1969年首次提出,世界各国学者针对超晶格开展了大量的理论和实验工作,目前半导体超晶格已经成为发展光电子学和微电子学器件的重要材料。因此将半导体量子点与超晶格相结合,对于发展半导体材料科学,推动半导体光电子器件应用将具有重要意义。
目前在分子束外延(MBE)系统中,外延生长高质量的III-V族半导体材料晶格材料较为成熟,包括InAs/GaSb、GaAs/AlGaAs和GaAs/InGaAs等。在量子点生长方面,主要有电子束光刻(EBL)、聚焦离子束光刻(FIB)、深紫外光刻(DUVL)以及通过Stranski-Krastanow(SK)生长模式外延自组织生长的量子点。然而上述方式无法生长具有超晶格结构的量子点。
发明内容
针对上述已有技术存在的不足,本发明提供一种III-V族半导体超晶格量子点的制备方法。
本发明是通过以下技术方案实现的。
一种III-V族半导体超晶格量子点的制备方法,其特征在于,所述方法包括:
(1)通过分子束外延法(MBE)在衬底表面外延生长缓冲层,在所述缓冲层表面生长超晶格外延层;
(2)在所述超晶格外延层表面沉积III族金属液滴,通过升高衬底温度,实现金属液滴向下刻蚀;
(3)通入V族分子束流后,冷却至室温,获得超晶格量子点。
进一步地,所述步骤(1)衬底和缓冲层均为III-V族半导体材料中的一种。
进一步地,所述步骤(1)在衬底表面外延生长缓冲层:是将衬底在600℃~650℃条件下去除表面氧化物后,生长至厚度为0.1μm~0.5μm的缓冲层,终止生长,将衬底降温至450℃~470℃。
进一步地,所述步骤(1)超晶格外延层的生长条件为:生长温度为450℃~500℃、背景真空1×10-4Torr~8×10-4Torr(Torr,拖)。
进一步地,所述超晶格外延层包括多组层叠的第一超晶格层和第二超晶格层,所述第一超晶格层包括至少两层由V族元素和III族元素组成的混合层,所述第二超晶格层包括至少两层由V族元素中的至少一种和III族元素中的至少一种组成的混合层。
进一步地,所述步骤(2)在超晶格外延层表面沉积III族金属液滴:是将衬底温度调至350℃~400℃,通入III族金属束流,控制III族金属束流通入时间为10s~20s;升高衬底温度至500℃~580℃,实现金属液滴向下刻蚀。
进一步地,所述步骤(2)的III族金属液滴为Ga、In、Al中的一种。
进一步地,所述步骤(3)通入一种V族元素分子束流或者交替通入两种不同的V族元素分子束流。
本发明的方法,通过改变金属液滴尺寸、种类及所刻蚀超晶格材料,制备不同种类的超晶格量子点,其中,通过改变沉积金属液滴的束流量、时间及沉积温度可以实现对超晶格量子点尺寸及分布的控制;改变所刻蚀超晶格材料,可以获得不同种类的超晶格量子点。
本发明的有益技术效果,本发明提供了一种利用金属液滴制备III-V族半导体超晶格量子点的方法,方式灵活、简单,通过控制金属液滴尺寸可实现对量子点尺寸分布的控制,且改变金属液滴种类及所刻蚀的超晶格材料体系,可获得不同种类的超晶格量子点材料。
附图说明
图1为本发明的工艺流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
图1中的(1)是在GaAs(100)衬底上生长缓冲层、超晶格外延层结构,(2)是在超晶格上生长Ga液滴,(3)是生长的超晶格量子点的切面图。
实施例1
本发明所述的利用金属液滴制备III-V族超晶格量子点,包括以下步骤:
步骤一:缓冲层外延生长,将半绝缘的GaAs(100)衬底(图1中1)传送进MBE生长腔室,600℃条件下除去表面氧化物;生长0.3μm GaAs缓冲层(图1中2);终止生长,将衬底温度降至470℃;
步骤二:超晶格外延生长,在470℃、1×10-4Torr条件下向腔室通入Sb2分子束流,开启Ga分子束流,生长2ML(ML:monolayer,单层)的GaSb层(第一超晶格层);关闭Sb2和Ga分子束流;向腔室通入As2分子束流,开启Ga分子束流,生长2ML的GaAs层(即第二超晶格层);关闭As2和Ga分子束流;如此交替生长10个周期(即10组)的GaAs/GaSb超晶格外延层(图1中3);
步骤三:关闭Sb2、As2束流阀,逐渐降低衬底温度至400℃,开启Ga束流10s,在GaAs/GaSb超晶格外延层表面形成(沉积)Ga液滴(如图1中4);
步骤四:衬底温度升高至500℃,开始Ga液滴向下刻蚀过程,关闭As2分子束流阀,开启Sb2分子束流阀5s后;开启As2分子束流阀,关闭Sb2分子束流阀7s,重复该步骤五次;
步骤五:关闭V族分子束流阀(即As2束流阀、Sb2束流阀),待样品冷却至室温后取出,形成GaAs/GaSb的超晶格量子点(如图1中5的拱形结构)。
实施例2
本发明所述的利用金属液滴制备III-V族超晶格量子点,包括以下步骤:
步骤一:缓冲层外延生长,将半绝缘的GaAs(100)衬底(图1中1)传送进MBE生长腔室,600℃条件下除去表面氧化物;生长0.4μm GaAs缓冲层(图1中2);终止生长,将衬底温度降至450℃;
步骤二:超晶格外延生长,在450℃、3×10-4Torr条件下向腔室通入As2分子束流,开启Ga分子束流,生长2ML的GaAs层(即第一超晶格层);关闭Ga和As2分子束流;同时开启Al分子束流、开启Ga分子束流、As2分子束流,生长2ML的AlGaAs层(即第二超晶格层);如此交替生长10个周期(即10组)的GaAs/AlGaAs超晶格外延层(图1中3);
步骤三:关闭As2分子束流阀,逐渐降低衬底温度至400℃,开启Ga分子束流10s,在GaAs/AlGaAs超晶格外延层表面形成Ga液滴(如图1中4);
步骤四:衬底温度升高至520℃,开始Ga液滴向下刻蚀过程,关闭As2分子束流阀,开启Sb2分子束流阀5s后;开启As2分子束流阀,关闭Sb2分子束流阀7s,重复该步骤五次;
步骤五:关闭As2分子束流阀及Sb2分子束流阀,待样品冷却至室温后取出,形成GaAs/AlGaAs超晶格量子点(如图1中5的拱形结构)。
实施例3
本发明所述的利用金属液滴制备III-V族超晶格量子点,包括以下步骤:
步骤一:缓冲层外延生长,将半绝缘的GaSb(100)衬底(图1中1)传送进MBE生长腔室,620℃条件下除去表面氧化物;生长0.5μm GaSb缓冲层(图1中2);终止生长,将衬底温度降至450℃;
步骤二:超晶格外延生长,在500℃、3×10-4Torr条件下向腔室通入As2分子束流,此后开启In分子束流,生长3ML的InAs层(即第一超晶格层);关闭In分子束流,关闭As2分子束流,开启Sb2分子束流,生长4ML的GaSb层(即第二超晶格层);关闭Ga分子束流,关闭Sb2分子束流;如此交替生长20个周期(即20组)的InAs/GaSb超晶格外延层(图1中3);
步骤三:关闭V族分子束流阀,逐渐降低衬底温度至350℃,开启Ga分子束流10s,在InAs/GaSb超晶格外延层表面形成Ga液滴(如图1中4);
步骤四:衬底温度升高至530℃,开始Ga液滴向下刻蚀过程,关闭As2束流阀,开启Sb2束流阀5s后;开启As2束流阀,关闭Sb2束流阀7s,重复该步骤五次;
步骤五:关闭As2束流阀及Sb2束流阀,待样品冷却至室温后取出,形成InAs/GaSb超晶格量子点(如图1中5的拱形结构)。
实施例4
步骤一:缓冲层外延生长,将半绝缘的GaAs(100)衬底(图1中1)传送进MBE生长腔室,650℃条件下除去表面氧化物;生长0.5μm GaAs缓冲层(图1中2);终止生长,将衬底温度降至450℃;
步骤二:超晶格外延生长,在450℃、8×10-4Torr条件下向腔室通入As2分子束流,开启Ga分子束流,生长2ML的GaAs层(即第一超晶格层);关闭Ga分子束流,关闭As2分子束流;开启As2分子束流,开启Al分子束流,生长2ML的AlAs层(即第二超晶格层);如此交替生长10个周期(即20组)的GaAs/AlAs超晶格外延层(图1中3);
步骤三:关闭As2分子束流阀,逐渐降低衬底温度至350℃,开启In分子束流20s,在GaAs/AlAs超晶格外延层表面形成In液滴(如图1中4);
步骤四:衬底温度升高至520℃,开始In液滴向下刻蚀过程;开启As2分子束流阀,通入1min;
步骤五:关闭V族束流阀(即As2分子束流),待样品冷却至室温后取出,形成InGaAs/InAlAs的超晶格量子点(如图1中5的拱形结构)。
以上所述的仅是本发明的较佳实施例,并不局限发明。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,还可以做出其它等同改进,均可以实现本发明的目的,都应视为本发明的保护范围。

Claims (6)

1.一种III-V族半导体超晶格量子点的制备方法,其特征在于,所述方法包括:
(1)通过分子束外延法在衬底表面外延生长缓冲层,在所述缓冲层表面生长超晶格外延层;
(2)在所述超晶格外延层表面沉积III族金属液滴,通过升高衬底温度,实现金属液滴向下刻蚀;所述III族金属液滴为Ga、In中的一种;所述在超晶格外延层表面沉积III族金属液滴:是将衬底温度调至350℃~400℃,通入III族金属束流,控制III族金属束流通入时间为10s~20s;升高衬底温度至500℃~580℃,实现金属液滴向下刻蚀;
(3)通入V族分子束流后,冷却至室温,获得超晶格量子点;其中,采用的III族金属液滴为Ga液滴时,通入的V族分子束流为Sb2束流和As2束流;采用的III族金属液滴为In液滴时,通入的V族分子束流为As2束流。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)衬底和缓冲层均为III-V族半导体材料中的一种。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)在衬底表面外延生长缓冲层:是将衬底在600℃~650℃条件下去除表面氧化物后,生长至厚度为0.1μm~0.5μm的缓冲层,终止生长,将衬底降温至450℃~470℃。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)超晶格外延层的生长条件为:生长温度为450℃~500℃、背景真空1×10-4Torr~8×10-4Torr。
5.根据权利要求1所述的制备方法,其特征在于,所述超晶格外延层包括多组层叠的第一超晶格层和第二超晶格层,所述第一超晶格层包括至少两层由V族元素和III族元素组成的混合层,所述第二超晶格层包括至少两层由V族元素中的至少一种和III族元素中的至少一种组成的混合层。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)通入一种V族元素分子束流或者交替通入两种不同的V族元素分子束流。
CN202110966566.XA 2021-08-23 2021-08-23 一种iii-v族半导体超晶格量子点的制备方法 Active CN113921652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110966566.XA CN113921652B (zh) 2021-08-23 2021-08-23 一种iii-v族半导体超晶格量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110966566.XA CN113921652B (zh) 2021-08-23 2021-08-23 一种iii-v族半导体超晶格量子点的制备方法

Publications (2)

Publication Number Publication Date
CN113921652A CN113921652A (zh) 2022-01-11
CN113921652B true CN113921652B (zh) 2023-08-15

Family

ID=79233161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110966566.XA Active CN113921652B (zh) 2021-08-23 2021-08-23 一种iii-v族半导体超晶格量子点的制备方法

Country Status (1)

Country Link
CN (1) CN113921652B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315654A (ja) * 1999-04-30 2000-11-14 Inst Of Physical & Chemical Res 位置制御された液滴エピタキシーによる窒化物半導体の量子ドットの形成方法、量子コンピュータにおける量子ビット素子構造および量子相関ゲート素子構造
JP2009044052A (ja) * 2007-08-10 2009-02-26 Univ Nagoya 量子ドット及びその製造方法
CN101663413A (zh) * 2007-02-22 2010-03-03 摩赛科结晶公司 第三族金属氮化物及其制备
CN103820848A (zh) * 2014-02-27 2014-05-28 华南师范大学 一种在InP衬底上外延生长II型GaSb/InGaAs量子点的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315654A (ja) * 1999-04-30 2000-11-14 Inst Of Physical & Chemical Res 位置制御された液滴エピタキシーによる窒化物半導体の量子ドットの形成方法、量子コンピュータにおける量子ビット素子構造および量子相関ゲート素子構造
CN101663413A (zh) * 2007-02-22 2010-03-03 摩赛科结晶公司 第三族金属氮化物及其制备
JP2009044052A (ja) * 2007-08-10 2009-02-26 Univ Nagoya 量子ドット及びその製造方法
CN103820848A (zh) * 2014-02-27 2014-05-28 华南师范大学 一种在InP衬底上外延生长II型GaSb/InGaAs量子点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Á. Nemcsics."Composition of the ``GaAs'' quantum dot, grown by droplet epitaxy".《Superlattices and Microstructures》.2010,全文. *

Also Published As

Publication number Publication date
CN113921652A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US11450528B2 (en) Process for growing nanowires or nanopyramids on graphitic substrates
US10861696B2 (en) Compositions comprising epitaxial nanowires on graphene substrates and methods of making thereof
KR102025548B1 (ko) 그래핀 상부 전극 및 하부 전극을 갖는 나노와이어 장치 및 이러한 장치의 제조 방법
CN104685637A (zh) 太阳能电池
EP1525339A2 (en) Nanostructures and methods for manufacturing the same
US6242326B1 (en) Method for fabricating compound semiconductor substrate having quantum dot array structure
WO2021212597A1 (zh) 一种四元系张应变半导体激光外延片及其制备方法
CN113921652B (zh) 一种iii-v族半导体超晶格量子点的制备方法
CN115259075B (zh) 一种采用液滴刻蚀外延生长技术制备周期性阵列量子点的方法
JP4814562B2 (ja) ナノ構造の作製方法
KR101938010B1 (ko) 다이오드의 제조방법
KR102665449B1 (ko) 화합물 반도체 나노로드의 제조방법, 이를 이용하여 제조된 화합물 반도체 나노로드 및 화합물 반도체 나노로드 어레이
JP3987922B2 (ja) ナノ構造の選択的形成方法
JP6232611B2 (ja) 発光素子およびその製造方法
Dhungana et al. Controlling nanowire nucleation for integration on silicon
CN118854448A (zh) 生长ⅲ-ⅴ族分枝纳米线的方法及ⅲ-ⅴ族分枝纳米线
JP2004281954A (ja) 量子ドットの作製方法
JP4041887B2 (ja) アンチモン系量子ドットの形成方法
Krupanidhi III–V Compound Semiconductor Quantum Dots for Nanoeletronics
Somaschini et al. Control of the lateral growth morphology in GaAs Droplet Epitaxy
JP2006108440A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant