CN113913803B - 镁合金化学转化复合膜及其制备方法 - Google Patents

镁合金化学转化复合膜及其制备方法 Download PDF

Info

Publication number
CN113913803B
CN113913803B CN202111139140.3A CN202111139140A CN113913803B CN 113913803 B CN113913803 B CN 113913803B CN 202111139140 A CN202111139140 A CN 202111139140A CN 113913803 B CN113913803 B CN 113913803B
Authority
CN
China
Prior art keywords
solution
layer
molybdate
conversion
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111139140.3A
Other languages
English (en)
Other versions
CN113913803A (zh
Inventor
粟银
朱绒霞
苗征
栾瑞昕
周章文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN202111139140.3A priority Critical patent/CN113913803B/zh
Publication of CN113913803A publication Critical patent/CN113913803A/zh
Application granted granted Critical
Publication of CN113913803B publication Critical patent/CN113913803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明一种镁合金化学转化复合膜及其制备方法,涉及镁合金构件表面防护层制备技术领域。镁合金化学转化复合膜由钼酸盐层、稀土层和石墨烯层组成,所述钼酸盐层由MgO和MgMoO4组成,所述稀土层由MgO、MgMoO4、La2O3、Nd2O3组成,石墨烯层由γ‑氨丙基三乙氧基硅烷KH‑550和氧化石墨烯GO组成。镁合金化学转化复合膜的制备方法包括表面预处理、制备钼酸盐层、制备稀土层和制备石墨烯层的步骤。制备的化学转化复合膜的化学转化液均符合绿色环境要求,制备的化学转化复合膜与基体结合良好、耐防腐蚀能力强。

Description

镁合金化学转化复合膜及其制备方法
技术领域
本发明涉及镁合金构件表面防护层制备技术领域,具体是一种镁合金化学转化复合膜及其制备方法。
背景技术
21世纪以来,能源与环保问题促使材料工作者和产品设计师在材料合成,材料加工,以及产品设计的全过程中越来越重视产品的轻量化问题。镁合金以质轻、比强度高、减振性能好、防电磁干扰好、可再回收和良好铸造性能等特点,被誉为21世纪绿色金属结构材料,在航空航天、汽车、电子以及军事等工业上有广泛应用前景。但是,由于金属镁的电极电位为-2.372V,且其氧化物与形成该氧化物所消耗金属的体积比小于1,致使镁合金构件在实际应用中容易被腐蚀,因此,镁合金构件需要进行表面处理,以提高镁合金构件的耐腐蚀性能。
目前,镁合金表面化学处理技术主要有:化学转化、阳极氧化、微弧氧化、电镀或化学镀,其中,化学转化是最常用的表面防护技术之一。化学转化是指金属或合金在一定的化学转化液中经过化学或者电化学反应在其表面形成一层金属复合盐膜的方法。该金属复合盐膜的主要成分为氧化物或金属化合物,能起到钝化作用,改善金属或合金的耐腐蚀性能。因化学转化处理设备要求低,工艺简单,操作方便,且其化学转化膜与基体结合良好,膜薄,结构细腻,拥有特定的孔隙,可以与涂层形成良好的结合等优点,因此,化学转化在工业上得到了广泛应用。
传统的镁合金化学转化是以铬酐和重铬酸盐为主要成分的铬酸盐化学转化技术,所述化学转化液称为铬酸盐化学转化液。由于铬酸盐化学转化液中含有对人体及环境有害的Cr6+,因此,铬酸盐化学转化液的使用受到限制。目前,无“铬”化学转化技术倍受关注,如磷酸盐、高锰酸盐、锡酸盐、钼酸盐、植酸、稀土盐等化学转化技术。这些技术虽然克服了Cr6+的危害,但都存在不同的缺点,限制了它们的应用。比如,磷酸盐化学转化液消耗快,生产成本高;锰离子属于重金属离子,对人及环境都有一定的危害,且溶液不稳定;锡酸盐化学转化液成本低,污染轻,但化学转化膜薄,防腐蚀性能差;植酸是天然的化工产品,无毒,无污染,但植酸处理液消耗过快,成膜不易控制,化学转化膜质量不稳定。
目前,稀土转化膜是以稀土盐溶液作为化学转化液,其化学转化液稳定性好,成膜过程反应速度快,且对环境和人体危害小。研究表明,稀土转化膜具有内紧外松的双层结构。由于外层结构疏松多孔,外界水分子极易进入膜而破坏外层结构,内层结构与镁合金基体结合不好,随着外层结构的破坏,内层结构也就紧接着被破坏。因此,稀土转化膜通常存在膜薄,与基体结合力较弱,表面存在微观缺陷导致其抗腐蚀能力低的不足。
表面技术2018第47卷第2期邹忠利等人发表的《AZ31B镁合金氧化石墨烯掺杂钇盐转化膜耐蚀性研究》论文,在硝酸钇、高锰酸钾和氧化石墨烯的水溶液中进行镁合金表面化学转化处理,在镁合金表面制备出氧化石墨烯掺杂钇盐转化膜,相比钇盐转化膜,该膜表面完整,未出现裂纹,且耐腐蚀性能大大提高。但是,存在高锰酸钾中的重金属锰污染环境的不足。
空军工程大学对镁合金铈盐化学转化膜的研究发现,单一铈盐化学转化膜较薄,结合力较弱,存在表面微裂纹的微观缺陷,耐腐蚀性能不高。
发明内容
为了克服镁合金化学转化液污染环境,化学转化膜与基体结合力差、防腐蚀能力低的不足,本发明公开了一种镁合金化学转化复合膜及其制备方法。
镁合金化学转化复合膜由钼酸盐层、稀土层和石墨烯层组成;镁合金为基体,其中,所述钼酸盐层为底层,与基体相接,厚度增量为0.48~0.82mg˙cm-2;所述稀土层为中间层,厚度增量为4.06~5.74mg˙cm-2;所述石墨烯层为外层,厚度增量为0.28~0.52mg˙cm-2
所述钼酸盐层由MgO和MgMoO4组成;所述钼酸盐层是在钼酸盐转化液中通过化学转化而成。
所述稀土层由MgO、MgMoO4、La2O3、Nd2O3组成;所述稀土层是在稀土转化液中通过化学转化而成。
所述石墨烯层由γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO组成;所述石墨烯层是在γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO的处理液中通过有机硅烷化处理而成;所述石墨烯层浸入到所述稀土层中,填充稀土层的孔隙。
镁合金化学转化复合膜的制备方法包括表面预处理、制备钼酸盐层、制备稀土层和制备石墨烯层的步骤,具体过程是:
步骤1,表面预处理:
表面预处理包括配制碱溶液和浸泡两步,具体过程是:
第一步,配制碱溶液:
碱溶液由NaOH、Na2CO3和水组成,其中各组分占溶液的重量比分别是:NaOH为40~60g/L、Na2CO3为20~30g/L、水为溶剂。
所述水为蒸馏水或去离子水。
采用常规溶液配制方法,依次将所需量的NaOH、Na2CO3加入水中,至完全溶解,得到碱溶液。
第二步,浸泡:
将镁合金浸入所述碱溶液中,所述碱溶液温度保持在50℃,浸泡时间5~10min;取出,用水清洗,吹干,得到表面清洁无油污的镁合金。
步骤2,制备钼酸盐层:
制备钼酸盐层是以经表面预处理的镁合金为基体,在钼酸盐转化液中通过化学转化制备而成。
所述钼酸盐转化液由C18H29O3SNa、Na2MoO4、C6H8O7和水组成,其中,各组分占溶液的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、水为溶剂。
制备钼酸盐层包括配制C18H29O3SNa水溶液、配制钼酸盐转化液和化学转化钼酸盐层三步,具体过程如下:
第一步,配制C18H29O3SNa水溶液:
取钼酸盐转化液所需水用量的二分之一,加入到钼酸盐转化容器中,将所需重量的C18H29O3SNa加入所述钼酸盐转化容器中,以30~50r/min速度匀速搅拌,至完全溶解,得到C18H29O3SNa水溶液。
第二步,配制钼酸盐转化液:
将所需重量的Na2MoO4、C6H8O7依次加入到C18H29O3SNa水溶液中,以20~30r/min速度匀速搅拌,至完全溶解;得到钼酸盐转化液原液;将钼酸盐转化液所需二分之一的水加入到钼酸盐转化液原液中,搅拌,得到钼酸盐转化液。
第三步,化学转化钼酸盐层:
将表面预处理的镁合金浸入到所述钼酸盐转化液中,钼酸盐转化液温度保持在50~60℃,进行化学转化处理,在镁合金表面形成由MgO、MgMoO4组成的钼酸盐层,至钼酸盐层厚度增量为0.48~0.82mg˙cm-2,在镁合金表面得到所需厚度增量的钼酸盐层。
步骤3,制备稀土层:
制备稀土层是以附着钼酸盐层的镁合金为基体,在稀土转化液中通过化学转化而成。
所述稀土转化液由C18H29O3SNa、Na2MoO4、C6H8O7、La(NO3)3、Nd(NO3)3和水组成,其中,各组分在稀土转化液中的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、La(NO3)3为1.8~2.2g/L、Nd(NO3)3为1.2~1.8g/L、水为溶剂。
制备稀土层包括配制La(NO3)3水溶液、配制Nd(NO3)3水溶液、一次混合、二次混合和化学转化稀土层五步,具体过程如下:
第一步,配制La(NO3)3水溶液:
将所需重量的La(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到La(NO3)3水溶液;
第二步,配制Nd(NO3)3水溶液:
将所需重量的Nd(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到Nd(NO3)3水溶液;
第三步,一次混合:
在所述钼酸盐转化液原液中加入所述La(NO3)3水溶液,以20~30r/min速度匀速搅拌5~10min,至混合均匀;得到一次混合液。
一次混合中,所述钼酸盐转化液原液和所述La(NO3)3水溶液的用量的容积比为2:1。
第四步,二次混合:
在所述一次混合液中加入所述Nd(NO3)3水溶液,以20~30r/min速度匀速搅拌5~10min,至混合均匀,得到稀土转化液。
在稀土转化液配制过程中,所述钼酸盐转化液原液、所述La(NO3)3水溶液、所述Nd(NO3)3水溶液三者用量的容积比为2:1:1。
第五步,化学转化稀土层:
将附着钼酸盐层的镁合金浸入稀土转化液中,稀土转化液温度保持在60~70℃,进行化学转化,形成由MgO、MgMoO4、La2O3、Nd2O3组成的稀土层,至稀土层厚度增量为4.06~5.74mg˙cm-2,得到所需厚度增量的稀土层。
步骤4,制备石墨烯层:
制备石墨烯层是以步骤3得到的附着钼酸盐层和稀土层的镁合金为基体,在石墨烯处理液中通过化学处理而成。
石墨烯处理液由γ-氨丙基三乙氧基硅烷KH-550、C2H5OH、氧化石墨烯GO、NaOH和水组成;石墨烯处理液pH值为9;在石墨烯处理液中,各组分占溶液的重量比分别是:γ-氨丙基三乙氧基硅烷KH-550为15.0~20.0g/L、C2H5OH为150~350mL/L、氧化石墨烯GO为1.5~5.0g/L、水为溶剂、NaOH用量由石墨烯处理液pH值确定。
制备石墨烯层包括配制氧化石墨烯乙醇溶液、配制氧化石墨烯乙醇水溶液、配制石墨烯处理液、化学处理和固化处理五步,具体过程是:
第一步,配制氧化石墨烯乙醇溶液:
取所需量的C2H5OH加入到石墨烯处理容器中,再将所需量的氧化石墨烯GO加入到石墨烯处理容器中;采用超声处理方法,超声处理至氧化石墨烯全部溶解,得到氧化石墨烯乙醇溶液。
第二步,配制氧化石墨烯乙醇水溶液:
在氧化石墨烯乙醇溶液中加入所需量的水,混合,得到氧化石墨烯乙醇水溶液原液;
用NaOH含量为40g/L的NaOH水溶液调节所述氧化石墨烯乙醇水溶液原液的pH值,使其达到pH=9.0,得到氧化石墨烯乙醇水溶液。
第三步,水解:
将所需量的γ-氨丙基三乙氧基硅烷KH-550加入到所述氧化石墨烯乙醇水溶液中,室温下水解,至γ-氨丙基三乙氧基硅烷KH-550全部溶解,得到石墨烯处理液。
第四步,化学处理:
将附着钼酸盐层和稀土层的镁合金浸入到室温的石墨烯处理液中,至石墨烯层厚度增量为0.28~0.52mg˙cm-2
第五步,固化处理:
将附着石墨烯层增量为0.28~0.52mg˙cm-2的镁合金取出,置入烘箱进行固化处理;固化处理时,固化温度保持在85~90℃,固化时间1.5~2.0h,得到所需石墨烯层。
石墨烯层由γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO组成。
至此,得到由钼酸盐层、稀土层和石墨烯层复合而成的化学转化复合膜。
本发明产生的有益效果是:
本发明使用的镁合金化学转化液包括钼酸盐转化液、稀土转化液和石墨烯处理液,化学转化液中,均不含铬酸盐,其中,钼酸盐、La和Nd稀土盐、硅烷以及氧化石墨烯,均属于环保型产品,满足工业生产的环保标准。
本发明镁合金化学转化复合膜的底层为钼酸盐层,在钼酸盐层形成过程中,镁合金浸入钼酸盐转化液中,在镁合金表面发生阳极反应Mg=Mg2++2e-,Na2MoO4在溶液中解离出MoO4 2-,且MoO4 2-容易发生聚合生成[Mo7O24]6-、[Mo8O26]4-等网络结构的聚钼阴离子,这些聚钼阴离子及MoO4 2-吸附到镁合金表面与Mg2+生成多相钼酸镁膜,多相钼酸镁膜为网络结构,与镁合金基体结合力强。稀土层与钼酸盐层有相近的组分,能够形成良好的结合,石墨烯层浸入到稀土层中,结合紧密。因此,化学转化复合膜与基体结合力强。
本发明镁合金化学转化复合膜的稀土层存在一定的空隙和缺陷,存在大量的La-O、Nd-O、Mg-O化学键。石墨烯层形成过程中,在石墨烯处理液中,KH-550硅烷水解后,生成硅醇,溶液中存在大量Si-OH化学键。氧化石墨烯加入硅烷水解溶液后,使硅烷溶液中增加了C-OH化学键。石墨烯处理液将进入稀土层的空隙及缺陷处,并在空隙及缺陷处La-O、Nd-O、Mg-O和Si-OH、C-OH通过氢键形成Si-O-Nd、Si-O-La、C-O-Nd、C-O-La、C-O-Mg、Si-O-Mg化学键,经过高温固化加速脱水缩合反应,形成网络结构,覆盖在稀土层的空隙、缺陷及最外表面,氧化石墨烯与硅氧烷共同作用,使硅氧烷结构更致密,使化学转化复合膜的外表面形成一层物理屏障,且保持硅烷的疏水性能。
在极化曲线测试中,自腐蚀电位越高、自腐蚀电流密度越小,则材料的腐蚀速率就越低,即耐腐蚀能力越强。从基体材料和其化学转化复合膜的极化曲线图5-图7可以知,本发明镁合金化学转化复合膜与基体镁合金相比,化学转化复合膜的极化曲线均发生正移,且腐蚀电流密度比基底镁合金降低了三个数量级,腐蚀速率大幅度下降,化学转化复合膜具有很好的耐腐蚀性能,对镁合金基体起到了很好的防护作用。
本发明化学转化复合膜工艺程序清晰,易于操作,对人身无害,适用于工业生产线作业。
附图说明
图1是稀土转化液配制流程图;
图2是石墨烯处理液配制流程图;
图3是复合膜制备过程图;
图4是复合膜结构示意图;
图5是AZ31镁合金与其复合膜的极化曲线;
图6是AZ91D镁合金与其复合膜的极化曲线;
图7是AZ31B镁合金与其复合膜的极化曲线。
图中,1.基体;2.钼酸盐层;3.稀土层;4.石墨烯层;5.AZ31镁合金;6.实施例1复合膜;7.实施例4复合膜;8.AZ91D镁合金;9.实施例2复合膜;10.实施例5复合膜;11.AZ31B镁合金;12.实施例3复合膜;13.实施例6复合膜。
具体实施方式
本发明镁合金化学转化复合膜及其制备方法,将通过6个实施例具体说明其技术方案。
在6个实施例中,分别以AZ31、AZ91D和AZ31B三种镁合金之一作为基体材料,在镁合金表面制备化学转化复合膜。
镁合金化学转化复合膜的制备方法包括表面预处理、制备钼酸盐层、制备稀土层和制备石墨烯层的步骤,具体过程是:
步骤1,表面预处理:
表面预处理包括配制碱溶液和浸泡两步,具体过程是:
第一步,配制碱溶液:
碱溶液由NaOH、Na2CO3和水组成,其中各组分占溶液的重量比分别是:NaOH为40~60g/L、Na2CO3为20~30g/L、水为溶剂。
水为蒸馏水或去离子水。
采用常规溶液配制方法,依次将所需量的NaOH、Na2CO3加入水中,至完全溶解,得到碱溶液。
第二步,浸泡:
将镁合金浸入碱溶液中,碱溶液温度保持在50℃,浸泡时间5~10min;取出,用水清洗,吹干,得到表面清洁无油污的镁合金。
表1镁合金基体材料
基体 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
镁合金 AZ31 AZ91D AZ31B AZ31 AZ91D AZ31B
表2碱溶液组分,单位:g/L
组分 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
NaOH 40 45 48 50 60 55
Na2CO3 20 25 30 30 20 25
蒸馏水 蒸馏水 去离子水 蒸馏水 蒸馏水 去离子水
表3浸泡温度与时间,单位:温度为℃、时间为min;
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
温度 50 50 50 50 50 50
时间 5 9 6 7 8 10
步骤2,制备钼酸盐层:
制备钼酸盐层是以经表面预处理的镁合金为基体,在钼酸盐转化液中通过化学转化制备而成。
钼酸盐转化液由C18H29O3SNa、Na2MoO4、C6H8O7和水组成,其中,各组分占溶液的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、水为溶剂。
水为蒸馏水或去离子水。
制备钼酸盐层包括配制C18H29O3SNa水溶液、配制钼酸盐转化液和化学转化钼酸盐层三步,具体过程如下:
第一步,配制C18H29O3SNa水溶液:
取钼酸盐转化液所需水用量的二分之一,加入到钼酸盐转化容器中,将所需重量的C18H29O3SNa加入所述钼酸盐转化容器中,以30~50r/min速度匀速搅拌,至完全溶解,得到C18H29O3SNa水溶液。
第二步,配制钼酸盐转化液:
将所需重量的Na2MoO4、C6H8O7依次加入到C18H29O3SNa水溶液中,以20~30r/min速度匀速搅拌,至完全溶解;得到钼酸盐转化液原液;将钼酸盐转化液所需二分之一的水加入到钼酸盐转化液原液中,搅拌,得到钼酸盐转化液。
第三步,化学转化钼酸盐层:
将表面预处理的镁合金浸入到钼酸盐转化液中,钼酸盐转化液温度保持在50~60℃,进行化学转化处理,在镁合金表面形成由MgO、MgMoO4组成的钼酸盐层,至钼酸盐层厚度增量为0.48~0.82mg˙cm-2,在镁合金表面得到所需厚度增量的钼酸盐层。
钼酸盐层厚度增量为在基体材料的基础上,通过化学转化方法形成的钼酸盐层厚度增量,即在垂直基体表面方向上钼酸盐层单位面积上的质量。
钼酸盐层与镁合金基体形成了结合牢固的化学结合,为化学转化复合膜的底层。
表4钼酸盐转化液组分,单位:g/L
Figure BDA0003283262170000091
表5搅拌速度,单位:r/min
工艺 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
第一步 30 40 50 45 35 50
第二步 25 20 30 25 30 30
表6化学转化钼酸盐层工艺参数,单位:温度℃;时间min;厚度增量mg˙cm-2
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
温度 50 60 60 50 55 60
厚度增量 0.48 0.68 0.80 0.82 0.70 0.58
步骤3,制备稀土层:
制备稀土层是以附着钼酸盐层的镁合金为基体,在稀土转化液中通过化学转化而成。
稀土转化液由C18H29O3SNa、Na2MoO4、C6H8O7、La(NO3)3、Nd(NO3)3和水组成,其中,各组分在稀土转化液中的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、La(NO3)3为1.8~2.2g/L、Nd(NO3)3为1.2~1.8g/L、水为溶剂。
水为蒸馏水或去离子水。
制备稀土层包括配制La(NO3)3水溶液、配制Nd(NO3)3水溶液、一次混合、二次混合和化学转化稀土层五步,具体过程如下:
第一步,配制La(NO3)3水溶液:
将所需重量的La(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到La(NO3)3水溶液;
第二步,配制Nd(NO3)3水溶液:
将所需重量的Nd(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到Nd(NO3)3水溶液;
第三步,一次混合:
在钼酸盐转化液原液中加入La(NO3)3水溶液,以20~30r/min速度匀速搅拌5~10min,至混合均匀;得到一次混合液。
一次混合中,钼酸盐转化液原液和La(NO3)3水溶液的用量的容积比为2:1。
第四步,二次混合:
在一次混合液中加入Nd(NO3)3水溶液,以20~30r/min速度匀速搅拌5~10min,至混合均匀,得到稀土转化液。
在稀土转化液配制过程中,钼酸盐转化液原液、La(NO3)3水溶液、Nd(NO3)3水溶液三者用量的容积比为2:1:1。
第五步,化学转化稀土层:
将附着钼酸盐层的镁合金浸入稀土转化液中,稀土转化液温度保持在60~70℃,进行化学转化,形成由MgO、MgMoO4、La2O3、Nd2O3组成的稀土层,至稀土层厚度增量为4.06~5.74mg˙cm-2,得到所需厚度增量的稀土层。
稀土层厚度增量为在底层钼酸盐层的基础上,通过化学转化方法形成的稀土层厚度增量,即在垂直基体表面方向上稀土层单位面积上的质量。
稀土层为化学转化复合膜的中间层,稀土层与钼酸盐层形成良好的结合。
表7稀土转化液组分,单位为g/L
Figure BDA0003283262170000111
表8一次混合搅拌速度和时间,单位:速度为r/min、时间为min
工艺 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
速度 20 30 25 20 30 30
时间 9 6 8 10 5 7
表9二次混合搅拌速度和时间,单位:速度为r/min、时间为min
工艺 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
速度 30 20 25 20 30 25
时间 5 10 7 9 6 8
表10化学转化稀土层工艺参数,单位:温度℃;厚度增量mg˙cm-2
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
温度 60 60 65 65 70 70
厚度增量 4.06 4.15 5.12 5.20 5.70 5.74
步骤4,制备石墨烯层:
制备石墨烯层是以步骤3得到的附着钼酸盐层和稀土层的镁合金为基体,在石墨烯处理液中通过化学处理而成。
石墨烯处理液由γ-氨丙基三乙氧基硅烷KH-550、C2H5OH、氧化石墨烯GO、NaOH和水组成;石墨烯处理液pH值为9;在石墨烯处理液中,各组分占溶液的重量比分别是:γ-氨丙基三乙氧基硅烷KH-550为15.0~20.0g/L、C2H5OH为150~350mL/L、氧化石墨烯GO为1.5~5.0g/L、水为溶剂、NaOH用量由石墨烯处理液pH值确定。
制备石墨烯层包括配制氧化石墨烯乙醇溶液、配制氧化石墨烯乙醇水溶液、配制石墨烯处理液、化学处理和固化处理五步,具体过程是:
第一步,配制氧化石墨烯乙醇溶液:
取所需量的C2H5OH加入到石墨烯处理容器中,再将所需量的氧化石墨烯GO加入到石墨烯处理容器中;采用超声处理方法,超声处理至氧化石墨烯全部溶解,得到氧化石墨烯乙醇溶液。
第二步,配制氧化石墨烯乙醇水溶液:
在氧化石墨烯乙醇溶液中加入所需量的水,混合,得到氧化石墨烯乙醇水溶液原液;
用NaOH含量为40g/L的NaOH水溶液调节所述氧化石墨烯乙醇水溶液原液的pH值,使其达到pH=9.0,得到氧化石墨烯乙醇水溶液。
石墨烯化学稳定性高,表面呈惰性状态,与水或有机溶剂相互作用力较弱,且石墨烯片层与片层之间存在较强的范德华力,容易产生团聚。而氧化石墨烯表面含有大量的含氧官能团,如羟基,羧基以及环氧基团,含氧官能团使得氧化石墨烯容易分散于水溶液中。因此,将氧化石墨加入到乙醇中,通过超声波处理,使氧化石墨烯分散且溶入乙醇中,最终形成氧化石墨烯分散均匀的水溶液。
第三步,水解:
将所需量的γ-氨丙基三乙氧基硅烷KH-550加入到所述氧化石墨烯乙醇水溶液中,室温下水解,至γ-氨丙基三乙氧基硅烷KH-550全部溶解,得到石墨烯处理液。
第四步,化学处理:
将附着钼酸盐层和稀土层的镁合金浸入到室温的石墨烯处理液中,至石墨烯层厚度增量为0.28~0.52mg˙cm-2
第五步,固化处理:
将附着石墨烯层厚度增量为0.28~0.52mg˙cm-2的镁合金取出,置入烘箱进行固化处理;固化处理时,固化温度保持在85~90℃,固化时间1.5~2.0h,得到所需石墨烯层。
石墨烯层由γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO组成。石墨烯层通过氢键形成Si-O-Nd、Si-O-La、C-O-Nd、C-O-La化学键,经过高温固化加速脱水缩合反应,形成网络结构,覆盖在稀土层的空隙、缺陷及外表面。石墨烯层浸入到稀土层中,填充稀土层的孔隙。氧化石墨烯的加入使硅氧烷结构也变得更致密,使其外表面形成一层具有良好的疏水性能的物理屏障,因此,复合膜能够起到更有效防护作用。
钼酸盐层与镁合金基体结合牢固,稀土层与钼酸盐层有相近的组分,能够形成良好的结合,石墨烯层浸入到稀土层中,结合紧密。因此,钼酸盐层、稀土层、石墨烯层组成的复合膜与基体结合力强。
至此,得到由钼酸盐层、稀土层和石墨烯层复合而成的化学转化复合膜。
表11石墨烯处理液组分,单位:g/L,C2H5OH单位为mL/L;
Figure BDA0003283262170000131
Figure BDA0003283262170000141
表12制备石墨烯层工艺参数,单位:厚度增量mg˙cm-2;温度℃;时间min;
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
厚度增量 0.28 0.29 0.38 0.42 .050 0.52
固化温度 85 85 85 90 90 90
固化时间 1.5 1.5 1.8 1.8 2.0 2.0
在大气环境下,镁合金容易腐蚀,致使镁合金构件的寿命和使用安全性降低。因此,镁合金表面防护处理尤其重要。评价镁合金表面防护膜耐腐蚀性能的方法有点滴试验、浸泡试验、盐雾试验和电化学测试技术,其中,电化学测试技术是测定防护膜腐蚀速率最直接、最快速和最准确的方法之一。
在室温条件下,以3.5%的NaCl溶液为腐蚀液,依据ASTM G31金属的实验室浸泡腐蚀标准,采用CHI660D型号的电化学工作站设备,对6个实施例的基体材料和制备的化学转化复合膜进行了耐腐蚀性能对比实验,其腐蚀电流密度和腐蚀电位见表13和表14,由表13和表14可见,制备的化学转化复合膜的腐蚀电流密度比基体材料降低了3的数量级,耐腐蚀能力得到明显提高。
表13基体材料耐腐蚀性能,单位:腐蚀电流密度A/cm-2;腐蚀电位V;
性能 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
腐蚀电流密度Icorr 2.45×10-5 5.40×10-5 4.45×10-5 2.45×10-5 5.40×10-5 4.45×10-5
腐蚀电位Ecorr -1.254 -1.510 -1.750 -1.254 -1.510 -1.750
表14化学转化复合膜性能,单位:腐蚀电流密度A/cm-2;腐蚀电位V;
性能 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
腐蚀电流密度Icorr 6.73×10-8 1.71×10-7 8.05×10-8 4.13×10-8 9.80×10-8 3.68×10-8
腐蚀电位Ecorr -1.063 -1.246 -1.454 -1.015 -1.250 -1.480

Claims (6)

1.一种镁合金化学转化复合膜,其特征在于:由钼酸盐层、稀土层和石墨烯层组成;其中,所述钼酸盐层由MgO和MgMoO4组成,与基体相接,为化学转化复合膜的底层;所述稀土层由MgO、MgMoO4、La2O3、Nd2O3组成,为化学转化复合膜的中间层;所述石墨烯层由γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO组成,为所述化学转化复合膜的外层。
2.如权利要求1所述镁合金化学转化复合膜,其特征在于:所述钼酸盐层厚度增量为0.48~0.82mg·cm-2
3.如权利要求1所述镁合金化学转化复合膜,其特征在于:所述稀土层厚度增量为4.06~5.74mg·cm-2
4.如权利要求1所述镁合金化学转化复合膜,其特征在于:所述石墨烯层厚度增量为0.28~0.52mg·cm-2
5.一种制备如权利要求1所述镁合金化学转化复合膜的方法,其特征在于:包括表面预处理、制备钼酸盐层、制备稀土层和制备石墨烯层的步骤,具体过程是:
步骤1,表面预处理:
第一步,配制碱溶液:采用常规溶液配制方法,依次将NaOH、Na2CO3加入水中,至完全溶解,得到碱溶液;所述水为蒸馏水或去离子水;
第二步,浸泡:将镁合金浸入所述碱溶液中,温度保持在50℃,浸泡时间为5~10min;取出,用水清洗,吹干,得到表面清洁的镁合金;
步骤2,制备钼酸盐层:
制备钼酸盐层是以步骤1得到的表面清洁的镁合金为基体,在钼酸盐转化液中化学转化的过程;所述钼酸盐转化液由C18H29O3SNa、Na2MoO4、C6H8O7和水组成,其中,各组分占溶液的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、水为溶剂;
第一步,配制C18H29O3SNa水溶液:取钼酸盐转化液所需水用量的二分之一,加入到钼酸盐转化容器中,将所需重量的C18H29O3SNa加入所述钼酸盐转化容器中,以30~50r/min速度匀速搅拌,至完全溶解,得到C18H29O3SNa水溶液;
第二步,配制钼酸盐转化液:将所需重量的Na2MoO4、C6H8O7依次加入到所述C18H29O3SNa水溶液中,以20~30r/min速度匀速搅拌,至完全溶解;得到钼酸盐转化液原液;将钼酸盐转化液所需二分之一的水加入到钼酸盐转化液原液中,搅拌,得到钼酸盐转化液;
第三步,化学转化钼酸盐层:将表面预处理的镁合金浸入到所述钼酸盐转化液中,钼酸盐转化液温度保持在50~60℃,进行化学转化,在镁合金表面形成由MgO、MgMoO4组成的钼酸盐层,至钼酸盐层厚度增量为0.48~0.82mg·cm-2,在镁合金表面得到所需厚度增量的钼酸盐层;
步骤3,制备稀土层:
制备稀土层是以附着钼酸盐层的镁合金为基体,在稀土转化液中化学转化的过程;所述稀土转化液由C18H29O3SNa、Na2MoO4、C6H8O7、La(NO3)3、Nd(NO3)3和水组成,其中,各组分占溶液的重量比分别是:C18H29O3SNa为0.1~0.2g/L、Na2MoO4为8.0~12.0g/L、C6H8O7为4.0~6.0g/L、La(NO3)3为1.8~2.2g/L、Nd(NO3)3为1.2~1.8g/L、水为溶剂;所述水为蒸馏水或去离子水;
第一步,配制La(NO3)3水溶液:将所需重量的La(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到La(NO3)3水溶液;
第二步,配制Nd(NO3)3水溶液:将所需重量的Nd(NO3)3加入到稀土转化液所需水用量四分之一的水中,以30~50r/min速度匀速搅拌,至完全溶解,得到Nd(NO3)3水溶液;
第三步,一次混合:在所述钼酸盐转化液原液中加入所述La(NO3)3水溶液以20~30r/min速度匀速搅拌5~10min,至混合均匀;得到一次混合液;一次混合液中,所述钼酸盐转化液原液和所述La(NO3)3水溶液的用量的容积比为2∶1;
第四步,二次混合:在所述一次混合液中加入所述Nd(NO3)3水溶液,以20~30r/min速度匀速搅拌5~10min,至混合均匀,得到稀土转化液;稀土转化液配制过程中,所述钼酸盐转化液原液、所述La(NO3)3水溶液、所述Nd(NO3)3水溶液三者用量的容积比为2∶1∶1;
第五步,化学转化稀土层:将附着钼酸盐层的镁合金为基体浸入稀土转化液中,稀土转化液温度保持在60~70℃,进行化学转化,形成由MgO、MgMoO4、La2O3、Nd2O3组成的稀土层,至稀土层厚度增量为4.06~5.74mg·cm-2,得到所需厚度增量的稀土层;
步骤4,制备石墨烯层:
制备石墨烯层是以步骤3得到的附着钼酸盐层和稀土层的镁合金为基体,在石墨烯处理液中通过化学处理的过程;石墨烯处理液由γ-氨丙基三乙氧基硅烷KH-550、C2H5OH、氧化石墨烯GO、NaOH和水组成;石墨烯处理液pH值为9;在石墨烯处理液中,各组分占溶液的重量比分别是:γ-氨丙基三乙氧基硅烷KH-550为15.0~20.0g/L、C2H5OH为150~350mL/L、氧化石墨烯GO为1.5~5.0g/L、水为溶剂、NaOH的用量由石墨烯处理液pH值确定;
第一步,配制氧化石墨烯乙醇溶液:将所需量的GO加入到所需量的C2H5OH中;采用超声处理方法,超声处理至氧化石墨烯全部溶解,得到氧化石墨烯乙醇溶液;
第二步,配制氧化石墨烯乙醇水溶液:在所述氧化石墨烯乙醇溶液中加入所需量的水,混合,得到氧化石墨烯乙醇水溶液原液;用含量为40g/L的NaOH水溶液调节所述氧化石墨烯乙醇水溶液原液的pH值,使其达到pH=9.0,得到氧化石墨烯乙醇水溶液;
第三步,水解:将所需量的γ-氨丙基三乙氧基硅烷KH-550加入到所述氧化石墨烯乙醇水溶液中,室温下水解,至γ-氨丙基三乙氧基硅烷KH-550全部溶解,得到石墨烯处理液;
第四步,化学处理将附着钼酸盐层和稀土层的镁合金浸入到室温的石墨烯处理液中,至石墨烯层厚度增量为0.28~0.52mg·cm-2
第五步,固化处理:将附着石墨烯层厚度增量为0.28~0.52mg·cm-2的镁合金取出,置入烘箱进行固化处理,得到由γ-氨丙基三乙氧基硅烷KH-550和氧化石墨烯GO组成的石墨烯层,固化温度保持在85~90℃,固化时间为1.5~2.0h;
至此,得到由所述钼酸盐层、所述稀土层和所述石墨烯层复合而成的所述化学转化复合膜。
6.如权利要求5所述制备镁合金化学转化复合膜的方法,其特征在于所述碱溶液中各组分的重量比分别是:NaOH为40~60g/L、Na2CO3为20~30g/L、水为溶剂。
CN202111139140.3A 2021-09-28 2021-09-28 镁合金化学转化复合膜及其制备方法 Active CN113913803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111139140.3A CN113913803B (zh) 2021-09-28 2021-09-28 镁合金化学转化复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111139140.3A CN113913803B (zh) 2021-09-28 2021-09-28 镁合金化学转化复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113913803A CN113913803A (zh) 2022-01-11
CN113913803B true CN113913803B (zh) 2023-07-11

Family

ID=79236530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111139140.3A Active CN113913803B (zh) 2021-09-28 2021-09-28 镁合金化学转化复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113913803B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878377A (zh) * 2015-05-20 2015-09-02 哈尔滨工业大学 一种在镁合金表面制备氧化石墨烯与微弧氧化陶瓷复合膜层的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755918B2 (en) * 2002-06-13 2004-06-29 Ming-Der Ger Method for treating magnesium alloy by chemical conversion
KR101316916B1 (ko) * 2011-12-27 2013-10-18 재단법인 포항산업과학연구원 마그네슘 합금 판재 및 이를 이용한 주방용기 제조방법
PT106302A (pt) * 2012-05-09 2013-11-11 Inst Superior Tecnico Revestimentos híbridos para otimização da proteção anti-corrosiva de ligas de magnésio
US9228263B1 (en) * 2012-10-22 2016-01-05 Nei Corporation Chemical conversion coating for protecting magnesium alloys from corrosion
CN103774133B (zh) * 2014-02-25 2016-08-17 无锡铱美特科技有限公司 镁合金表面无磷无铬无氟转化成膜液及其使用方法
EP2915903B1 (en) * 2014-03-05 2018-02-21 The Boeing Company Chromium-free conversion coating
CN105369239B (zh) * 2015-11-19 2017-12-05 上海应用技术学院 一种氧化石墨烯掺杂钝化膜的制备方法
CN106868486B (zh) * 2015-12-14 2019-07-23 宝山钢铁股份有限公司 一种镁合金用复合物化学转化膜的成膜处理剂及成膜工艺
CN105624664A (zh) * 2016-03-15 2016-06-01 赣南师范学院 一种镁合金表面稀土化学转化膜的封孔方法
US20210207272A1 (en) * 2018-09-25 2021-07-08 Hewlett-Packard Development Company, L.P. Magnesium alloy layered composites for electronic devices
CN112831820B (zh) * 2020-12-30 2022-06-24 上海应用技术大学 一种纳米粒子掺杂多孔石墨烯/稀土多层复合硅烷膜及其电沉积制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878377A (zh) * 2015-05-20 2015-09-02 哈尔滨工业大学 一种在镁合金表面制备氧化石墨烯与微弧氧化陶瓷复合膜层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AZ31B镁合金氧化石墨烯掺杂钇盐转化膜耐蚀性研究;邹忠利;王北平;马金福;曹延秀;;表面技术(02);全文 *

Also Published As

Publication number Publication date
CN113913803A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN109852972B (zh) 一种防腐碳纳米管/硅烷复合超疏水涂层及制备方法
CN101481553A (zh) 一种常温固化的自组装复合纳米氧化物防腐涂料
CN102560591B (zh) 一种微弧氧化电解液及微弧氧化方法
CN101643898B (zh) 无磷成膜剂及其制备方法
EP2957657B1 (en) Single-sided electro-galvanized non-chrome surface treatment steel plate for fuel tank, and surface treatment agent
CN102677039B (zh) 一种铝及铝合金表面硅烷稀土复合保护膜及其制备方法
CN101629287B (zh) 一种镁合金表面处理工艺
CN101054664A (zh) 铝合金表面制备耐腐蚀性氧化膜的无铬处理液及其处理使用方法
CN104651908A (zh) 一种镁合金表面陶瓷膜层的制备方法及封孔方法
CN105463549A (zh) 一种提高铝及铝合金防护性能的阳极化方法
CN113106434B (zh) 一种环保型铝合金化学氧化液及化学氧化方法
CN107893223A (zh) 一种锌层表面高耐蚀自清洁超疏水磷化复合膜层的制备方法
CN103122186A (zh) 一种钢轨防腐用环保型处理液及防腐钢轨材料
CN104141138A (zh) 一种镁合金表面微弧氧化-复合化学镀镍涂层的制备方法
CN105602372A (zh) 镁合金表面防护的高硬度耐腐蚀复合涂料及其制备方法
CN113913803B (zh) 镁合金化学转化复合膜及其制备方法
CN102732870A (zh) 铝型材表面制备Al-Mo-Mn-Re四元复合钝化膜的处理液及其使用方法
CN106128744A (zh) 一种烧结钕铁硼磁体表面暂时性防护的有机涂层及其制备方法
CN103031551B (zh) 一种含有乙二胺四亚甲基叉膦酸钠的金属表面硅烷处理剂及其制备方法
Li et al. Dynamic corrosion behavior of superhydrophobic surfaces
CN103086743A (zh) 用于镁合金服役的纳米自组装渗透剂及其制备方法和应用
CN105543824B (zh) 一种在铝合金表面制备锆/硒复合转化膜的方法
CN104233261A (zh) 一种钢铁表面无铬无磷钝化液
CN115216759B (zh) 一种亲水化学转化成膜液及铝合金表面处理方法
CN115725964B (zh) 一种低温少渣磷化液及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant