CN113896910B - 一种纳米淀粉基微凝胶微球及其制备方法和应用 - Google Patents

一种纳米淀粉基微凝胶微球及其制备方法和应用 Download PDF

Info

Publication number
CN113896910B
CN113896910B CN202111082122.6A CN202111082122A CN113896910B CN 113896910 B CN113896910 B CN 113896910B CN 202111082122 A CN202111082122 A CN 202111082122A CN 113896910 B CN113896910 B CN 113896910B
Authority
CN
China
Prior art keywords
microspheres
nano starch
microgel
starch
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111082122.6A
Other languages
English (en)
Other versions
CN113896910A (zh
Inventor
田丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Guangyuchao Material Co ltd
Original Assignee
Guangzhou Guangyuchao Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Guangyuchao Material Co ltd filed Critical Guangzhou Guangyuchao Material Co ltd
Priority to CN202111082122.6A priority Critical patent/CN113896910B/zh
Publication of CN113896910A publication Critical patent/CN113896910A/zh
Application granted granted Critical
Publication of CN113896910B publication Critical patent/CN113896910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及功能材料和生物技术领域,具体公开了一种纳米淀粉基微凝胶微球及其制备方法和应用。该纳米淀粉基微凝胶微球的制备方法包括:以纳米淀粉为原料加入水中,配置成纳米淀粉分散液;将分散液加入油相中,并在油相中加入的乳化剂,搅拌得到反相乳液;在反相乳液中加入交联剂和碱性物质,搅拌反应,得到微凝胶微球;将微凝胶微球依次用乙醇、乙醇‑水混合液、水洗至中性,得到纳米淀粉基微凝胶微球。本发明能够制备粒径在75‑250微米的微凝胶微球,并且微球具有多孔结构。本发明制备时间短,过程简单高效,产品热稳定性好,机械强度高,微凝胶微球作为抗体等功能蛋白的分离微球、柱色谱的固定化微球材料及医疗注射用微凝胶微球。

Description

一种纳米淀粉基微凝胶微球及其制备方法和应用
技术领域
本发明涉及功能材料和生物技术领域,尤其涉及一种纳米淀粉基微凝胶微球及其制备方法和应用。
背景技术
淀粉是空气中的二氧化碳和水经过光合作用转化成的一种碳水化合物,是产量低于纤维素的第二高产天然高分子化合物,具有产量高、无毒、可降解、可再生等优点。而功能性微球因其可作为载体,具有靶向性而被广泛制备应用。目前研究表明,采用淀粉为原料制备的功能微球储存稳定,具有良好的生物相容性,不但具有可生物降解微球的一些共同特点,而且在使用后不会像蛋白类材料一样在生物体内产生免疫原性;此外原料淀粉具备来源广泛、价格低廉等优点。
目前,淀粉微球主要用于生物医用领域。淀粉微粒作为药物的载体,某些药物只有在特定的条件或特定的部位才能发挥其药理学作用,但又容易被消化系统中的各种酶分解,导致药效降低,淀粉微球作为载体则可以避免药物被酶分解,并且可以有效控制药物释放的速度。淀粉微球用于免疫分析技术,淀粉微球表面的活性功能基团上交联上抗体(抗原),再特异性地与抗原(抗体)进行反应,最后利用免疫学方法进行检测,因此淀粉微球在抗原、抗体蛋白质以及细胞的定量分析中发挥着作用。另外,由于淀粉分子亲水性较强,对非特异性的蛋白吸附量很少,因此淀粉微球可以被广泛地作为新型功能分子载体来使用。淀粉微球还可用作吸附剂、包埋剂来吸附或包埋香精、香料或一些酶、孢子等其他物质控制器释放速度。交联淀粉微球在金属离子吸附分离或废水处理等领域应用前景也十分广阔。
目前制备淀粉微球的方法相对复杂,制备效率低。而且淀粉微球的制备都集中在由淀粉制备纳米尺寸的纳米微球上,并且现有技术还不能很好地对淀粉微球的粒径进行调控以制备得到尺寸均一的微米级的淀粉微球。
发明内容
为了克服现有技术的不足,本发明的第一个目的在于提供一种纳米淀粉基微凝胶微球的制备方法,该制备方法具有制备方便、对微球尺寸可控的特点,且制备的纳米淀粉基微凝胶微球热稳定性好、机械强度高。
本发明的第二个目的在于提供一种纳米淀粉基微凝胶微球,该纳米淀粉基微凝胶微球为微米级微球,且微球的热稳定性好、机械强度高。
本发明的第三个目的在于提供一种纳米淀粉基微凝胶微球的应用,适用于柱色谱的固定化微球材料和医疗注射用微凝胶微球。
本发明的目的之一采用如下技术方案实现:
一种纳米淀粉基微凝胶微球的制备方法,包括以下步骤:
S1,以纳米淀粉作为原料,加入水中混合配制成纳米淀粉分散液;
S2,在有机溶剂中加入乳化剂,得到油相物;
S3,将步骤S1得到的纳米淀粉分散液加入到步骤S2得到的油相物中,得到油包水型纳米淀粉反相乳液;;
S4,往步骤S3中制得的纳米淀粉反相乳液中加入交联剂和碱,搅拌,进行交联反应,得到所述纳米淀粉基微凝胶微球。
进一步的,还包括步骤S5,将步骤S4中反应后的产物分离,洗涤,得到粒径为75-250微米的纳米淀粉基微凝胶微球。
进一步的,步骤S1所述纳米淀粉粉末的粒径为小于200 nm;所述纳米淀粉分散液的重量百分比为1-40%。
进一步的,步骤S3中,将步骤S2得到的油相物搅拌并升温至50℃-95℃,然后将步骤S1得到的纳米淀粉分散液加入到升温后的油相物中,并继续搅拌0.5-2h。
进一步的,步骤S4中,所述交联反应的温度为50-95℃,反应时间为2.5-8h,所述搅拌的速度为200-1000rpm。
进一步的,步骤S2中,所述有机溶剂为正辛烷、石蜡油、豆油中的一种或两种以上的组合物;所述乳化剂为吐温60、司班80、司班85中的一种或两种以上的组合物。优选的,所述乳化剂为司班80。
进一步的,步骤S4中,所述交联剂为环氧氯丙烷、1,3-二溴-2-丙醇的一种或两种,所述碱为氢氧化钠、氢氧化钾、氨水、碳酸氢钠、碳酸钠中的一种或者两种以上的组合物。
进一步的,步骤S5中,将步骤S4中反应后的产物采用离心分离或采用静置分离,然后用60-200目分样筛过滤洗涤;所述离心分离的离心转速为500-2000rpm,离心分离的时间为1-10min;所述静置分离的时间为0.5-3h;所述洗涤用的溶液依次为乙醇、20%-50%的乙醇-水溶液、去离子水。
本发明的第二个目的在于提供一种纳米淀粉基微凝胶微球,实现本发明的第二个目的可以通过采取如下技术方案达到:由上述所述的纳米淀粉基微凝胶微球的制备方法制备得到,所述纳米淀粉基微凝胶微球的粒径为75-250微米。
本发明的第三个目的在于提供一种纳米淀粉基微凝胶微球的应用,实现本发明的第三个目的可以通过采取如下技术方案达到:上述所述的纳米淀粉基微凝胶微球的制备方法所制得的纳米淀粉基微凝胶微球用于柱色谱的固定化微球材料或医疗注射用微凝胶微球。
相比现有技术,本发明的有益效果在于:
1、本发明的一种纳米淀粉基微凝胶微球的制备方法,相较传统的制备方法,不需要对淀粉进行长时间的溶解,避免了淀粉在溶解过程中发生团聚,形成的分散液不均匀,同时也避免了分散液中分散颗粒粒径不能一致的问题。本申请直接使用纳米淀粉为原料通过反相悬浮法制备纳米淀粉基微凝胶微球,该方法可以简便调节纳米淀粉在水中的含量,通过控制纳米淀粉的浓度和搅拌速度,可以调控微凝胶微球的尺寸,具有制备方便、微球尺寸可控的特点,且制备的纳米淀粉基微凝胶微球热稳定性好、机械强度高。
2、本发明制备得到的纳米淀粉基微凝胶微球,球形规整,尺寸相对均一,粒径为75-250微米;并且具有良好的稳定性和力学强度,原料采用纳米淀粉,因此也具有较高的生物相容性。
3、本发明的纳米淀粉基微凝胶微球可用于抗体等功能蛋白的分离、柱色谱的固定化微球材料及医疗注射用微凝胶微球。该粒径为75-250微米的微米级微凝胶微球在色谱柱使用时会降低柱压,提高分离效率,保证柱体的稳定性;在医疗注射用微凝胶微球时保证填充的稳定性,避免微球流失。
附图说明
图1为实施例1纳米淀粉基微微凝胶微球的光学显微镜照片;
图2为实施例2纳米淀粉基微微凝胶微球的光学显微镜照片;
图3为实施例8纳米淀粉基微微凝胶微球分散液置于95℃烘箱中加热过夜(a)前和(b)后的光学显微镜照片。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
本发明提供了一种以纳米淀粉粉末为原料,经过反相悬浮法制备纳米淀粉基微凝胶微球的方法。直接以纳米淀粉为原料,便于控制反应的进行,进一步配合反应条件的控制,可以对合成的淀粉基微凝胶微球的粒径进行调控,制备不同粒径的淀粉基微凝胶微球。
一种纳米淀粉基微凝胶微球的制备方法,包括以下步骤:
以纳米淀粉为原料,加入到水中配制成纳米淀粉分散液,其中水可以是蒸馏水或者去离子水;在有机溶剂中加入乳化剂,得到油相物;将纳米淀粉分散液加入到油相物中,得到油包水型纳米淀粉反相乳液;然后在淀粉反相乳液中加入交联剂和碱,搅拌,进行交联反应。
作为进一步的实施方式,还对反应后的产物分离,洗涤,筛分,得到粒径为75-250微米的纳米淀粉基微凝胶微球。
反相悬浮法是将淀粉粉末溶解在水中,作为水相分散到含有适量乳化剂的有机溶液中,形成均匀、稳定、透明的微乳液,在快速搅拌状态下,加入适量的交联剂,使处于溶解状态的淀粉分子交联成细小的微球从液相中析出,由于固相成核,成长都在微小的液滴中完成,液滴大小限制了颗粒长大,从而得到粒径比较小的淀粉微球。而本申请是在反相悬浮法的基础上,直接采用纳米尺寸的纳米淀粉为原料,纳米淀粉直接进行交联,避免了成核快慢和成长过程对粒径的影响,使得交联得到的纳米淀粉基微凝胶微球尺寸趋于一致。因为是纳米淀粉直接进行交联,因此也可以通过控制加入纳米淀粉的量来控制淀粉微球交联的大小,进而配合对反应条件的控制,可以对合成的淀粉基微凝胶微球的粒径进行调控,制备不同粒径的淀粉基微凝胶微球。
直接以纳米淀粉为原料直接进行反相悬浮法制备微球,不需要像使用淀粉为原料还需对淀粉进行溶解处理,避免了淀粉在溶解过程中发生团聚,形成的分散液不均匀,同时也避免了分散液中分散颗粒粒径不能一致的问题。因此可以更简便快捷的制备得到纳米淀粉基微凝胶微球。
作为进一步的实施方式,纳米淀粉粉末的粒径小于200 nm;其中,纳米淀粉分散液的浓度为重量百分数为1-40%的分散液;颗粒粒径过大,分散不均匀,使得液滴碰撞不能统一有序,从而使得交联反应进程进度不同,形成的微球的尺寸难以做到一致;粒径较小,形成均匀的分散液,使得交联反应可以同步进行,通过控制纳米淀粉的量就可以控制微球交联的程度,调控微球的粒径。通过配置纳米淀粉分散液的浓度为重量百分数为1-40%,可以得到粒径为75-250微米的微凝胶微球。另外,粒径较小也可以使得交联形成的微球的球体更加规整。优选的,纳米淀粉粉末的粒径为100-200nm;优选的,纳米淀粉分散液的重量百分比为5-15%。
作为进一步的实施方式,在将水相纳米淀粉分散液加入到油相物中时,先将油相物搅拌并升温至50℃-95℃,然后将纳米淀粉分散液加入到油相物中,并继续搅拌0.5-2h。通过提高温度和搅拌速度可以加快水相和油相的混合,水相在油相中均匀的分布,更快的形成油包水的反相乳液。优选的,反应温度为65℃。
作为进一步的实施方式,搅拌,进行交联反应的温度为50-95℃,反应时间为2.5-8h,搅拌速度为200-1000rpm。搅拌对体系的稳定性影响很大,同时也影响着微球的粒径。转速过低,油包水的体系容易发生分层不稳定,转速越高,产物的粒径随转速的增加呈小粒径的趋势,因此可以选择合适搅拌速度来调节微球的粒径。优选的,搅拌速度为500-1000rpm。
作为进一步的实施方式,有机溶剂为正辛烷、石蜡油、豆油中的一种或两种以上的组合物。乳化剂为吐温60、司班80、司班85一种或两种以上的组合物。反相悬浮体系中,分散体系合适则反应可以顺利进行得到预期的产物,分散体系选择不当,则体系稳定性差,反应难以顺利进行。吐温60、司班80、司班85具有两亲性的结构,亲水端含有羟基,羰基和醚键,吸附结合在水相纳米淀粉液滴表面,亲油端较长,深入连续相介质的内部,有效隔离了液滴间的粘并,起到很好的亲水亲油效果,可以将纳米淀粉液滴稳定的分散在正辛烷、石蜡油、豆油的油相中。优选的,为了保证分散体稳定,选择HLB值在3-6的低HLB值乳化剂,如司班80。
作为进一步的实施方式,交联剂为环氧氯丙烷、1,3-二溴-2-丙醇的一种或两种,所述碱为氢氧化钠、氢氧化钾、氨水、碳酸氢钠、碳酸钠中的一种或者两种以上的组合物。环氧氯丙烷和1,3-二溴-2-丙醇上含有多个官能团,在碱性条件下容易发生亲核取代的反应,将纳米淀粉交联从线性结构变为立体网状结构。
作为进一步的实施方式,产品后处理过程为分离,洗涤和筛分过程,其中分离为离心分离,转速500-2000rpm离心分离1-10min,或者采用静置分离,静置时间0.5-3h;依次用乙醇、20%-50%的乙醇-水溶液以及去离子水洗涤,然后用60-200目分样筛过滤洗涤。反应形成的微球粒径较大,通过静置就可以沉淀分离,也可以通过离心分离;分离得到的沉淀物依次用乙醇、20%-50%的乙醇-水溶液以及去离子水洗涤,洗去表面的油、未交联的纳米淀粉和其他物质,将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗至中性,符合粒径要求(75-250微米)的微凝胶微球会留在筛的中间层中,较大的微球保留在上层中,较小的微球会随着去离子水被洗掉。保存中间层微球,并取部分烘干,称其干重。
本发明是将产物保存在20%乙醇-水溶液或者去离子水中。通过Olympus BX51光学光学显微镜观察纳米淀粉微球的形态和大小。
实施例1:
交联纳米淀粉基微凝胶微球的制备
称取5g纳米淀粉粉末,加入到50g去离子水中,搅拌形成10%(w/w)的纳米淀粉分散液;量取50ml正辛烷,加入2g乳化剂司班80,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度800rpm,在这一过程中同时升温到50℃;将纳米淀粉分散液趁热倒入高速搅拌的正辛烷中,维持50℃,高速搅拌30min;将反应体系温度保持在50℃,加入2 mol/L的NaOH溶液2ml,交联剂环氧氯丙烷2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应2h;撤去加热,静置后溶液分层,下层为纳米淀粉基微凝胶微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,洗涤采用静置分离,然后将分散在去离子水中的纳米淀基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,符合粒径要求(75-250微米)的微凝胶微球会留在筛的中间层中,较大的微球保留在上层中,较小的微球会随着去离子水被洗掉。保存中间层微球,并取部分烘干,称其干重,计算制备产率为85%。产物保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为160微米,微凝胶微球光学显微镜照片见附图1。
实施例2:
交联纳米淀粉基微凝胶微球的制备
称取2.5g纳米淀粉粉末,加入到50g去离子水中,搅拌形成5%(w/w)的纳米淀粉分散液;量取50ml正辛烷,加入2g乳化剂司班85,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度1000rpm,在这一过程中同时升温到65℃;将溶解完全的纳米淀粉水溶液(粘度较大)趁热倒入高速搅拌的正辛烷中,维持65℃,高速搅拌30min;将反应体系温度降至50℃,加入2mol/L的NaOH溶液2ml,环氧氯丙烷2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应2h;撤去加热,静置后溶液分层,下层为纳米淀粉微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,洗涤采用离心分离的形式,转速500-2000rpm离心分离1-10min,然后将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,保存中间层微球,并取部分烘干,称其干重,计算制备效率为80%。产物应保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为120微米,微凝胶微球光学显微镜照片见附图2。
实施例3:
交联纳米淀粉基微微凝胶微球的制备
称取7.5g纳米淀粉粉末,加入到50g去离子水中,搅拌形成15%(w/w)的纳米淀粉分散液;量取50ml石蜡油,加入2g乳化剂司班80,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度500rpm,在这一过程中同时升温到65℃;将溶解完全的纳米淀粉水溶液趁热倒入高速搅拌的石蜡油中,维持65℃,高速搅拌30min;将反应体系温度降至50℃,加入2mol/L的KOH溶液2ml,交联剂1,3-二溴-2-丙醇2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应2h;撤去加热,静置后溶液分层,下层为纳米淀粉微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,保存中间层微球,并取部分烘干,称其干重,计算制备产率为78%。产物应保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为210微米。
实施例4:
交联纳米淀粉基微凝胶微球的制备
称取0.5g纳米淀粉粉末,加入到50g去离子水中,搅拌形成1%(w/w)的纳米淀粉分散液;量取50ml豆油,加入2g乳化剂吐温60,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度800rpm,在这一过程中同时升温到50℃;将纳米淀粉分散液趁热倒入高速搅拌的豆油中,维持50℃,高速搅拌30min;将反应体系温度保持在50℃,加入3mol/L的碳酸钠溶液2ml,交联剂环氧氯丙烷2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应6h;撤去加热,静置后溶液分层,下层为纳米淀粉基微凝胶微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,洗涤采用静置分离,然后将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,保存中间层微球,并取部分烘干,称其干重,计算制备产率为55%。产物保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为80微米。
实施例5:
交联纳米淀粉基微微凝胶微球的制备
称取20g纳米淀粉粉末,加入到50g去离子水中,搅拌形成40%(w/w)的纳米淀粉分散液;量取50ml正辛烷,加入2g乳化剂司班85,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度1000rpm,在这一过程中同时升温到95℃;将纳米淀粉分散液趁热倒入高速搅拌的正辛烷中,维持95℃,高速搅拌35min;将反应体系温度保持在95℃,加入2mol/L的KOH溶液2ml,交联剂环氧氯丙烷3g,降速搅拌,搅拌速度400rpm,交联反应8h;撤去加热,静置后溶液分层,下层为纳米淀粉基微凝胶微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,洗涤可以采用离心分离的形式,也可采用静置分离或是用分样筛过滤洗涤;将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,保存中间层微球,并取部分烘干,称其干重,计算制备产率为60%。产物保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉基微凝胶微球的形态和大小,微凝胶微球峰值尺寸为240微米。
实施例6:
交联纳米淀粉基微微凝胶微球的制备
称取7.5g纳米淀粉粉末,加入到50g去离子水中,搅拌形成15%(w/w)的纳米淀粉分散液;量取25ml石蜡油和25ml正辛烷混合均匀,加入2g乳化剂司班80,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度500rpm,在这一过程中同时升温到65℃;将溶解完全的纳米淀粉水溶液趁热倒入高速搅拌的石蜡油中,维持65℃,高速搅拌30min;将反应体系温度降至50℃,加入2mol/L的KOH溶液2ml,交联剂1,3-二溴-2-丙醇2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应2h;撤去加热,静置后溶液分层,下层为纳米淀粉微球。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,洗涤可以采用离心分离的形式,转速500-2000rpm离心1-10min;将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗,保存中间层微球,并取部分烘干,称其干重,计算制备产率为80%。产物应保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为205微米。
实施例7:
交联纳米淀粉基微微凝胶微球的制备
称取10g纳米淀粉粉末,加入到50g去离子水中,搅拌形成20%(w/w)的纳米淀粉分散液;量取50ml豆油,加入1g乳化剂司班80和1g乳化剂司班85,搅拌溶解,然后用机械搅拌装置进行高速搅拌,搅拌速度500rpm,在这一过程中同时升温到65℃;将溶解完全的纳米淀粉水溶液趁热倒入高速搅拌的石蜡油中,维持65℃,高速搅拌30min;将反应体系温度降至50℃,加入2mol/L的KOH溶液1ml和2mol/L的NaOH溶液1ml,交联剂环氧氯丙烷2g,降速搅拌,搅拌速度250rpm,交联反应0.5h;然后提高反应温度到95℃,继续反应5h;撤去加热,转速500-2000rpm离心分离1-10min。将上层液体倒出,下层固体依次用乙醇、20%乙醇-水溶液、去离子水洗涤,将分散在去离子水中的纳米淀粉基微凝胶微球置于分样筛上,其中上层60目对应250微米,下层200目对应75微米。经过大量去离子水的反复冲洗。保存中间层微球,并取部分烘干,称其干重,计算制备产率为82%。产物应保存在20%乙醇-水溶液或者去离子水中。通过光学显微镜观察纳米淀粉微球的形态和大小,微凝胶微球峰值尺寸为225微米。
实施例8:
纳米淀粉基微凝胶微球交联性能验证
将1g已交联的纳米淀粉基微凝胶微球分散在5ml去离子水中,将pH值调整到10,然后置于95℃的烘箱中加热过夜,观察微凝胶微球其是否溶解或变形,并用显微镜来表征加热前后的微球形态,判断其形态保持能力微凝胶形态是否受加热影响,微凝胶微球光学显微镜照片见附图3。
通过实施例1-7以及附图1-2可以看到,通过实施例1-7方法制备的纳米淀粉基微凝胶微球球形规整,尺寸相对的均一,通过改变不同的纳米淀粉用量和搅拌速度,纳米淀粉基微凝胶微球的粒径呈现出相应的大小变化,因此可以通过调控纳米淀粉的浓度和搅拌速度,使得微凝胶微球的尺寸可控;另外通过实施例8我们可以看到,在长时间的碱性、高温条件下,通过本发明方法制备的纳米淀粉基微凝胶微球其球体没有溶解和变形,通过显微镜观察,其形态没有变化,表现出较高的力学强度,因此此类微凝胶微球具有广阔的市场前景。
本发明纳米淀粉基微凝胶微球的制备方法所制得的纳米淀粉基微凝胶微球用于柱色谱的固定化微球材料或医疗注射用微凝胶微球,作为柱色谱的固定化微球材料;如将微米级的微球表面修饰抗体,填充到色谱柱,可以高效分离特定抗原及功能蛋白。该微米级的微凝胶微球,在色谱柱使用时会降低柱压,提高分离效率,保证柱体的稳定性;在医疗注射用微凝胶微球时保证填充的稳定性,避免微球流失。
上述实施方式仅为本发明专利的优选实施方式,不能以此来限定本发明专利保护的范围,本领域的技术人员在本发明专利的基础上所做的任何非实质性的变化及替换均属于本发明专利所要求保护的范围。

Claims (6)

1.一种纳米淀粉基微凝胶微球的制备方法,其特征在于,包括以下步骤:
S1,以纳米淀粉作为原料,加入水中混合配制成纳米淀粉分散液,所述纳米淀粉的粒径小于200nm;
S2,在有机溶剂中加入乳化剂,得到油相物,所述有机溶剂为正辛烷、石蜡油、豆油中的一种或两种以上的组合物;所述乳化剂为吐温60、司班80、司班85中的一种或两种以上的组合物;
S3,将步骤S1得到的纳米淀粉分散液加入到步骤S2得到的油相物中,得到油包水型纳米淀粉反相乳液;
S4,往步骤S3中制得的纳米淀粉反相乳液中加入交联剂和碱,搅拌,进行交联反应,得到所述纳米淀粉基微凝胶微球;所述纳米淀粉基微凝胶微球的粒径为75-250微米;所述交联剂为环氧氯丙烷、1,3-二溴-2-丙醇的中一种或两种;所述碱为氢氧化钠、氢氧化钾、氨水、碳酸氢钠、碳酸钠中的一种或者两种以上的组合物。
2.如权利要求1所述的纳米淀粉基微凝胶微球的制备方法,其特征在于:还包括步骤S5,将步骤S4中反应后的产物分离,洗涤,得到粒径为75-250微米的纳米淀粉基微凝胶微球。
3.如权利要求1所述的纳米淀粉基微凝胶微球的制备方法,其特征在于:步骤S1中,所述纳米淀粉分散液重量百分比为1-40%。
4.如权利要求1-3任一项所述的纳米淀粉基微凝胶微球的制备方法,其特征在于:步骤S3中,将步骤S2得到的油相物搅拌并升温至50℃-95℃,然后将步骤S1得到的纳米淀粉分散液加入到升温后的油相物中,并继续搅拌0.5-2h。
5.如权利要求1-3任一项所述的纳米淀粉基微凝胶微球的制备方法,其特征在于:步骤S4中,所述交联反应的温度为50-95℃,反应时间为2.5-8h,所述搅拌的速度为200-1000rpm。
6.如权利要求2任一项所述的纳米淀粉基微凝胶微球的制备方法,其特征在于:步骤S5中,将步骤S4中反应后的产物采用离心分离或采用静置分离,然后用60-200目分样筛过滤洗涤;
所述离心分离的离心转速为500-2000rpm,离心分离的时间为1-10min;
所述静置分离的时间为0.5-3h;
所述洗涤用的溶液依次为乙醇、20%-50%的乙醇-水溶液、去离子水。
CN202111082122.6A 2021-09-15 2021-09-15 一种纳米淀粉基微凝胶微球及其制备方法和应用 Active CN113896910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111082122.6A CN113896910B (zh) 2021-09-15 2021-09-15 一种纳米淀粉基微凝胶微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111082122.6A CN113896910B (zh) 2021-09-15 2021-09-15 一种纳米淀粉基微凝胶微球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113896910A CN113896910A (zh) 2022-01-07
CN113896910B true CN113896910B (zh) 2022-06-24

Family

ID=79028385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111082122.6A Active CN113896910B (zh) 2021-09-15 2021-09-15 一种纳米淀粉基微凝胶微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113896910B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116650557B (zh) * 2023-04-28 2023-12-01 广东成烨泰生物科技有限公司 一种抗菌消炎剂、敷料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335857A (zh) * 1998-12-30 2002-02-13 Ato公司 淀粉颗粒的制备方法
CN101215385A (zh) * 2008-01-16 2008-07-09 西南大学 纳米淀粉粉体的制备方法
CN104004134A (zh) * 2014-05-30 2014-08-27 西华大学 一种粒径可控的单分散性纳米淀粉微球的制备方法
CN109293953A (zh) * 2018-09-17 2019-02-01 中南林业科技大学 一种醇沉纳米淀粉颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335857A (zh) * 1998-12-30 2002-02-13 Ato公司 淀粉颗粒的制备方法
CN101215385A (zh) * 2008-01-16 2008-07-09 西南大学 纳米淀粉粉体的制备方法
CN104004134A (zh) * 2014-05-30 2014-08-27 西华大学 一种粒径可控的单分散性纳米淀粉微球的制备方法
CN109293953A (zh) * 2018-09-17 2019-02-01 中南林业科技大学 一种醇沉纳米淀粉颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《淀粉纳米微粒的分散性研究》》;吴修利,郭春香,姜雪,段蕾,余俊敏.;《吉林农业》;20171108;56-57页 *

Also Published As

Publication number Publication date
CN113896910A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN103341172B (zh) 一种双孔多糖微球及其制备方法、用途
Lv et al. Immobilization of urease onto cellulose spheres for the selective removal of urea
CN107753949B (zh) 黑磷纳米片、复合水凝胶及其制备方法与应用
CN1107748A (zh) 亲合分离方法
WO2008131664A1 (fr) Microsphères de gel d'agarose et leur procédé de préparation
CN102389755B (zh) 一种琼脂凝胶微球的制备方法
CN107789332B (zh) 一种基于双水相生物矿化技术制备可调药物释放率的碳酸钙/海藻酸钙复合微球
CN104762289B (zh) 微孔膜渗透乳化制备固定醇脱氢酶的明胶微球的方法
CN102179182A (zh) 碳纳米纤维膜的制备方法
KR20140011337A (ko) 다공질 셀룰로오스 비즈의 제조 방법
CN113896910B (zh) 一种纳米淀粉基微凝胶微球及其制备方法和应用
JPWO2016013568A1 (ja) 多孔質セルロース媒体の製造方法
CN113694248A (zh) 一种基于可溶性淀粉的栓塞微球及其制备和应用
CN104624129A (zh) 基于离子液体型表面活性剂微乳液体系淀粉纳米微球的制备方法
CN1304101C (zh) 一种尺寸均一的琼脂糖凝胶微球及其制备方法
Li et al. Superhydrophobic sodium alginate/cellulose aerogel for dye adsorption and oil–water separation
Li et al. Immobilizing enzymes in regular-sized gelatin microspheres through a membrane emulsification method
CN102070135A (zh) 两亲性多孔中空碳微球及其制备方法与应用
CN107875390B (zh) 一种壳层含有四氧化三铁的载药微有机凝胶及其制备方法和应用
CN1807464A (zh) 双模板法羟乙基纤维素改性海藻酸盐微球及其制备方法
CN106215819A (zh) 魔芋葡甘聚糖凝胶微球的制备方法
Visakh Introduction for nanomaterials and nanocomposites: state of art, new challenges, and opportunities
CN112011532B (zh) 一种固定化酶载体材料及其制备方法与应用
CN112961379B (zh) 一种纳米纤维素/藻酸钠冰冻凝胶及其制备方法与应用
JP5126774B2 (ja) 微生物内包高分子ゲルビーズの製造方法及び土壌改質材。

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant