CN113878115B - 一种抗总剂量辐照的电源管理芯片及其制造方法 - Google Patents

一种抗总剂量辐照的电源管理芯片及其制造方法 Download PDF

Info

Publication number
CN113878115B
CN113878115B CN202111165027.2A CN202111165027A CN113878115B CN 113878115 B CN113878115 B CN 113878115B CN 202111165027 A CN202111165027 A CN 202111165027A CN 113878115 B CN113878115 B CN 113878115B
Authority
CN
China
Prior art keywords
power management
management chip
deposition
source
total dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111165027.2A
Other languages
English (en)
Other versions
CN113878115A (zh
Inventor
吴晓宏
李杨
秦伟
卢松涛
洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111165027.2A priority Critical patent/CN113878115B/zh
Publication of CN113878115A publication Critical patent/CN113878115A/zh
Application granted granted Critical
Publication of CN113878115B publication Critical patent/CN113878115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • C09D1/04Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates with organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种抗总剂量辐照的电源管理芯片及其制造方法,属于特种功能涂层制备技术领域。本发明解决了现有高Z重金属材料与低Z材料在混合的过程中彼此相对分散的均匀性较差,导致相应的复合材料的屏蔽效果无法达到预期的应用效果的问题。本发明利用原子层沉积技术在高Z重金属材料金属表面沉积低Z金属氧化物薄膜,具有沉积温度低,厚度均匀可控的优点,利用其良好的三维保型性和包裹性性能,可有效改善涂覆膜层与基底间的界面结合强度,并采用超声辅助热喷涂工艺将稀释液喷涂于电源管理芯片表面,有效提高涂层抗辐照性能的同时,实现电源管理芯片的空间抗辐射加固,为长寿命高可靠航天器的选材和设计提供技术支持。

Description

一种抗总剂量辐照的电源管理芯片及其制造方法
技术领域
本发明涉及一种抗总剂量辐照的电源管理芯片及其制造方法,属于特种功能涂层制备技术领域。
背景技术
航天器在外太空飞行时,因为脱离了地球大气层的保护,航天器始终处于恶劣的空间环境中进行工作。在众多的空间环境因素下,高强度的总剂量效应辐照始终是影响航天器工作性能及使用寿命的关键因素。电源管理芯片受到辐射的影响,将会导致整个芯片的电学特性发生退化,主要表现为工作电流增大甚至功能失效,进而威胁航天器在轨工作的安全性和可靠性。因此,亟需对电源管理芯片进行辐照防护,以保证其空间应用的可靠性。
传统用于辐照防护的材料中金属材料是研究重点,但金属材料的密度过大,使其在航天领域的使用受到限制,同时其中某些金属如铅,质地柔软而且对人体有毒,导致其在材料的研发和使用过程中受到更为严重的限制。除金属材料外,其他类型的传统材料也因屏蔽效果较差或无法在太空恶劣的环境中长时间稳定等原因,无法满足现如今航天领域的需求。为解决上述问题,近些年,在相关方面复合屏蔽材料取得了一定的发展,其中聚合物基复合屏蔽材料因普遍具有质量轻、易加工等特点,使其成为目前研发的热点。聚合物基复合屏蔽材料主要以高分子材料为基底,向其中以不同的加工方式添加具有抗辐照能力的材料进行性能的提升。据目前研究发现,高Z(质量数)元素对总剂量辐照具有较好的屏蔽效果(如:钨、铅、铋等);低Z的元素对中子具有相对较好的屏蔽效果(如:氢、硼等)。最初,科研人员采用聚乙烯(富含H元素用于中子的防护)与高Z重金属材料(用于γ射线)联合应用于复合屏蔽材料的研发,但在实际应用当中聚乙烯稳定性较差,致使相应的复合材料无法长期使用。相较于聚乙烯,环氧树脂具有更好的抗腐蚀、抗辐射的性能,因此更适合作为基体材料进行使用,同时为综合提高材料抗总剂量辐照的能力,目前普遍采用将环氧树脂与高Z重金属材料以及低Z材料综合进行研发聚合物基复合屏蔽材料,但混合的过程普遍是进行简单的搅拌。无机材料与聚合物之间相容性比较差,致使高Z 重金属材料与低Z材料在混合的过程中彼此相对分散的均匀性较差,导致相应的复合材料的屏蔽效果无法达到预期的应用效果。据此,采用一种新的技术方法使高Z重金属材料与低Z材料在复合材料中彼此能相对均匀的分布是至关重要的。
发明内容
本发明为了解决现有高Z重金属材料与低Z材料在混合的过程中彼此相对分散的均匀性较差,导致相应的复合材料的屏蔽效果无法达到预期的应用效果的问题,提供一种抗总剂量辐照的电源管理芯片的制造方法。
本发明的技术方案:
一种抗总剂量辐照的电源管理芯片的制造方法,该方法包括以下步骤:
步骤1,制备功能填料;
采用原子层沉积生长方法在高Z重金属材料表面周期沉积生长低Z金属氧化物膜层,得到核壳结构的功能填料;
所述的低Z金属氧化物膜层厚度为50nm~100nm。
步骤2,制备复合涂层;
将树脂加热至熔融状态,然后加入促进剂、偶联剂、聚醚酰亚胺和功能填料,搅拌混合均匀,得到喷涂稀释液,对喷涂稀释液进行超声处理,静置,喷涂于电源管理芯片的表面,分段固化,得到复合屏蔽涂层。
进一步限定,步骤1中原子层沉积处理的的具体操作过称为:
将高Z重金属材料放入原子层沉积仪的沉积腔体内,将沉积腔体抽至真空度为4×10-3Torr~6×10-3Torr,再通入保护气氛至腔体压力为0.1Torr~0.2Torr,然后在温度为150℃~250℃的条件下,在高Z重金属材料表面进行原子层周期沉积,重复执行100~300个生长沉积周期,获得功能填料。
更进一步限定,每个生长沉积周期的过程为:
向沉积腔体内以脉冲形式注入金属源,脉冲时间为0.1s~0.3s,反应1s~5s,再向沉积腔体内以脉冲形式注入氧源,脉冲时间为0.01s~0.03s,然后用氮气进行吹扫,吹扫时间为30s~60s,反应1s~5s,然后用氮气进行吹扫,吹扫时间为30s~60s。
更进一步限定,金属源为铝源、锌源、钛源中的任意一种或任意两者组合。
进一步限定,铝源为三甲基铝,锌源为二乙基锌,钛源为四一丙醇钛,
进一步限定,氧源为去离子水,氧源温度为室温。
进一步限定,高Z重金属材料为铋、钨、钆粉体中的一种或几种按任意比的混合,粒径直径为300目~500目。
进一步限定,步骤2中树脂为氰酸酯树脂、硅酸钾树脂、硅凝胶树脂中的一种或任意几种的按任意比的混合,促进剂为乙酰丙酮铝,偶联剂为KH560硅烷偶联剂。
更进一步限定,树脂、促进剂、偶联剂、聚醚酰亚胺和功能填料的质量比为10:(0.5~1):(0.5~1):(1~2):(2~3)。
进一步限定,保护气氛为纯度为99.99%的氮气。
进一步限定,步骤2中超声处理条件为:超声功率为1000W~2000W,超声处理使的时间为10min~20min,超声处理后静置3min~5min。
进一步限定,步骤2中喷涂处理条件为:喷嘴直径为1mm~3mm,喷枪压力为0.6MPa~0.8Mpa,喷枪移动速度为50cm/s~100cm/s,喷距为10cm~20cm。
进一步限定,步骤2中分段固化处理条件为:真空干燥箱中,先在温度为40~60℃下固化5h~6h,然后在温度为90~110℃下固化1h~3h,最后在温度为120~140℃下固化1h~3h。
进一步限定,树脂于70℃~90℃下加热至熔融状态。
本发明具有以下有益效果:
(1)本发明利用原子层沉积技术在高Z重金属材料金属表面沉积低Z金属氧化物薄膜,具有沉积温度低,厚度均匀可控的优点,利用其良好的三维保型性和包裹性性能,可有效改善涂覆膜层与基底间的界面结合强度;树脂材料具有较大的密度,对辐射具有较强的耐受力,能够对总剂量辐照起到较优异的防护作用。
(2)本发明提供的制备方法使复合膜层结构具有密度梯度分布,并通过通过高低Z材料的彼此复合,有利于提高涂层材料与基体电源管理芯片的结合能力。
(3)本发明采用具有低挥发特性的聚醚酰亚胺对主体树脂改性,形成半互穿网络结构,能够有效提高膜层的韧性和剪切强度,使得具有低可凝挥发特性和良好的粘接性能。
(4)本发明采用超声辅助热喷涂工艺处理的高能分散稀释液喷涂于电源管理芯片表面,可有效克服传统共混体系涂层的功能填料分散不均匀所导致的涂层抗辐照性能低下的问题,实现电源管理芯片的空间抗辐射加固,为长寿命高可靠航天器的选材和设计提供技术支持。
附图说明
图1为实施例1制得功能填料的TEM照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下述实施例中所使用的实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。
实施例1:
一、制备功能填料
将高Z重金属材料放入原子层沉积仪的沉积腔体内,将沉积腔体抽至真空度为5×10-3 Torr,再通入保护气氛至腔体压力为0.15Torr,然后在温度为150℃的条件下进行原子层周期沉积,重复执行350个生长沉积周期,在高Z重金属材料表面周期沉积生长厚度为50nm的低Z金属氧化物膜层,得到核壳结构的功能填料,核心为高Z重金属,壳层为低 Z金属氧化物。
其中,高Z重金属材料为铋、钨和钆粉体按照质量比为1:1:1混合,核心的直径为500目。
每个生长沉积周期的具体过程为:向沉腔体内以脉冲形式注入金属源,脉冲时间为 0.02s,反应5s,再向沉积腔体内以脉冲形式注入氧源,脉冲时间为0.02s,然后用氮气进行吹扫,吹扫时间为40s,反应5s,然后用氮气进行吹扫,吹扫时间为40s。
保护气氛为纯度为99.99%的氮气,金属源为铝源和锌源,其中铝源为三甲基铝、锌源为二乙基锌。
对获得的功能填料进行微观形貌表征,测试结果如图1所示,由图1可知,高Z金属材料外均匀沉积了一层低Z金属氧化物膜层,呈现非完全包覆,且沉积均匀。
二、制备复合涂层;
将硅酸钾树脂于80℃下加热至熔融状态,然后加入促进剂乙酰丙酮铝、KH560硅烷偶联剂、聚醚酰亚胺和步骤1获得的功能填料,在搅拌状态下混合均匀,得到喷涂稀释液,对得到的喷涂稀释液进行超声处理,超声处理后静置,然后将静置后的喷涂稀释液喷涂于电源管理芯片的表面,然后进行分段固化,得到复合涂层。
其中,硅酸钾树脂、乙酰丙酮铝、KH560硅烷偶联剂、聚醚酰亚胺和功能填料的质量比为20:1:2:2:4。
超声处理条件为:超声功率为1000W,超声处理使的时间为20min,超声处理后静置5min。
喷涂处理条件为:喷嘴直径为2mm,喷枪压力为0.8Mpa,喷枪移动速度为80cm/s,喷距为17cm,喷涂厚度为1um。
分段固化条件为:真空干燥箱中,先在温度为50℃下固化5h,然后在温度为100℃下固化2h,最后在温度为120℃下固化1h。
三、性能测试;
利用241Am(60Kev)源照射硅酸钾树脂、功能材料和复合涂层材料,照射时间为10s,得到结果如下表所示:
Figure BDA0003291057210000051
通过测试数据可知,该实施例获得的复合涂层线性衰减系数明显高于未改性的涂层材料,且改性后的复合涂层将241Am源能量衰减至原来的十分之一仅需0.465cm,可有效抵挡总剂量辐照。
原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,该方法包括以下步骤:
步骤1,制备功能填料;
采用原子层沉积生长方法在高Z重金属材料表面周期沉积生长低Z金属氧化物膜层,得到核壳结构的功能填料;
所述的步骤1中原子层沉积处理的具体操作过称为:
将高Z重金属材料放入原子层沉积仪的沉积腔体内,将沉积腔体抽至真空度为4×10-3 Torr~6×10-3Torr,再通入保护气氛至腔体压力为0.1Torr~0.2Torr,然后在温度为150℃~250℃的条件下,在高Z重金属材料表面进行原子层周期沉积,重复执行100~300个生长沉积周期,获得功能填料;
每个所述的生长沉积周期的过程为:
向沉积腔体内以脉冲形式注入金属源,脉冲时间为0.1s~0.3s,反应1s~5s,然后用氮气进行吹扫,吹扫时间为30s~60s,再向沉积腔体内以脉冲形式注入氧源,脉冲时间为0.01s~0.03s,反应1s~5s,然后用氮气进行吹扫,吹扫时间为30s~60s;
所述的高Z重金属材料为铋、钨、钆粉体中的一种或几种按任意比的混合,粒径直径为300目~500目;
所述的金属源为铝源、锌源、钛源中的任意一种或任意两者组合;
所述的低Z金属氧化物膜层厚度为50nm~100nm;
步骤2,制备复合涂层;
将树脂加热至熔融状态,然后加入促进剂、偶联剂、聚醚酰亚胺和功能填料,搅拌混合均匀,得到喷涂稀释液,对喷涂稀释液进行超声处理,静置,喷涂于电源管理芯片的表面,分段固化,得到复合屏蔽涂层;
所述的步骤2中超声处理条件为:超声功率为1000W~2000W,超声处理使的时间为10min~20min,超声处理后静置3min~5min。
2.根据权利要求1所述的一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,所述的铝源为三甲基铝,锌源为二乙基锌,钛源为四一丙醇钛,所述的氧源为去离子水,氧源温度为室温。
3.根据权利要求1所述的一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,所述的步骤2中树脂为氰酸酯树脂、硅酸钾树脂、硅凝胶树脂中的一种或任意几种的按任意比的混合,促进剂为乙酰丙酮铝,偶联剂为KH560硅烷偶联剂。
4.根据权利要求1或3所述的一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,所述的树脂、促进剂、偶联剂、聚醚酰亚胺和功能填料的质量比为10:(0.5~1):(0.5~1):(1~2):(2~3)。
5.根据权利要求1所述的一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,所述的步骤2中喷涂处理条件为:喷嘴直径为1mm~3mm,喷枪压力为0.6MPa~0.8Mpa,喷枪移动速度为50cm/s~100cm/s,喷距为10cm~20cm。
6.根据权利要求1所述的一种抗总剂量辐照的电源管理芯片的制造方法,其特征在于,所述的步骤2中分段固化处理条件为:真空干燥箱中,先在温度为40~60℃下固化5h~6h,然后在温度为90~110℃下固化1h~3h,最后在温度为120~140℃下固化1h~3h。
CN202111165027.2A 2021-09-30 2021-09-30 一种抗总剂量辐照的电源管理芯片及其制造方法 Active CN113878115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111165027.2A CN113878115B (zh) 2021-09-30 2021-09-30 一种抗总剂量辐照的电源管理芯片及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111165027.2A CN113878115B (zh) 2021-09-30 2021-09-30 一种抗总剂量辐照的电源管理芯片及其制造方法

Publications (2)

Publication Number Publication Date
CN113878115A CN113878115A (zh) 2022-01-04
CN113878115B true CN113878115B (zh) 2022-08-19

Family

ID=79005075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111165027.2A Active CN113878115B (zh) 2021-09-30 2021-09-30 一种抗总剂量辐照的电源管理芯片及其制造方法

Country Status (1)

Country Link
CN (1) CN113878115B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041455B (zh) * 2019-12-27 2020-09-04 哈尔滨工业大学 一种高透明、抗带电粒子辐照的碳基复合涂层及其制备方法
CN112675822B (zh) * 2020-11-26 2021-07-20 哈尔滨工业大学 一种高吸收高发射率超黑分子吸附涂层的制备方法
CN112509720B (zh) * 2020-11-26 2021-10-01 哈尔滨工业大学 一种氰酸酯基抗辐照加固保形涂层及其制备方法
CN113072752B (zh) * 2021-04-01 2022-11-22 西南科技大学 一种兼具优异核防护和柔韧性的橡胶复合材料及制备方法

Also Published As

Publication number Publication date
CN113878115A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
EP3586921B1 (en) Moderator for moderating neutrons
CN112509720B (zh) 一种氰酸酯基抗辐照加固保形涂层及其制备方法
CN107910088A (zh) 一种稀土基柔性核辐射防护材料及其制备方法和应用
CN113976410B (zh) 一种低太阳吸收比有机热控涂层及制备方法
CN113878115B (zh) 一种抗总剂量辐照的电源管理芯片及其制造方法
CN115376716A (zh) 一种屏蔽中子和γ射线的高熵陶瓷氧化物涂层及其制备方法
CN113990540B (zh) 一种抗重离子单粒子效应的flash器件及其制备方法
CN101879604B (zh) 一种金属铟纳米颗粒墨水的应用
CN113186440A (zh) 一种氟化铝基陶瓷中子慢化材料及其制备方法
CN113969078B (zh) 一种硼基材料改性的稀土氧化物空间n-γ混合场辐射屏蔽的复合涂层及其制备方法
CN115231571B (zh) 一种屏蔽中子和γ射线的Mxene-金属/稀土氧化物-硼化物复合材料及其制备方法
CN111961383B (zh) 一种抗γ射线辐照的高储氢复合防护膜层及其制备方法
CN113903483B (zh) 一种防护X/γ射线的多层柔性复合材料及其制备方法
TWI804800B (zh) 中子減速材料及其製作方法
CN107130224B (zh) 一种耐辐照涂层制备方法
CN112530618B (zh) 一种电子元器件用抗中子辐照的防护材料及其制备方法
CN106867284A (zh) 锆合金包壳管用保护涂层材料的制备方法
CN111962046B (zh) 一种抗带电粒子辐照的密度梯度型高储氢复合膜层及其制备方法
CN116377426B (zh) 一种聚酰亚胺基氮化硼涂层的制备方法及其应用
CN113990847B (zh) 抗辐照封装加固的cots器件及其制备方法
CN109750487A (zh) 一种碳纤维复丝的含氮气气氛辐射预处理方法
CN113667375B (zh) 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法
CN113186571B (zh) 一种用于不锈钢抗辐射防护的Al2O3复合涂层的制备方法
CN110952059B (zh) 一种耐腐蚀核屏蔽材料的制备方法
CN112863722B (zh) 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant