CN113912966B - 一种高介电性能三元复合材料及其制备方法 - Google Patents

一种高介电性能三元复合材料及其制备方法 Download PDF

Info

Publication number
CN113912966B
CN113912966B CN202111136204.4A CN202111136204A CN113912966B CN 113912966 B CN113912966 B CN 113912966B CN 202111136204 A CN202111136204 A CN 202111136204A CN 113912966 B CN113912966 B CN 113912966B
Authority
CN
China
Prior art keywords
composite material
sicnws
znow
coupling agent
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111136204.4A
Other languages
English (en)
Other versions
CN113912966A (zh
Inventor
翁凌
苏宇
关丽珠
王小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111136204.4A priority Critical patent/CN113912966B/zh
Publication of CN113912966A publication Critical patent/CN113912966A/zh
Application granted granted Critical
Publication of CN113912966B publication Critical patent/CN113912966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高介电性能三元复合材料及其制备方法,属于嵌入式电容器和半导体存储器件等的应用领域。本发明复合材料由聚偏氟乙烯和填料组成,填料为硅烷偶联剂KH550改性碳化硅纳米线和硅烷偶联剂KH570改性四针状氧化锌晶须;是按下述步骤进行的:将KH550‑SiCNWs和KH570‑T‑ZnOw溶于N,N二甲基甲酰胺中,室温超声震荡至少2h,加入PVDF粉末,在室温下超声溶解反应至少4h,得到掺杂改性填料溶胶;然后进行抽滤和抽气泡,然后铺膜,然后烘干,得到复合薄膜;积叠放后热压,得高介电性能三元复合材料。相较于SiCNWs/PVDF二元复合材料,本发明的三元复合材料具有更加优异的介电性能。

Description

一种高介电性能三元复合材料及其制备方法
技术领域
本发明涉及一种高介电性能三元复合材料。属于嵌入式电容器和半导体存储器件等的应用领域。
背景技术
随着我国经济和科技的高速发展,电容器的微型化和嵌入式以及高容量存储器件的需求急剧增加。以聚合物为基体制备具有高介电常数和低接电损耗的杂化材料成为现代电介质材料的发展趋势。
聚偏氟乙烯较其他聚合物具有较高的介电常数、较低的介电损耗和良好的柔韧性,所以被广泛应用于嵌入式电容器和半导体存储器件中。但是,聚偏氟乙烯是一种热塑性聚合物,有限的介电常数满足不了现代嵌入式电容器和半导体存储器件对材料高介电性能的要求,碳化硅纳米线作为高介电常数的铁电陶瓷广泛应用于聚合物中改善聚合物的介电性能。
但是掺杂量较高时,随着复合材料的介电常数的提高时其介电损耗也急剧上升,达不到高容量电器元件对聚合物介电性能的要求。因此,开发一种高介电常数、低介电损耗性能的杂化材料具有十分重要的意义。
发明内容
本发明的目的是提供一种高介电性能三元复合材料。
以质量百分比计,高介电性能三元复合材料由70%~80%的聚偏氟乙烯(PVDF)和20%~30%的填料组成,其中,填料为硅烷偶联剂KH550改性碳化硅纳米线和硅烷偶联剂KH570改性四针状氧化锌晶须;是按下述步骤进行的:
步骤a、用硅烷偶联剂KH550改性碳化硅纳米线(SiCNWs),得到KH550-SiCNWs;
步骤b、用硅烷偶联剂KH570改性四针状氧化锌晶须(T-ZnOw),得到KH570-T-ZnOw;
步骤c、将KH550-SiCNWs和KH570-T-ZnOw溶于N,N二甲基甲酰胺中,室温超声震荡至少2h,加入PVDF粉末,在室温下超声溶解反应至少4h,得到掺杂改性填料溶胶。
步骤d、对步骤c获得的溶胶进行抽滤和抽气泡,然后铺膜,然后烘干,得到复合薄膜;
步骤e、将步骤d获得的复合薄膜堆积叠放后热压,得高介电性能三元复合材料。
进一地限定,硅烷偶联剂KH550与碳化硅纳米线(SiCNWs)的质量比为0.01:1~0.05:1。
进一地限定,硅烷偶联剂KH570与四针状氧化锌晶须(T-ZnOw)的质量比为0.01:1~0.05:1。
进一地限定,碳化硅纳米线与四针状氧化锌晶须的质量之比为(1~5):1。
进一地限定,聚偏氟乙烯的分子量为500000~800000。
进一地限定,所述碳化硅纳米线的直径为0.5~1μm,长径比为100~120。
进一地限定,步骤a所述改性是将0.5g~1g碳化硅纳米线(SiCNWs)分散在100ml~200ml醇水溶液中,加入0.01g~0.05g硅烷偶联剂KH550,在50℃~100℃下恒温搅拌2h以上,置于80℃~100℃的烘箱中鼓风烘干6h~12h后,得到KH550-SiCNWs,所述醇水溶液为体积浓度为95%的乙醇的去离子水溶液。
进一地限定,步骤b所述改性是将0.5g~1g四针状氧化锌晶须(T-ZnOw)分散在100ml~200ml醇水溶液中,加入0.01g~0.05g硅烷偶联剂KH570,在50℃~100℃下恒温搅拌2h以上,置于80℃~100℃的烘箱中鼓风烘干6h~12h后,得到KH570-T-ZnOw,所述醇水溶液为体积浓度为95%的乙醇的去离子水溶液。
进一地限定,步骤d中在80℃~100℃下烘干4h~8h。
进一地限定,步骤e中热压是用平板硫化机在180℃~190℃的温度、5MPa~15MPa的压力下进行热压0.5h~1h。
本发明制备的高介电性能三元复合材料,将其应用于制备嵌入式电容器和半导体存储器件中,能有效增加其与主板聚合物的相容性,以及有效提高其的电容性和存储量,为微型嵌入式电容和高存储量的半导体存储器件的开发提供一种新技术。
本发明制备的高介电性能三元复合材料,用改性的碳化硅纳米线掺杂聚偏氟乙烯(PVDF),极大的提高了复合材料的介电常数,用改性的四针状氧化锌晶须掺杂聚偏氟乙烯(PVDF),有效的降低了复合材料的介电损耗。
本发明制备的高介电性能三元复合材料,所述的三元复合材料的厚度为60μm~100μm。其厚度小,介电性能好,与主板聚合物的相容性能好,充分发挥了其嵌入式电容器和高半导体存储器件的应用能力。
本发明制备的高介电性能三元复合材料,其制备方法简单,制备过程中不需要高温高压煅烧处理,成本低安全系数高,适合工业化生产。
提供的高介电性能三元复合材料由聚合物基体聚偏氟乙烯(PVDF)和半导体填料碳化硅纳米线(SiCNWs)及新型增强材料四针状氧化锌晶须(T-ZnOw)组成。复合材料中,PVDF所占质量分数为70wt%~80wt%,SiCNWs所占质量分数为10wt%~30wt%,T-ZnOw所占质量分数为0wt%~10wt%。本发明通过将PVDF、SiCNWs、T-ZnOw和N,N-二甲基甲酰胺(DMF)溶剂混合,室温超声搅拌6h,将所得前驱体溶液在玻璃板上涂膜后,置于85℃烘箱中干燥6h,得到固体复合薄膜。所得薄膜叠放30层在平板硫化机中进行热压处理得到三元复合材料。
附图说明
图1是PVDF基复合材料的断面扫描图;
图2a是PVDF基复合材料的介电常数图谱;
图2b是PVDF基复合材料的介电损耗图谱。
具体实施方式
实施例1:本实施例中高介电性能三元复合材料的制备方法,其特在在于所述制备方法是按下述步骤进行的:
步骤a、用硅烷偶联剂KH550改性碳化硅纳米线(SiCNWs),是将0.8g SiCNWs分散在120ml体积浓度为95%的乙醇去离子水溶液中,加入0.016g KH550,在60℃下恒温搅拌4h,置于90℃的烘箱中鼓风烘干10h后,得到KH550-SiCNWs;
步骤b、用硅烷偶联剂KH570改性四针状氧化锌晶须(T-ZnOw),是将0.8gT-ZnOw分散在120ml体积浓度为95%的乙醇去离子水溶液中,加入0.016gKH570,在70℃下恒温搅拌4h,置于90℃的烘箱中鼓风烘干10h后,得到KH570-T-ZnOw;
步骤c、将2.5625g填料KH550-SiCNWs和KH570-T-ZnOw溶于50mL N,N二甲基甲酰胺中,SiCNWs与T-ZnOw的质量之比为1:0(对比例)、1:1、2:1、3:1、4:1或5:1,室温超声震荡2h,加入10.25gPVDF粉末,在室温下超声溶解反应4h,得到掺杂改性填料溶胶。
步骤d、对步骤c获得的溶胶进行抽滤和抽气泡,然后铺膜,然后在85℃下烘干6h,得到复合薄膜;
步骤e、将步骤d获得的复合薄膜裁剪成10cm×10cm大小的正方形,堆积叠放30层用平板硫化机在180℃的温度、15MPa的压力下进行压片,30min后,得高介电性能三元复合材料。
本实施例中聚偏氟乙烯的分子量为500000。
所述碳化硅纳米线的直径为0.5~1μm,长径比为100~120。
PVDF基复合材料的断面扫描图如图1所示,图1(a)为纯PVDF的断面扫描图,图1(b)为SiCNWs/PVDF二元复合材料的断面扫描图,图1(c)为SiCNWs与T-ZnOw的质量之比为3:1制备的SiCNWs/T-ZnOw/PVDF三元复合材料的断面扫描图,在图1中可以清楚地观察到填料在PVDF基体中的分散情况,当掺杂一种填料SiCNWs时,如图1(b)所示,大部分SiCNWs填料晶须相互接触和重叠,出现孔洞、团聚等缺陷;当掺杂两种填料SiCNWs和T-ZnOw时,如图1(b)所示,SiCNWs和T-ZnOw随机分散在PVDF基体中,没有明显的团聚现象。这是由于T-ZnOw的存在,填料表面的粗糙度增加,这有效地提高了填料与PVDF基体之间的界面结合力,增强的分散性可以归因于SiCNWs和T-ZnOw与PVDF之间的强界面相互作用,两种填料比一种填料在PVDF基体中表现出更优异的界面相容性。
三元复合材料的介电常数图谱如图2a所示,从图中可看出,掺杂SiCNWs和T-ZnOw的复合材料的介电常数都明显高于纯PVDF的介电常数,这是因为半导体填料SiCNWS和T-ZnOw比PVDF具有更高的导电性,在纯PVDF中引入SiCNWs和T-ZnOw,相当于在这个体系中引入了许多微电容,三元复合材料界面捕获的载流子作为电子偶极子来增强复合材料的极化效应,提高了极化性能,并且添加了SiCNWs和T-ZnOw促进了更多的β型PVDF的生成,从而提高复合材料的介电常数。在100Hz下,掺杂一种填料SiCNWs时,复合材料获得的介电常数最高,达到31.05,是纯PVDF的4.01倍,在此基础上掺杂第二种填料T-ZnOw后,三元复合材料保持较高的介电常数(f=100Hz、εrmax=16.89),但是相较于SiCNWs/PVDF二元复合材料,介电常数呈下降趋势,这是由于T-ZnOw的存在有效地阻碍了电子的传递,使电子的聚集浓度减小,导致复合材料的介电常数降低。
三元复合材料的介电损耗图谱如图2b所示,从图中可看出,PVDF基复合材料的介电损耗实验值均高于纯PVDF,主要是由于填料与基体间产生界面极化,随着SiCNWs和T-ZnOw的不断加入,电场作用下的界面极化损耗愈加明显,最终造成了总损耗的提高。当掺杂一种填料SiCNWs后,复合材料的介电损耗急剧增大,在此基础上掺杂第二种填料T-ZnOw后,三元复合材料介电损耗维持在较低水平,接近纯PVDF。在测试频率为103Hz时,在SiCNWs:T-ZnOw=1:1时,三元复合材料的介电损耗为0.017,导电性较差的T-ZnOw可以提高SiCNWs电荷的保持能力,延缓PVDF分子的极化,从而降低复合材料的介电损耗。

Claims (9)

1.一种高介电性能三元复合材料,其特征在于以质量百分比计,所述复合材料是由70%~80%的聚偏氟乙烯(PVDF)和20%~30%的填料组成,其中,填料为硅烷偶联剂KH550改性碳化硅纳米线和硅烷偶联剂KH570改性四针状氧化锌晶须,碳化硅纳米线与四针状氧化锌晶须的质量之比为(1~5):1。
2.根据权利要求1所述的复合材料,其特征在于KH550与碳化硅纳米线的质量之比为0.01:1~0.05:1。
3.根据权利要求1所述的复合材料,其特征在于KH570与四针状氧化锌晶须的质量之比为0.01:1~0.05:1。
4.根据权利要求1所述的复合材料,其特征在于聚偏氟乙烯的分子量为500000~800000。
5.根据权利要求1所述的复合材料,其特征在于所述碳化硅纳米线的直径为0.5~1μm,长径比为100~120。
6.如权利要求1-5任意一项所述的一种高介电性能三元复合材料的制备方法,其特在于所述制备方法是按下述步骤进行的:
步骤a、用硅烷偶联剂KH550改性碳化硅纳米线(SiCNWs),得到KH550-SiCNWs;
步骤b、用硅烷偶联剂KH570改性四针状氧化锌晶须(T-ZnOw),得到KH570-T-ZnOw;
步骤c、将KH550-SiCNWs和KH570-T-ZnOw溶于 N,N二甲基甲酰胺中,室温超声震荡至少2h,加入PVDF粉末,在室温下超声溶解反应至少4h,得到掺杂改性填料溶胶;
步骤d、对步骤c获得的溶胶进行抽滤和抽气泡,然后铺膜,然后烘干,得到复合薄膜;
步骤e、将步骤d获得的复合薄膜堆积叠放后热压,得高介电性能三元复合材料。
7.根据权利要求6所述制备方法,其特征在于步骤a所述改性是将0.5g~1g碳化硅纳米线(SiCNWs)分散在100ml~200ml醇水溶液中,加入0.01g~0.05g硅烷偶联剂KH550,在50℃~100℃下恒温搅拌2h以上,置于80℃~100℃的烘箱中鼓风烘干6h~12h后,得到KH550-SiCNWs,所述醇水溶液为体积浓度为95%的乙醇的去离子水溶液。
8.根据权利要求6所述制备方法,其特征在于步骤b所述改性是将0.5g~1g四针状氧化锌晶须(T-ZnOw)分散在100ml~200ml醇水溶液中,加入0.01g~0.05g硅烷偶联剂KH570,在50℃~100℃下恒温搅拌2h以上,置于80℃~100℃的烘箱中鼓风烘干6h~12h后,得到KH570-T-ZnOw,所述醇水溶液为体积浓度为95%的乙醇的去离子水溶液。
9.根据权利要求6所述制备方法,其特征在于热压是用平板硫化机在180 ℃~190 ℃的温度、5MPa~15MPa的压力下进行热压0.5h~1h。
CN202111136204.4A 2021-09-27 2021-09-27 一种高介电性能三元复合材料及其制备方法 Active CN113912966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111136204.4A CN113912966B (zh) 2021-09-27 2021-09-27 一种高介电性能三元复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111136204.4A CN113912966B (zh) 2021-09-27 2021-09-27 一种高介电性能三元复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113912966A CN113912966A (zh) 2022-01-11
CN113912966B true CN113912966B (zh) 2022-09-30

Family

ID=79236347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111136204.4A Active CN113912966B (zh) 2021-09-27 2021-09-27 一种高介电性能三元复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113912966B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181330A (zh) * 2022-08-02 2022-10-14 浙江大学杭州国际科创中心 一种适用于有机硅弹体复合材料制备的氧化锌材料、其改性方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037489A (ja) * 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
CN107573645A (zh) * 2017-09-06 2018-01-12 深圳市峰泳科技有限公司 一种内置式高介电常数柔性树脂复合材料及其制备方法和应用
CN109721897A (zh) * 2019-01-22 2019-05-07 智能容电(北京)科技有限公司 一种高介电常数三相纳米复合电介质以及制备方法
CN111171379A (zh) * 2020-01-14 2020-05-19 哈尔滨理工大学 球状Ag@T-ZnOw粉体的制备方法以及制备高介电聚合物复合薄膜的方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037489A (ja) * 2012-08-17 2014-02-27 Saitama Prefecture 接着剤及び樹脂接合方法
CN107573645A (zh) * 2017-09-06 2018-01-12 深圳市峰泳科技有限公司 一种内置式高介电常数柔性树脂复合材料及其制备方法和应用
CN109721897A (zh) * 2019-01-22 2019-05-07 智能容电(北京)科技有限公司 一种高介电常数三相纳米复合电介质以及制备方法
CN111171379A (zh) * 2020-01-14 2020-05-19 哈尔滨理工大学 球状Ag@T-ZnOw粉体的制备方法以及制备高介电聚合物复合薄膜的方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Preparation and properties of polyvinylidene fluoride/tetra‐needle like‐zinc oxide whisker composites";Ling Weng等;《Advances in polymer technology》;20181231;第37卷(第1期);第1658-1654页 *
"壳结构SiC-W@SiO2/PVDF复合材料的制备与储能特性";牛艺蒙等;《东北石油大学学报》;20181231;第42卷(第03期);第102-112和129-130页 *

Also Published As

Publication number Publication date
CN113912966A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN106977771B (zh) 氮化硼-银/纤维素复合材料及其制备方法
Su et al. Recent development on modification of synthesized barium titanate (BaTiO 3) and polymer/BaTiO 3 dielectric composites
CN113004474B (zh) 一种基于前端开环易位聚合的多壁碳纳米管/钛酸钡/聚双环戊二烯复合材料及其制备方法
CN109942996B (zh) 一种复合材料制备方法及复合材料
CN113912966B (zh) 一种高介电性能三元复合材料及其制备方法
CN109370122B (zh) 一种聚偏氟乙烯/改性钛酸钡复合薄膜的制备方法
CN109265879B (zh) 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法
CN107418204B (zh) 石墨烯@钛酸铜钙-聚苯并二噁唑三相复合薄膜的制备方法
WO2021098614A1 (zh) 一种纳米复合材料及其制备方法
CN113736195B (zh) 一种耐高温铁电聚合物基介电储能复合薄膜及其制备方法和应用
CN112778611B (zh) 一种高导热高强度纳米复合材料及其制备方法
CN113121233A (zh) 一种氧化石墨烯三维自组装板材的制备工艺
CN111995780B (zh) 一种基于改性钛酸钡纳米线原位聚合高介电薄膜的制备方法
KR101482852B1 (ko) 이방성 열 전기전도 액정 조성물 및 이를 이용한 방열 및 전자파 차폐 매트릭스의 제조방법
CN111171379B (zh) 球状Ag@T-ZnOw粉体的制备方法以及制备高介电聚合物复合薄膜的方法和应用
Sagar et al. Studies on thermal and mechanical behavior of nano TiO2-epoxy polymer composite
CN111995831A (zh) 一种MXene掺杂聚偏氟乙烯复合材料及其制备方法
CN113881079B (zh) 一种高介电常数和低介电损耗的聚合物复合薄膜及其制备方法和应用
CN115418028A (zh) 一种改性钛酸钡纳米线及其高介电复合材料的制备方法
CN110615977A (zh) 一种多功能聚乳酸复合材料及其制备方法
EP4310159A1 (en) High dielectric liquid crystal polymer composite material and preparation method thereof
CN112391017A (zh) 一种高储能密度的交联聚偏氟乙烯基纳米复合材料及其制备方法、应用
CN115073870A (zh) 一种改性钛酸钡/含氟共聚物复合材料及其制备方法
CN114409943A (zh) 一种聚氨酯介电弹性体及其制备方法
CN109354716B (zh) 一种纤维素纳米纤丝-氮化铝复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant