CN110289352A - 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法 - Google Patents

低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法 Download PDF

Info

Publication number
CN110289352A
CN110289352A CN201910439210.3A CN201910439210A CN110289352A CN 110289352 A CN110289352 A CN 110289352A CN 201910439210 A CN201910439210 A CN 201910439210A CN 110289352 A CN110289352 A CN 110289352A
Authority
CN
China
Prior art keywords
film
tetragonal phase
preparation
electric polarization
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910439210.3A
Other languages
English (en)
Inventor
陈德杨
李才文
尹小哲
陈田田
陈超
孙菲
邓雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201910439210.3A priority Critical patent/CN110289352A/zh
Publication of CN110289352A publication Critical patent/CN110289352A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及一种低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法,该制备方法包括以下步骤:S1:在LaAlO3衬底上采用脉冲激光沉淀法制备Ce0.04Ca0.96MnO3底电极;S2:在Ce0.04Ca0.96MnO3底电极上采用脉冲激光沉淀法制备四方相La0.15Bi0.85FeO3薄膜。该制备方法通过La掺杂去降低四方相铁酸铋薄膜的矫顽场从而降低其铁电极化翻转电压,可以在未来实际运用上减少电能的损耗以及减小能耗成本,对于未来BiFeO3薄膜进行低能耗应用具有十分重要的意义。

Description

低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法
技术领域
本发明涉及半导体薄膜材料技术领域,特别是涉及一种低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法。
背景技术
多铁材料是一类兼具铁电性(反铁电性)和铁磁性(反铁磁性)的多功能材料,可实现电和磁之间的相互调控,有望用于高密度、低功耗、高速、长寿的磁电耦合存储器件。铁酸铋(BiFeO3)是目前研究最热的多铁材料之一,其兼具铁电性和反铁磁性,铁电居里温度(~1100K)和反铁磁尼尔温度(~653K)均远高于室温。根据第一性原理计算和实验证明四方相BiFeO3本身具有很大的剩余极化,约为150μC/cm2,因此具有很大的应用前景,但因四方相BiFeO3的极化翻转电压较大,阻碍了其在新一代电子器件的未来应用。
目前,有部分研究通过调整BiFeO3的在基片上的生长取向来减小BiFeO3的翻转电压。但是通过文献调研发现,如何去降低四方相BiFeO3薄膜的翻转电压的研究中有待更近一步的研究。
发明内容
基于此,本发明的目的在于,提供一种低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,该制备方法制得的四方相铁酸铋薄膜铁电极化翻转电压小,具有良好的应用前景。
本发明的目的是通过以下技术方案实现的:一种低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,包括以下步骤:
S1:在LaAlO3衬底上采用脉冲激光沉淀法制备Ce0.04Ca0.96MnO3底电极;
S2:在Ce0.04Ca0.96MnO3底电极上采用脉冲激光沉淀法制备四方相La0.15Bi0.85FeO3薄膜。
相比于现有技术,本发明通过制备掺杂15%La的BFO薄膜,减小了其铁电极化翻转所需要的电压,从社会和经济角度出发,通过La掺杂去降低BiFeO3薄膜的矫顽场可以在未来实际运用上减少电能的损耗以及减小能耗成本,可见其对于未来BiFeO3薄膜进行低能耗应用具有十分重要的意义。
进一步地,步骤S1中,采用脉冲激光沉淀法使激光轰击Ce0.04Ca0.96MnO3靶材,让Ce0.04Ca0.96MnO3原子沉积到LaAlO3衬底的(001)晶面上制备出厚度为10nm的底电极。
优选地,步骤S1在温度为700~705℃、氧压为15~15.5Pa的条件下进行。
进一步地,步骤S2中,在底电极Ce0.04Ca0.96MnO3上采用脉冲激光沉淀法使激光轰击La0.15Bi0.85FeO3靶材,得到四方相La0.15Bi0.85FeO3薄膜。
优选地,步骤S2在温度为640~645℃、氧压为15~15.5Pa的条件下进行。
优选地,步骤S3制得的La0.15Bi0.85FeO3薄膜厚度为5~25nm。La0.15Bi0.85FeO3薄膜厚度小于5nm则可能导致薄膜在基片上分布不均匀,而超过25nm会释放混合相,因此制备La0.15Bi0.85FeO3薄膜时应将其厚度控制在5~25nm范围内,以保证制得的La0.15Bi0.85FeO3薄膜仅含有四方相。
本发明还提供一种低铁电极化翻转电压的四方相铁酸铋薄膜,其通过上述制备方法制备而成。该四方相铁酸铋薄膜铁电极化翻转电压较低,具有良好的低能耗应用前景。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为实施例1制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
图2为对比实施例1制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
图3为实施例2制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
图4为实施例2制得的La0.15Bi0.85FeO3薄膜的(103)晶面的Mapping图。
图5为实施例2制得的La0.15Bi0.85FeO3薄膜的(113)晶面的Mapping图。
图6为对比实施例2制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
图7为对比实施例2制得的BiFeO3薄膜的(103)晶面的Mapping图。
图8为对比实施例2制得的BiFeO3薄膜的(113)晶面的Mapping图。
图9为实施例3制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
图10为对比实施例3制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phase loop图。
具体实施方式
实施例1
本实施例的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,包括以下步骤:
S1:在温度为700~705℃、氧压为15~15.5Pa的条件下,采用脉冲激光沉淀法(仪器为TSST(Toshiba Samsung Storage Technology)公司的脉冲激光沉积仪)使激光轰击Ce0.04Ca0.96MnO3靶材,让Ce0.04Ca0.96MnO3原子沉积到LaAlO3衬底的(001)晶面上制备出厚度为10nm的底电极;
S2:在底电极Ce0.04Ca0.96MnO3上,在温度为640~645℃、氧压为15~15.5Pa的条件下采用脉冲激光沉淀法使激光轰击La0.15Bi0.85FeO3靶材,得到厚度为5nm的四方相La0.15Bi0.85FeO3薄膜;
S3:将La0.15Bi0.85FeO3的四方相外延薄膜通过原子力显微镜(AFM)和X射线衍射仪(XRD)确定其薄膜中只含有四方相。
S4:利用压电力显微镜(PFM)测得La0.15Bi0.85FeO3四方相外延薄膜的相位回线(Phase loop),进而得出该薄膜铁电极化翻转所需要的电压。
对比实施例1
本对比实施例的纯BiFeO3的四方相外延薄膜的制备方法,包括以下步骤:
S1:在温度为700~705℃、氧压为15~15.5Pa的条件下,采用脉冲激光沉淀法(仪器为TSST(Toshiba Samsung Storage Technology)公司的脉冲激光沉积仪)使激光轰击Ce0.04Ca0.96MnO3靶材,让Ce0.04Ca0.96MnO3原子沉积到LaAlO3衬底的(001)晶面上制备出厚度为10nm的底电极;
S2:在底电极Ce0.04Ca0.96MnO3上,在温度为640~645℃、氧压为15~15.5Pa的条件下采用脉冲激光沉淀法使激光轰击BiFeO3靶材,得到厚度为5nm的四方相BiFeO3薄膜;
S3:将BiFeO3的四方相外延薄膜通过原子力显微镜(AFM)和X射线衍射仪(XRD)确定其薄膜中只含有四方相;
S4:利用压电力显微镜(PFM)测得BiFeO3四方相外延薄膜的Phase loop,进而得出该薄膜铁电极化翻转所需要的电压。
实施例2
本实施例的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,与实施例1基本相同,此处不再赘述;本实施例与实施例1的区别在于:步骤S2制得的四方相La0.15Bi0.85FeO3薄膜厚度为15nm。
对比实施例2
本实施例的纯BiFeO3的四方相外延薄膜的制备方法,与对比实施例1基本相同,此处不再赘述;本实施例与实施例1的区别在于:步骤S2制得的四方相BiFeO3薄膜厚度为15nm。
实施例3
本实施例的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,与实施例1基本相同,此处不再赘述;本实施例与实施例1的区别在于:步骤S2制得的四方相La0.15Bi0.85FeO3薄膜厚度为25nm。
对比实施例3
本实施例的纯BiFeO3的四方相外延薄膜的制备方法,与对比实施例1基本相同,此处不再赘述;本实施例与实施例1的区别在于:步骤S2制得的四方相BiFeO3薄膜厚度为25nm。
测试结果
测试仪器:形貌图和phase-loop图是美国Asylum Reseach公司的Cypher原子力显微镜(自带压电力显微镜功能模式)所测得;XRD物相分析图是有由PANalytical公司生产的X射线衍射仪所测得。
请参阅图1,其为实施例1制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图。从图1a可以得知厚度为5nm的La0.15Bi0.85FeO3薄膜的生长质量很高,呈现规律的台阶状。图1b则是La0.15Bi0.85FeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonal phase,XRD图上简写为T)。图1c则是La0.15Bi0.85FeO3薄膜的Phase loop图,从图中可以得出其翻转铁电铁极化所需的电压约为0.8V。
请参阅图2,其对比实施例1制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phaseloop图。从图2a可以得知5nm的BiFeO3薄膜的生长质量很高,呈现规律的台阶状。图2b则是BiFeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonalphase,XRD图上简写为T)。图2c则是BiFeO3薄膜的Phase loop图,从图中可以得出翻转铁电铁极化所需的电压约为3.5V。
可见,在5nm的相同厚度下比较,四方相的BiFeO3薄膜需要约3.5V的电压去使铁电极化发生翻转,而四方相的La0.15Bi0.85FeO3的薄膜只需要约0.8V的电压去进行极化翻转,即通过La掺杂可有效降低BiFeO3薄膜的极化翻转电压。依据相关La掺杂的文献调研以及实验结果数据,初步认为La掺杂实现了对A位离子Bi3+进行部分取代,其内部晶体结构由类四方相(T-like)转变为纯四方相(T),这使得铁电极化在面内上的分量减小,从而使得面内极化翻转所需要越过的肖托基势垒减小,这就使得翻转铁电极化所需要的能量更小,故其减小了翻转铁电极化所需要的电压。
请同时参阅图3~5,其中,图3为实施例2制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图,图4为实施例2制得的La0.15Bi0.85FeO3薄膜的(103)晶面的Mapping图,图5为实施例2制得的La0.15Bi0.85FeO3薄膜的(113)晶面的Mapping图。从图3a可以得知厚度为15nm的La0.15Bi0.85FeO3薄膜的生长质量很高,呈现规律的台阶状。图3b则是La0.15Bi0.85FeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonal phase,XRD图上简写为T)。图4和图5可进一步证明该La0.15Bi0.85FeO3薄膜是单一四方相,不含有其它的相。图3c则是La0.15Bi0.85FeO3薄膜的Phase loop图,从图中可以得出其翻转铁电铁极化所需的电压约为1.5V。
请同时参阅图6~8,其中,图6为对比实施例2制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phase loop图,图7为对比实施例2制得的BiFeO3薄膜的(103)晶面的Mapping图,图8为对比实施例2制得的BiFeO3薄膜的(113)晶面的Mapping图。从图6a可以得知15nm的BiFeO3薄膜的生长质量很高,呈现规律的台阶状。图6b则是BiFeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonal phase,XRD图上简写为T)。图7和图8可进一步证明该BiFeO3薄膜是单一四方相,不含有其它的相。图6c则是BiFeO3薄膜的Phase loop图,从图中可以得出翻转铁电铁极化所需的电压约为4.5V。
可见,在15nm的相同厚度下比较,四方相的BiFeO3薄膜需要约4.5V的电压去使铁电极化发生翻转,而四方相的La0.15Bi0.85FeO3的薄膜只需要约1.5V的电压去进行极化翻转,即通过La掺杂可有效降低BiFeO3薄膜的极化翻转电压。
请参阅图9,其为实施例3制得的La0.15Bi0.85FeO3薄膜的形貌图、XRD物相分析图和Phase loop图。从图9a可以得知厚度为25nm的La0.15Bi0.85FeO3薄膜的生长质量很高,呈现规律的台阶状。图9b则是La0.15Bi0.85FeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonal phase,XRD图上简写为T)。图9c则是La0.15Bi0.85FeO3薄膜的Phase loop图,从图中可以得出其翻转铁电铁极化所需的电压约为2.0V。
请参阅图10,其对比实施例3制得的BiFeO3薄膜的形貌图、XRD物相分析图和Phaseloop图。从图2a可以得知25nm的BiFeO3薄膜的生长质量很高,呈现规律的台阶状。图2b则是BiFeO3薄膜的普通XRD分析图,从图中可以看到在(001)晶面上只有四方相(Tetragonalphase,XRD图上简写为T)。图2c则是BiFeO3薄膜的Phase loop图,从图中可以得出翻转铁电铁极化所需的电压约为6.0V。
可见,在25nm的相同厚度下比较,四方相的BiFeO3薄膜需要约6.0V的电压去使铁电极化发生翻转,而四方相的La0.15Bi0.85FeO3的薄膜只需要约2.0V的电压去进行极化翻转,即通过La掺杂可有效降低BiFeO3薄膜的极化翻转电压。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (7)

1.一种低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:包括以下步骤:
S1:在LaAlO3衬底上采用脉冲激光沉淀法制备Ce0.04Ca0.96MnO3底电极;
S2:在Ce0.04Ca0.96MnO3底电极上采用脉冲激光沉淀法制备四方相La0.15Bi0.85FeO3薄膜。
2.根据权利要求1所述的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:步骤S1中,采用脉冲激光沉淀法使激光轰击Ce0.04Ca0.96MnO3靶材,让Ce0.04Ca0.96MnO3原子沉积到LaAlO3衬底的(001)晶面上制备出厚度为10nm的底电极。
3.根据权利要求2所述的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:步骤S1在温度为700~705℃、氧压为15~15.5Pa的条件下进行。
4.根据权利要求1所述的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:步骤S2中,在底电极Ce0.04Ca0.96MnO3上采用脉冲激光沉淀法使激光轰击La0.15Bi0.85FeO3靶材,得到四方相La0.15Bi0.85FeO3薄膜。
5.根据权利要求4所述的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:步骤S2在温度为640~645℃、氧压为15~15.5Pa的条件下进行。
6.根据权利要求1~5任一项所述的低铁电极化翻转电压的四方相铁酸铋薄膜的制备方法,其特征在于:步骤S3制得的La0.15Bi0.85FeO3薄膜厚度为5~25nm。
7.一种低铁电极化翻转电压的四方相铁酸铋薄膜,其特征在于:通过权利要求1~6任一项所述的制备方法制备而成。
CN201910439210.3A 2019-05-24 2019-05-24 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法 Pending CN110289352A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910439210.3A CN110289352A (zh) 2019-05-24 2019-05-24 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910439210.3A CN110289352A (zh) 2019-05-24 2019-05-24 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110289352A true CN110289352A (zh) 2019-09-27

Family

ID=68002527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910439210.3A Pending CN110289352A (zh) 2019-05-24 2019-05-24 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110289352A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913935A (zh) * 2021-10-26 2022-01-11 河北农业大学 一种T型BiFeO3铁电薄膜材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231482A (ja) * 2008-03-21 2009-10-08 Kanazawa Univ 強誘電体材料及び圧電体
CN102157682A (zh) * 2010-11-25 2011-08-17 南京理工大学 一种单相铁电薄膜、制备方法及有效电阻调控方式
US20160181451A1 (en) * 2014-12-17 2016-06-23 National Chung Shan Institute Of Science And Technology Bismuth ferrite thin-film solar cell and method of manufacturing the same
CN108085650A (zh) * 2016-11-21 2018-05-29 云南师范大学 一种磁控溅射制备高质量铁酸铋铁电光伏薄膜的方法
CN109208069A (zh) * 2018-07-18 2019-01-15 华南师范大学 一种诱导铁酸铋薄膜相变的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231482A (ja) * 2008-03-21 2009-10-08 Kanazawa Univ 強誘電体材料及び圧電体
CN102157682A (zh) * 2010-11-25 2011-08-17 南京理工大学 一种单相铁电薄膜、制备方法及有效电阻调控方式
US20160181451A1 (en) * 2014-12-17 2016-06-23 National Chung Shan Institute Of Science And Technology Bismuth ferrite thin-film solar cell and method of manufacturing the same
CN108085650A (zh) * 2016-11-21 2018-05-29 云南师范大学 一种磁控溅射制备高质量铁酸铋铁电光伏薄膜的方法
CN109208069A (zh) * 2018-07-18 2019-01-15 华南师范大学 一种诱导铁酸铋薄膜相变的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨洋 等: "不同La掺杂浓度的BiFeO3的结构性质的显微拉曼光谱研究", 《光散射学报》 *
谢益骏 等: "掺镧BiFeO3薄膜的制备及光伏特性研究", 《无机材料学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913935A (zh) * 2021-10-26 2022-01-11 河北农业大学 一种T型BiFeO3铁电薄膜材料的制备方法
CN113913935B (zh) * 2021-10-26 2023-11-21 河北农业大学 一种T型BiFeO3铁电薄膜材料的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Structure, performance, and application of BiFeO 3 nanomaterials
Molinari et al. Voltage‐control of magnetism in all‐solid‐state and solid/liquid magnetoelectric composites
Chen et al. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films
Pradhan et al. Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites
US8736151B2 (en) Electric generator
US7626846B2 (en) Method and media for improving ferroelectric domain stability in an information storage device
Chen et al. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films
Cheng et al. Interface strain-induced multiferroicity in a SmFeO3 film
Katayama et al. Ferrimagnetism and ferroelectricity in Cr-substituted GaFeO3 epitaxial films
Popovici et al. High-endurance ferroelectric (La, Y) and (La, Gd) Co-doped hafnium zirconate grown by atomic layer deposition
Salles et al. Bendable polycrystalline and magnetic CoFe2O4 membranes by chemical methods
Jia et al. Multifield control of domains in a room-temperature multiferroic 0.85 BiTi0. 1Fe0. 8Mg0. 1O3–0.15 CaTiO3 thin film
Vermeulen et al. Ferroelectric Control of Magnetism in Ultrathin HfO2\Co\Pt Layers
Tian et al. Nanoscale phase mixture and multifield-induced topotactic phase transformation in SrFeOx
Sun et al. Giant magnetoelectric coupling and two-dimensional electron gas regulated by polarization in BiFeO3/LaFeO3 heterostructures
Keeney et al. Persistence of ferroelectricity close to unit-cell thickness in structurally disordered Aurivillius phases
CN110289352A (zh) 低铁电极化翻转电压的四方相铁酸铋薄膜及其制备方法
Chen et al. Magnetism manipulated by ferroelectric polarization and epitaxial strain in a La 0.75 Sr 0.25 MnO 3/BaTiO 3 system
CN112467025B (zh) 一种利用针尖电场在铁电薄膜中构建周期性条带畴的方法
Feng et al. Unusual behaviors of electric-field control of magnetism in multiferroic heterostructures via multifactor cooperation
Ichinose et al. High-Quality Sputtered BiFeO3 for Ultrathin Epitaxial Films
Hao et al. A quasi‐linear piezoelectric strain behavior of [001] textured rhombohedral PMN–24% PT ceramic
CN109778318A (zh) 一种半金属性多铁超晶格材料
JP2019009304A (ja) 磁気メモリ素子、並びに磁気メモリ素子の情報の書き込みおよび読み取り方法
CN109133668B (zh) 一种具有电阻开关效应的La、Er、Co、Mn共掺的BFO薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190927

RJ01 Rejection of invention patent application after publication