CN113913935A - 一种T型BiFeO3铁电薄膜材料的制备方法 - Google Patents

一种T型BiFeO3铁电薄膜材料的制备方法 Download PDF

Info

Publication number
CN113913935A
CN113913935A CN202111251504.7A CN202111251504A CN113913935A CN 113913935 A CN113913935 A CN 113913935A CN 202111251504 A CN202111251504 A CN 202111251504A CN 113913935 A CN113913935 A CN 113913935A
Authority
CN
China
Prior art keywords
bifeo
sputtering
film
shaped
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111251504.7A
Other languages
English (en)
Other versions
CN113913935B (zh
Inventor
宋建民
周斌
刘炜
刘紫源
崔浩楠
曾浩宇
陈笑影
安纪华
穆子芊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Agricultural University
Original Assignee
Hebei Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Agricultural University filed Critical Hebei Agricultural University
Priority to CN202111251504.7A priority Critical patent/CN113913935B/zh
Publication of CN113913935A publication Critical patent/CN113913935A/zh
Application granted granted Critical
Publication of CN113913935B publication Critical patent/CN113913935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种T型BiFeO3铁电薄膜材料的制备方法,通过磁控溅射的方法在LaAlO3(001)基底上形成La0.5Sr0.5CoO3薄膜底电极和T型BiFeO3薄膜,即得到T型BiFeO3铁电薄膜材料。该方法能够在底电极/基片上制备出一层T型BiFeO3薄膜,该T‑BiFeO3铁电薄膜具有外延结构,体现出极佳的保持特性和抗疲劳特性,具有广泛的应用前景。

Description

一种T型BiFeO3铁电薄膜材料的制备方法
技术领域
本发明涉及铁电材料制备领域,具体涉及一种T型BiFeO3铁电薄膜材料的制备方法。
背景技术
氧化物功能薄膜材料因具有丰富的电学、光学、热学、力学、磁学等性质,可被广泛应用于微电子、信息等领域。外延的四方相氧化物功能薄膜在信息存储领域的应用尤为突出。
在众多的氧化物功能薄膜材料中,铁酸铋BiFeO3(BFO)是一种ABO3型钙钛矿铁电材料,具有大的剩余极化强度(100μC/cm2)和较小的禁带宽度(2.7eV),可为光电存储器提供更大的开路电压和短路电流,被普遍认为是新一代光电存储技术的首选材料。BFO为R3c空间群,室温下呈现出三方相(R相),在不同基底集成的异质结中还表现出多种单斜相(MA、MB、MC)。理论和实验研究发现,与单斜相比较,四方相结构的铁酸铋(T-BFO)具有更大的剩余极化强度(150μC/cm2)和较小的介电常数。剩余极化强度大意味着高存储密度,较小的介电常数则能减小存储单元的尺寸,进而提高光电器件的存储密度。T-BFO薄膜的相关实验研究也表明,具有外延结构的T-BFO呈现出极为优异的性能,且可通过调控基底和薄膜间的应力实现T-BFO制备。近年来,虽然人们通过变温、掺杂和选取合适基片等方法制备出了T-BFO薄膜,但是,外延T-BFO薄膜光电存储性能的实现需要底电极支撑。至今,鲜有报道涉及在底电极/基片模板上构架出外延T-BFO薄膜。例如,发明专利申请CN 103540904 A公开了一种制备T相BiFeO3薄膜的方法,以蓝宝石为衬底,将BiFeO3靶材通过磁控溅射沉积在衬底上,从而得到T相BiFeO3薄膜,但是该材料不具有底电极,应用受到限制。因此,如何在底电极/基片模板上构架出外延T-BFO薄膜,提高外延薄膜材料的存储性能是薄膜器件领域目前面临的广泛问题。
在制备外延T-BiFeO3铁电功能薄膜的过程中,金属Pt、Au、Ag等和钙钛矿型氧化物SrRuO3、LaNiO3、La0.7Sr0.3MnO3等常被用作铁电薄膜的底电极材料。由于晶格失配较大,在金属电极上制备的BFO薄膜一般为多晶R相。虽然钙钛矿结构的氧化物电极与BFO具有较好的晶格匹配,但制备出的BFO薄膜多为晶格畸变的T相,这为外延T-BiFeO3铁电功能薄膜的制备造成了很大的困扰。
发明内容
本发明的目的是提供一种T型BiFeO3铁电薄膜材料的制备方法,该方法能够在底电极/基片上制备出一层T型BiFeO3薄膜,该T-BiFeO3铁电薄膜具有外延结构,体现出极佳的保持特性和抗疲劳特性,具有广泛的应用前景。
为了实现上述目的,本发明采取如下技术方案:
一种T型BiFeO3铁电薄膜材料的制备方法,包括如下步骤:
S1:制备La0.5Sr0.5CoO3靶材和BiFeO3靶材并安装于磁控溅射设备中,将LaAlO3(001)基底净化并置于磁控溅射设备的适当位置;
S2:在LaAlO3(001)基底上磁控溅射生长La0.5Sr0.5CoO3薄膜底电极,溅射条件为混合氩气和氧气比例为体积比2~4:1,溅射功率密度为60~80W/cm2,基底温度为600~750℃,溅射时间20~50min;
S3:在La0.5Sr0.5CoO3薄膜底电极上磁控溅射生长T型BiFeO3薄膜,溅射条件为纯氩气氛围,溅射功率密度为50~80W/cm2,基底温度为600~750℃,溅射时间1~3h,即得到T型BiFeO3铁电薄膜材料。
优选的,所述步骤S1中,利用超声波清洗器将LaAlO3(001)先后在丙酮和无水乙醇中清洗,高纯氮气吹干,然后用银胶粘于托盘正中央,放入磁控溅射设备的样品台上。
优选的,所述步骤S2中,本底真空度为10-5~10-4Pa,靶衬间距为3~6cm,溅射过程中压强为1~4Pa,所得La0.5Sr0.5CoO3薄膜底电极的厚度为10nm~200nm。
优选的,在所述步骤S3中,本底真空度为10-5~10-4Pa,靶衬间距为3~
6cm,溅射过程中压强为1~4Pa,所得T型BiFeO3薄膜的厚度为100nm~
1um。
优选的,所述步骤S2和步骤S3中,所述磁控溅射为45度斜向溅射。
本发明在LaAlO3(简记为LAO)基底上首先通过磁控溅射沉积一层La0.5Sr0.5CoO3(简记为LSCO)底电极薄膜,然后再次通过磁控溅射在底电极薄膜上又制备出了T型BiFeO3铁电薄膜,该T-BiFeO3铁电薄膜具有外延结构,体现出极佳的保持特性和抗疲劳特性,因底电极和外延T型BiFeO3共存,所以可以更好地被应用在铁电存储、铁电光伏存储领域。本方法中形成的La0.5Sr0.5CoO3底电极薄膜,能够与BiFeO3更好地进行晶格匹配,从而克服以往用贵金属做底电极时由于晶格失配而导致的BiFeO3薄膜的多晶R相结构,并且还显著降低了所用底电极的材料成本。La0.5Sr0.5CoO3底电极薄膜位于基底与BiFeO3之间,可以有效改变以往基底与BiFeO3直接接触时的界面应力,从而在底电极上顺利生成具有外延结构的T-BiFeO3薄膜,有力促进了材料性能的提升和应用领域的延伸。
附图说明
图1是LSCO/LAO异质结的X射线衍射图谱;
图2是电极/T-BFO/LSCO/LAO异质结的X射线衍射图谱;
图3是电极/T-BFO/LSCO/LAO异质结的phi扫描图谱;
图4是Pt电极/外延T-BiFeO3薄膜/La0.5Sr0.5CoO3底电极/LaAlO3基底异质结的基本结构示意图。
图5是电极/T-BFO/LSCO/LAO电容器的电滞回线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明。
实施例1T型BiFeO3铁电薄膜材料的制备例1:
靶材准备及LaAlO3基片清洗:选用La0.5Sr0.5CoO3靶材和BiFeO3靶材,安装于磁控溅射设备中。利用超声波清洗器将LaAlO3(001)先后在丙酮和无水乙醇中清洗10min,高纯氮气吹干;用银胶粘于托盘正中央,放入磁控溅射设备的样品台上。
磁控溅射生长La0.5Sr0.5CoO3薄膜底电极:本底真空度为4×10-5Pa;靶衬间距为5.5cm;混合氩气和氧气比例为75ml/min:25ml/min;溅射功率密度为70W/cm2;溅射过程中压强为1.4Pa;基底温度为700℃;45度斜向溅射时间为30min;厚度为10nm~200nm。
磁控溅射生长外延T-BiFeO3薄膜:本底真空度为4×10-5Pa;靶衬间距为5.5cm;纯氩气流量为50ml/min;溅射功率密度为70W/cm2;溅射过程中压强为2Pa;基底温度为700℃;溅射时间为2h;厚度为100nm~1um;然后得到T型BiFeO3铁电薄膜材料。
将该材料进行相应的X射线衍射测试,结果如图1至图4所示。
图1为LSCO/LAO异质结的X射线衍射图谱,由图1可见,LSCO/LAO异质结出现了LSCO衍射峰,表明是单相结构。LSCO仅含有(001)、(002)两个衍射峰,说明生长出的LSCO底电极为外延结构。
图2为电极/T-BFO/LSCO/LAO异质结的X射线衍射图谱,由图2可见,电极/T-BFO/LSCO/LAO异质结出现了LSCO衍射峰,表明是单相结构。T-BFO仅含有(001)、(002)两个衍射峰,说明在实验中生长出了T型BiFeO3薄膜,且为外延结构。同时,高的峰值也表明该T-BFO外延铁电薄膜有着高的结晶质量。
图3为电极/T-BFO/LSCO/LAO异质结的phi扫描图谱,由图3可见,样品出现了清晰且间隔均匀90°的四条衍射峰,证明了生长出的T-BFO薄膜为外延结构。
图4为外延T-BiFeO3薄膜/La0.5Sr0.5CoO3底电极/LaAlO3基底异质结的基本结构示意图,该图表面在LaAlO3基底上沉积形成La0.5Sr0.5CoO3底电极薄膜,在La0.5Sr0.5CoO3底电极薄膜上进一步沉积形成外延结构的T-BiFeO3薄膜,从而整体形成了T型BiFeO3铁电薄膜材料,从而克服了以往无法在底电极上形成外延结构的T型BiFeO3薄膜的不足。
实施例2T型BiFeO3铁电薄膜材料的制备例2:
靶材准备及LaAlO3基片清洗:选用La0.5Sr0.5CoO3靶材和BiFeO3靶材,安装于磁控溅射设备中。利用超声波清洗器将LaAlO3(001)先后在丙酮和无水乙醇中清洗10min,高纯氮气吹干;用银胶粘于托盘正中央,放入磁控溅射设备的样品台上。
磁控溅射生长La0.5Sr0.5CoO3薄膜底电极:本底真空度为1×10-5Pa;靶衬间距为6cm;混合氩气和氧气比例为80ml/min:20ml/min;溅射功率密度为80W/cm2;溅射过程中压强为1Pa;基底温度为600℃;45度斜向溅射时间为20min;厚度为10nm~200nm。
磁控溅射生长外延T-BiFeO3薄膜:本底真空度为1×10-5Pa;靶衬间距为6cm;纯氩气流量为50ml/min;溅射功率密度为80W/cm2;溅射过程中压强为1Pa;基底温度为600℃;溅射时间为1h;厚度为100nm~1um;然后得到T型BiFeO3铁电薄膜材料。
将该材料进行相应的X射线衍射测试,结果与实施例1基本一致。
实施例3T型BiFeO3铁电薄膜材料的制备例3:
靶材准备及LaAlO3基片清洗:选用La0.5Sr0.5CoO3靶材和BiFeO3靶材,安装于磁控溅射设备中。利用超声波清洗器将LaAlO3(001)先后在丙酮和无水乙醇中清洗10min,高纯氮气吹干;用银胶粘于托盘正中央,放入磁控溅射设备的样品台上。
磁控溅射生长La0.5Sr0.5CoO3薄膜底电极:本底真空度为1×10-4Pa;靶衬间距为3cm;混合氩气和氧气比例为67ml/min:33ml/min;溅射功率密度为50W/cm2;溅射过程中压强为4Pa;基底温度为750℃;45度斜向溅射时间为50min;厚度为10nm~200nm。
磁控溅射生长外延T-BiFeO3薄膜:本底真空度为1×10-4Pa;靶衬间距为3cm;纯氩气流量为50ml/min;溅射功率密度为50W/cm2;溅射过程中压强为2Pa;基底温度为750℃;溅射时间为3h;厚度为100nm~1um;然后得到T型BiFeO3铁电薄膜材料。
将该材料进行相应的X射线衍射测试,结果与实施例1基本一致。
实施例4实施例1中所制备的T型BiFeO3铁电薄膜材料的性能测验
将实施例1所制备的T型BiFeO3铁电薄膜材料进行性能测验,测试电滞回线,结果如图5所示。由图5中电极/T-BFO/LSCO/LAO异质结的电滞回线中可以看出,电滞回线呈现出良好的饱和趋势,并且获得了很高的剩余极化强度,其值为68.5μC/cm2,无明显漏电流,表明T型BiFeO3外延铁电薄膜具有优异的铁电性能。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (5)

1.一种T型BiFeO3铁电薄膜材料的制备方法,其特征在于包括如下步骤:
S1:制备La0.5Sr0.5CoO3靶材和BiFeO3靶材并安装于磁控溅射设备中,将LaAlO3(001)基底净化并置于磁控溅射设备中;
S2:在LaAlO3(001)基底上磁控溅射生长La0.5Sr0.5CoO3薄膜底电极,溅射条件为混合氩气和氧气体积比为2~4:1,溅射功率密度为60~80W/cm2,基底温度为600~750℃,溅射时间20~50min;
S3:在La0.5Sr0.5CoO3薄膜底电极上磁控溅射生长T型BiFeO3薄膜,溅射条件为纯氩气氛围,溅射功率密度为50~80W/cm2,基底温度为600~750℃,溅射时间1~3h,即得到T型BiFeO3铁电薄膜材料。
2.如权利要求1所述的T型BiFeO3铁电薄膜材料的制备方法,其特征在于,所述步骤S1中,利用超声波清洗器将LaAlO3(001)先后在丙酮和无水乙醇中清洗,高纯氮气吹干,然后用银胶粘于托盘正中央,放入磁控溅射设备的样品台上。
3.如权利要求1所述的T型BiFeO3铁电薄膜材料的制备方法,其特征在于,所述步骤S2中,本底真空度为10-5~10-4Pa,靶衬间距为3~6cm,溅射过程中压强为1~4Pa,所得La0.5Sr0.5CoO3薄膜底电极的厚度为10nm~200nm。
4.如权利要求1所述的T型BiFeO3铁电薄膜材料的制备方法,其特征在于,在所述步骤S3中,本底真空度为10-5~10-4Pa,靶衬间距为3~6cm,溅射过程中压强为1~4Pa,所得T型BiFeO3薄膜的厚度为100nm~1um。
5.如权利要求1所述的T型BiFeO3铁电薄膜材料的制备方法,其特征在于,所述步骤S2和步骤S3中,所述磁控溅射为45度斜向溅射。
CN202111251504.7A 2021-10-26 2021-10-26 一种T型BiFeO3铁电薄膜材料的制备方法 Active CN113913935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111251504.7A CN113913935B (zh) 2021-10-26 2021-10-26 一种T型BiFeO3铁电薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111251504.7A CN113913935B (zh) 2021-10-26 2021-10-26 一种T型BiFeO3铁电薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN113913935A true CN113913935A (zh) 2022-01-11
CN113913935B CN113913935B (zh) 2023-11-21

Family

ID=79242953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111251504.7A Active CN113913935B (zh) 2021-10-26 2021-10-26 一种T型BiFeO3铁电薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN113913935B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN106835052A (zh) * 2017-04-16 2017-06-13 北京工业大学 利用射频磁控溅射工艺制备BiFeO3薄膜阻变存储器的方法
CN109161847A (zh) * 2018-08-09 2019-01-08 华南师范大学 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN110289352A (zh) * 2019-05-24 2019-09-27 华南师范大学 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN106835052A (zh) * 2017-04-16 2017-06-13 北京工业大学 利用射频磁控溅射工艺制备BiFeO3薄膜阻变存储器的方法
CN109161847A (zh) * 2018-08-09 2019-01-08 华南师范大学 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN110289352A (zh) * 2019-05-24 2019-09-27 华南师范大学 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAJ MOHAN M M ET AL.: "Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films", 《,AMERICAN INSTITUTE OF PHYSICS》, vol. 1942, pages 1 *

Also Published As

Publication number Publication date
CN113913935B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN105762197B (zh) 基于铌镁酸铅钛酸铅单晶的半导体铁电场效应异质结构及其制备方法和应用
CN109346400A (zh) 一种高质量Ga2O3薄膜及其异质外延制备方法
CN101826549B (zh) 半导体异质结构、其制备方法及半导体装置
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN106129243A (zh) 一种氮化镓基铁酸铋铁电薄膜及其制备方法
CN103346255A (zh) 一种异质结、铁电隧道结及其制备方法和应用
Karimoto et al. Electron-doped infinite-layer thin films with TC over 40 K grown on DyScO 3 substrates
Wang et al. Preparation of highly (1 0 0)-oriented LaNiO3 nanocrystalline films by metalorganic chemical liquid deposition
Molaei et al. Thin film epitaxy and near bulk semiconductor to metal transition in VO2/NiO/YSZ/Si (001) heterostructures
CN101419947B (zh) 一种过渡金属氧化物p-n异质结及其制备方法
CN102916122A (zh) 一种低漏电流半导体薄膜异质结及制备方法
CN108269912B (zh) 钛铌镁酸铅铁电薄膜氮化镓基外延集成及其制备方法
CN113913935A (zh) 一种T型BiFeO3铁电薄膜材料的制备方法
CN101831693A (zh) 生长氧化锌薄膜材料的方法
CN1309020C (zh) 一种在铝酸镁衬底上制备ZnO单晶薄膜的方法
WO2022105203A1 (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
Wu et al. Epitaxial and highly electrical conductive La 0.5 Sr 0.5 TiO 3 films grown by pulsed laser deposition in vacuum
Sakai et al. Characterization of ferroelectric property of c-axis-and non-c-axis-oriented epitaxially grown Bi2VO5. 5 thin films
CN104419895B (zh) 低温下制备具有高度(001)择优取向的钌酸锶薄膜的方法
EP3712955A1 (en) Semiconductor device
WO2003023094A1 (fr) Oxyde supraconducteur haute temperature et son procede de production
CN104480427A (zh) 氧化锌基稀磁半导体薄膜的制备方法及其电荷浓度的原位调控方法
CN110943137B (zh) 一种铁电光伏器件及其制备方法
CN113838965B (zh) 一种独立式高温超导薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant