CN113913764A - 一种高迁移率透明导电氧化物薄膜及其制备方法 - Google Patents

一种高迁移率透明导电氧化物薄膜及其制备方法 Download PDF

Info

Publication number
CN113913764A
CN113913764A CN202111156884.6A CN202111156884A CN113913764A CN 113913764 A CN113913764 A CN 113913764A CN 202111156884 A CN202111156884 A CN 202111156884A CN 113913764 A CN113913764 A CN 113913764A
Authority
CN
China
Prior art keywords
sputtering
target
argon
tellurium
tco film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111156884.6A
Other languages
English (en)
Other versions
CN113913764B (zh
Inventor
黄仕华
李林华
郝亚非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jietai New Energy Technology Co ltd
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202111156884.6A priority Critical patent/CN113913764B/zh
Publication of CN113913764A publication Critical patent/CN113913764A/zh
Application granted granted Critical
Publication of CN113913764B publication Critical patent/CN113913764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高迁移率透明导电氧化物薄膜及其制备方法,TCO薄膜生长采用反应射频磁控溅射法,在室温下生长碲与钪共掺杂的氧化铟TCO薄膜;溅射用靶材为铟靶、碲靶、钪靶,溅射工作气体为氩气,反应气体为氧气;在TCO薄膜生长之前,溅射室只通入氩气,对三靶进行15‑30分钟的预溅射,去除靶材表面吸附的杂质以及表面氧化物,当TCO薄膜开始生长时,氩气和氧气经过混气室充分混合以后进入溅射室,氩气与氧气的流量之比为50:1~20:1,溅射气压为0.1~0.4 Pa;铟靶溅射功率200 W,碲靶溅射功率为20~30 W,钪靶溅射功率为1~2 W;基底沉积温度为室温,溅射时间为10~20分钟。本发明获得的TCO薄膜中的载流子迁移率高、电阻率较低,同时光透过率也高。

Description

一种高迁移率透明导电氧化物薄膜及其制备方法
技术领域
本发明属于透明导电氧化物薄膜领域,涉及一种高载流子迁移率的透明导电氧化物薄膜及其制备方法。
背景技术
透明导电氧化物(TCO)薄膜具有光透过率高、导电性能优良等特点,在平板显示器、太阳能电池等领域有着广泛的应用。影响TCO薄膜的低电阻率和高光透过率的两个关键因素是载流子浓度和载流子迁移率,为了降低薄膜的电阻率,可以通过增加载流子浓度来实现,但载流子浓度的增加会引起寄生自由载流子吸收,从而降低薄膜的光透过率。增加TCO薄膜的迁移率也可以降低薄膜电阻率,但不会引起光透过率的减少,因此,提高薄膜的迁移率对于获得低电阻率和高光透过率的TCO薄膜非常关键。
材料的迁移率主要由包括声子和杂质在内的载流子散射过程决定,除此之外,还与薄膜内的晶界、位错等结构缺陷相关,而且,薄膜表面和界面的粗糙度也会对载流子进行散射。通过优化掺杂浓度以减少电离杂质和中性散射的影响,或优化材料结构以减少晶界散射,是目前同时获得高迁移率和低电阻率的主要方法。TCO薄膜中的高迁移率是由掺杂杂质的散射截面较低导致的,抑制了氧间隙的散射。在氧化镉(CdO)掺钇、镝、钪或铟等元素,可以抑制缺陷的散射,获得高迁移率的TCO薄膜,然而,镉的毒性阻碍了CdO基TCO薄膜的大规模产业化应用。
发明内容
本发明的目的是提供电阻率低、光学透过率高的氧化铟TCO薄膜,以及此种TCO薄膜的制备方法。
我们通过理论模拟计算发现,在氧化铟(In2O3)掺入碲(Te)元素,氧化铟的最低导带与碲掺杂的相关轨道发生相互重叠的几率很小,因此,碲掺杂的氧化铟中的电子受到掺入杂质原子的散射几率很低,电子的平均自由程时间较长,电子的有效质量较小且与载流子浓度的关联性较弱。另外,与80pm的锡离子(Sn4+)半径相比,97pm的碲离子(Te4+)半径更接近铟离子(In3+)半径(94pm),从而碲掺杂大幅降低了掺杂原子引起的晶格应变。同时,碲掺杂降低了氧空位浓度,使得氧空位对杂质的散射较低。因此,碲掺杂的氧化铟TCO薄膜中的载流子迁移率高、电阻率较低,同时光透过率也高,这主要归功于碲掺杂剂和氧空位的低杂质散射。
此外,通过计算我们还发现,掺入少量的钪元素,由于钪原子具有较大的电子价态密度,导致氧化铟晶胞的费米能级升高,在费米能级附近形成新的电子占据态,从而降低了氧化铟晶胞的形成自由能,可以增加晶粒成核的几率,增大TCO薄膜中晶粒的尺寸,达到减少晶界散射的目的,提高了薄膜的迁移率。钪的掺杂还起到了一个作用,那就是阻止碲在薄膜后续的退火过程的析出。
在此基础上,本发明采用的技术方案是这样的:
一种高迁移率透明导电氧化物薄膜的制备方法,包括下述步骤:
1)清洗玻璃衬底:以普通玻璃为衬底,反复清洗干净后吹干;
2)TCO薄膜生长:采用反应射频磁控溅射法,在室温下生长碲与钪共掺杂的氧化铟TCO薄膜;溅射用靶材为铟靶、碲靶、钪靶,纯度均大于99.99%,溅射工作气体为氩气,反应气体为氧气,纯度均大于99.999%;溅射室的本底真空优于4×10-5Pa,靶材与样品之间距离为12~15cm;在TCO薄膜生长之前,溅射室只通入氩气,对三靶进行15-30分钟的预溅射,去除靶材表面吸附的杂质以及表面氧化物,当TCO薄膜开始生长时,氩气和氧气经过混气室充分混合以后进入溅射室,氩气与氧气的流量之比为50:1~20:1,溅射气压为0.1~0.4Pa;铟靶溅射功率200W,碲靶溅射功率为20~30W,钪靶溅射功率为1~2W;基底沉积温度为室温,溅射时间为10~20分钟;
3)退火处理:放入氢气氛围中在400~500℃温度下退火20~30分钟。
本发明的另一技术方案是通过以上方法制备得到的高迁移率透明导电氧化物薄膜。
本发明提出了在氧化铟中掺入适量的碲、钪,提高了TCO薄膜中载流子迁移率。采用反应磁控溅射的方法制备碲与钪共掺杂的氧化铟薄膜,然后在氢气氛围下进行退火处理,减少了薄膜中的缺陷密度。从而可获得电阻率低、光学透过率高的氧化铟TCO薄膜。
具体实施方式
1.玻璃衬底的清洗
以普通玻璃为衬底,首先采用去污粉清洗,之后用去离子水冲洗。其次,放入浓硫酸与双氧水的混合比例为2:1的溶液中浸泡10分钟,然后用去离子水反复冲洗干净,之后用酒精冲洗,最后氮气吹干。
2.TCO薄膜生长
采用反应射频磁控溅射(三靶共溅)方法,在室温下生长碲与钪共掺杂的氧化铟TCO薄膜。溅射用靶材为铟靶、碲靶、钪靶,纯度均大于99.99%,溅射工作气体为氩气,反应气体为氧气,纯度均大于99.999%。溅射室的本底真空优于4×10-5Pa,靶材与样品之间距离为12~15cm。在TCO薄膜生长之前,溅射室只通入氩气,对三靶进行15-30分钟的预溅射,去除靶材表面吸附的杂质以及表面氧化物。当TCO薄膜开始生长时,氩气和氧气经过混气室充分混合以后进入溅射室,氩气与氧气的流量之比为50:1~20:1,溅射气压为0.1~0.4Pa。铟靶溅射功率200W,碲靶溅射功率为20~30W,钪靶溅射功率为1~2W。基底沉积温度为室温,溅射时间为10~20分钟。
3.退火处理
在室温下生长的碲与钪共掺杂氧化铟TCO薄膜,随后放入氢气氛围中在400~500℃温度下退火20~30分钟。
4.薄膜性能测试分析
薄膜的厚度用台阶仪测量,方块电阻利用四探针测试仪测量,电导率通过薄膜厚度与方块电阻乘积得到。薄膜的透射率用分光光度计测量,迁移率采用范德堡法测量,并得到载流子浓度。

Claims (2)

1.一种高迁移率透明导电氧化物薄膜的制备方法,包括下述步骤:
1)清洗玻璃衬底:以普通玻璃为衬底,反复清洗干净后吹干;
2)TCO薄膜生长:采用反应射频磁控溅射法,在室温下生长碲与钪共掺杂的氧化铟TCO薄膜;溅射用靶材为铟靶、碲靶、钪靶,纯度均大于99.99%,溅射工作气体为氩气,反应气体为氧气,纯度均大于99.999%;溅射室的本底真空优于4×10-5Pa,靶材与样品之间距离为12~15cm;在TCO薄膜生长之前,溅射室只通入氩气,对三靶进行15-30分钟的预溅射,去除靶材表面吸附的杂质以及表面氧化物,当TCO薄膜开始生长时,氩气和氧气经过混气室充分混合以后进入溅射室,氩气与氧气的流量之比为50:1~20:1,溅射气压为0.1~0.4Pa;铟靶溅射功率200W,碲靶溅射功率为20~30W,钪靶溅射功率为1~2W;基底沉积温度为室温,溅射时间为10~20分钟;
3)退火处理:放入氢气氛围中在400~500℃温度下退火20~30分钟。
2.如权利要求1所述的方法所制备的高迁移率透明导电氧化物薄膜。
CN202111156884.6A 2021-09-30 2021-09-30 一种高迁移率透明导电氧化物薄膜及其制备方法 Active CN113913764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111156884.6A CN113913764B (zh) 2021-09-30 2021-09-30 一种高迁移率透明导电氧化物薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111156884.6A CN113913764B (zh) 2021-09-30 2021-09-30 一种高迁移率透明导电氧化物薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113913764A true CN113913764A (zh) 2022-01-11
CN113913764B CN113913764B (zh) 2023-05-16

Family

ID=79237553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111156884.6A Active CN113913764B (zh) 2021-09-30 2021-09-30 一种高迁移率透明导电氧化物薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113913764B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315106A (ja) * 1989-06-13 1991-01-23 Tosoh Corp 酸化物焼結体及びその用途
JP2001152323A (ja) * 1999-11-29 2001-06-05 Canon Inc 透明電極および光起電力素子の作製方法
JP2004299963A (ja) * 2003-03-31 2004-10-28 Toyobo Co Ltd In2O3材料およびそれより成る半導体装置、システム
CN1795516A (zh) * 2003-05-26 2006-06-28 日本曹达株式会社 带有透明导电膜的透光性基板
CN1957425A (zh) * 2004-05-21 2007-05-02 Tdk株式会社 透明导电材料、透明导电膏、透明导电膜和透明电极
CN101514440A (zh) * 2009-02-19 2009-08-26 浙江大学 一种高电子迁移率氧化铟透明薄膜的制备方法
CN102482796A (zh) * 2009-08-24 2012-05-30 第一太阳能有限公司 掺杂的透明导电氧化物
US20140269238A1 (en) * 2013-03-15 2014-09-18 Seagate Technology Llc Head transducer employing thermal sensor with high-tcr transparent conducting oxide
CN105321827A (zh) * 2015-10-26 2016-02-10 华南理工大学 湿法刻蚀型氧化物薄膜晶体管的制备方法及所制备的薄膜晶体管
CN106927689A (zh) * 2017-04-17 2017-07-07 华南理工大学 一种氧化物半导体薄膜及其制备工艺
CN109504941A (zh) * 2018-12-27 2019-03-22 浙江师范大学 氟和钼共掺杂氧化锌透明导电薄膜的制备方法
CN112713196A (zh) * 2020-12-11 2021-04-27 广州国显科技有限公司 一种薄膜晶体管及其制备方法和阵列基板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315106A (ja) * 1989-06-13 1991-01-23 Tosoh Corp 酸化物焼結体及びその用途
JP2001152323A (ja) * 1999-11-29 2001-06-05 Canon Inc 透明電極および光起電力素子の作製方法
JP2004299963A (ja) * 2003-03-31 2004-10-28 Toyobo Co Ltd In2O3材料およびそれより成る半導体装置、システム
CN1795516A (zh) * 2003-05-26 2006-06-28 日本曹达株式会社 带有透明导电膜的透光性基板
CN1957425A (zh) * 2004-05-21 2007-05-02 Tdk株式会社 透明导电材料、透明导电膏、透明导电膜和透明电极
CN101514440A (zh) * 2009-02-19 2009-08-26 浙江大学 一种高电子迁移率氧化铟透明薄膜的制备方法
CN102482796A (zh) * 2009-08-24 2012-05-30 第一太阳能有限公司 掺杂的透明导电氧化物
US20140269238A1 (en) * 2013-03-15 2014-09-18 Seagate Technology Llc Head transducer employing thermal sensor with high-tcr transparent conducting oxide
CN105321827A (zh) * 2015-10-26 2016-02-10 华南理工大学 湿法刻蚀型氧化物薄膜晶体管的制备方法及所制备的薄膜晶体管
CN106927689A (zh) * 2017-04-17 2017-07-07 华南理工大学 一种氧化物半导体薄膜及其制备工艺
CN109504941A (zh) * 2018-12-27 2019-03-22 浙江师范大学 氟和钼共掺杂氧化锌透明导电薄膜的制备方法
CN112713196A (zh) * 2020-12-11 2021-04-27 广州国显科技有限公司 一种薄膜晶体管及其制备方法和阵列基板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. H. LEE ET AL: "Spray pyrolysis deposition for indium oxide doped with different impurities" *
原子健;朱夏明;王雄;张莹莹;万正芬;邱东江;吴惠桢;杜滨阳;: "氧化铟薄膜制备及其特性研究" *

Also Published As

Publication number Publication date
CN113913764B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Wang et al. Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films
Wang et al. Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications
Minami et al. Preparation of transparent and conductive In2O3–ZnO films by radio frequency magnetron sputtering
Zhu et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere
De et al. A study of the structural and electronic properties of magnetron sputtered tin oxide films
Li et al. Study on the hydrogen doped indium oxide for silicon heterojunction solar cell application
Guo et al. Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells
CN100565716C (zh) 透明导电薄膜及其制备方法
CN102071402A (zh) 一种金属掺杂氧化锌基薄膜的制备方法
Jung et al. Properties of AZO thin films for solar cells deposited on polycarbonate substrates
CN113913764B (zh) 一种高迁移率透明导电氧化物薄膜及其制备方法
EP2690192B1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
KR100682741B1 (ko) 산화 아연 계 투명 전도성 산화물 박막의 제조 방법
Sun et al. Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature
Meng et al. Optical and electrical properties of H and V co-doped ZnO films sputtered at room temperature
CN103103479B (zh) 一种硫氮共掺杂制备p型氧化锌薄膜的方法
CN112968076A (zh) 一种透明导电薄膜的制备方法
KR100806681B1 (ko) 주기적 급속 열처리에 의한 고전도성 산화아연의 제조방법
KR20140120663A (ko) 산화알루미늄아연 박막의 제조 방법
CN110970523A (zh) 一种硅基异质结太阳能电池及制造方法
CN117293204A (zh) 一种透明导电氧化物薄膜
CN114134475A (zh) 一种高迁移率、高透光igzo薄膜的制备方法及其应用
Chang et al. Influence of applied power in microwave hydrogen plasma annealing on aluminum doped zinc oxide/tin doped indium oxide bilayer films for low emissivity application
CN117684137A (zh) 一种高性能多元掺杂氧化锌透明导电薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231220

Address after: No. 18, Wenshan Road, Chahe Town, Lai'an County, Chuzhou City, Anhui Province 239200

Patentee after: Chuzhou Jietai New Energy Technology Co.,Ltd.

Address before: 321004 No. 688 Yingbin Road, Zhejiang, Jinhua

Patentee before: ZHEJIANG NORMAL University