CN107130224B - 一种耐辐照涂层制备方法 - Google Patents

一种耐辐照涂层制备方法 Download PDF

Info

Publication number
CN107130224B
CN107130224B CN201710368145.0A CN201710368145A CN107130224B CN 107130224 B CN107130224 B CN 107130224B CN 201710368145 A CN201710368145 A CN 201710368145A CN 107130224 B CN107130224 B CN 107130224B
Authority
CN
China
Prior art keywords
layer
alloy
coating
metal
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710368145.0A
Other languages
English (en)
Other versions
CN107130224A (zh
Inventor
廖斌
欧阳晓平
张旭
张丰收
吴先映
罗军
庞盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201710368145.0A priority Critical patent/CN107130224B/zh
Publication of CN107130224A publication Critical patent/CN107130224A/zh
Application granted granted Critical
Publication of CN107130224B publication Critical patent/CN107130224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种在核聚变关键部件制备抗辐射涂层的方法,制备方法包括:采用考夫曼源对基材进行表面活化处理,随后利用金属真空蒸汽离子源方法(MEVVA),在基材表面注入一层能提高膜基结合力的金属″钉扎层″;然后采用磁过滤阴极真空弧沉积方法(FCVA)沉积合金应力释放层,紧接着使FCVA以及MEVVA同时工作,并在进气口通入10‑30sccm的氮气和50‑100sccm的乙炔,在基材表面沉积总厚度为1‑50微米的多相镶嵌的合金/氮化物/碳化物碳基涂层。该发明中磁过滤沉积系统、金属真空蒸汽离子源系统所用阴极为一定配比的TiMoCuNi靶材。通过实施本发明,在关键部件上沉积多相涂层具有很好的抗辐射能力,防止在聚变堆中其因氦离子轰击引起发泡和脱落带来严重的表面腐蚀,影响服役寿命。

Description

一种耐辐照涂层制备方法
技术领域
本发明为核能站内核电关键部件的表面防辐照涂层制备方法。本发明涉及的是一种合金/氮化物/碳化物碳基涂层制备方法。具体是基于气体及金属离子束技术通过考夫曼气体离子源、金属真空蒸汽离子源以及磁过滤沉积系统制备合金/氮化物/碳化物碳基涂层。
技术背景
随着科学技术的发展以及人类生活水平的提高对现有电能的需求越来越旺盛,但随着温室效应及资源的过度开采核能成为当今解决电力问题的主要手段。核能主要是利用核反应堆中核裂变或者聚变放出的热能进行发电,与火力发电极其相似。核能发电有很多优点:1)不像化石燃料发电那样排放大量的污染物到大气中;2)不会产生和加重地球温室效应的二氧化碳气体;3)核能发电中核燃料的能量密度比起化石燃料高几百万倍,而且运输和存储很方便;但核能发电也存在着诸多缺点:1)核能电厂会产生高低阶的长寿命放射性废料,对人类有着潜在的辐照危险;2)核电厂内有大量的放射性物质,如发生屏蔽材料损耗或失效会对人及生态造成永久伤害,所以对反应堆内屏蔽保护的材料要求十分苛刻。
发明内容
针对核能屏蔽材料损耗或者失效问题,本发明基于气体离子源及金属离子束技术利用考夫曼离子源、磁过滤沉积(FCVA)以及金属离子源(MEVVA)系统制备了抗辐照的四元合金/氮化物/碳化物碳基涂层。
本发明实施例的目的之一是结合四元合金在磁过滤沉积技术下形成大量的晶界、相界以及自由表面的涂层,涂层中以上述界面作为点缺陷的有效陷阱,有效吸收并消除因辐照引起的可移动点缺陷,从而抑制间隙和空位的积聚,有效提高基体材料的抗辐照损伤能力。
进一步来讲,制备大量晶界、相界以及自由表面的涂层方法包括:利用考夫曼气体离子源在所述基材表面进行清洗活化,紧接着在基材表面利用金属真空蒸汽离子源进行合金金属元素注入形成金属″钉扎层″;在所述″钉扎层″上进行合金过渡层沉积,形成释放应力层;在所述释放应力层上沉积抗辐照的四元合金/氮化物/碳化物碳基涂层。
在一些实施例中,所述基材进行表面活化包括:利用气体离子源(考夫曼离子源),向所述基材进行表面溅射清洗,采用的气体为惰性气体或者反应气体;其中,溅射电压为0.5~2kV,束流强度为100~500mA。
在一些实施例中,所述基材注入形成″钉扎层″包括:利用金属真空蒸汽离子源(MEVVA),向所述基材层注入合金,采用的靶材为四元合金靶材,至少有一元素与碳是弱键合的,同时有两元素是非共溶的;其中,合金元素的注入电压为4~12kY,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm。
在一些实施例中,在所述金属″钉扎层″上进行合金沉积包括:利用所述磁过滤真空弧沉积(FCVA)系统,在所述金属″钉扎层″上,磁过滤沉积出合金应力释放层;其中,所述释放层厚度为10~500nm。
在一些实施例中,在所述基材应力释放层表面制备抗辐照的四元合金/氮化物/碳化物碳基涂层:利用磁过滤阴极真空弧(FCVA)系统,在应力释放层表面沉积抗辐照的四元合金/氮化物/碳化物碳基涂层,磁过滤沉积同时通乙炔和氮气气体得到抗辐照的四元合金/氮化物/碳化物碳基涂层;其中,所述涂层厚度为1~50μm,乙炔进气量在50~100sccm,氮气进气量为10-30sccm。
相对于现有技术,本发明各实施例具有以下优势:
1、本发明实施例提出的抗辐照的四元合金/氮化物/碳化物碳基涂层,通过对基材进行大束流气体离子清洗和高能量的金属元素注入效应,实现与基底层乃至后续磁过滤沉积出的结构性膜层的高结合力,从而使其抗剥离强度得以增强;
2、相比磁控溅射、电子束蒸发等PVD沉积方法,磁过滤电弧沉积设备原子离化率非常高,大约在90%以上。这样,由于原子离化率高,可使等离子体密度增加,成膜时大颗粒减少,有利于提高薄膜硬度、耐磨性、致密性、膜基结合力等;
3、磁过滤设备的高离化率非常有利于大量晶界、相界以及自由表面与调控,如TiC,Mo,Cu,Ni,Ti纳米晶的大小等,这是磁控溅射、化学气相沉积的瓶颈;
4、本专利制备的抗辐照的四元合金/氮化物/碳化物碳基涂层具有的优点:1)涂层的内应力低,图层与基底的结合力优越;2)通过调控涂层有大量晶界、相界以及自由表面。3)涂层抗辐照性能优越,能有效吸收并消除因辐照引起的可移动点缺陷,从而抑制间隙和空位的积聚,有效提高基体材料的抗辐照损伤能力。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明所必需的。
本发明实施例的更多特点和优势将在之后的具体实施方式予以说明。
附图说明
构成本发明实施例一部分的附图用来提供对本发明实施例的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的抗辐照的四元合金/氮化物/碳化物碳基涂层方法的流程示意图;
图2为本发明实施例提供的抗辐照的四元合金/氮化物/碳化物碳基涂层结构示意图;
图3为本发明实施例提供的考夫曼气体离子源、FCVA沉积和MEVVA注入系统的结构示意图;
图4为高低温循环(-200-600℃)条件时不同温度下涂层的硬度变化图;
图5为涂层相对电阻率变化随He注入剂量的变化曲线;图6为涂层最大孔洞直径随He辐照剂量的变化情况。
附图标记说明
201 四元合金/氮化物/碳化物碳基涂层
202 合金应力释放层
203 混合钉扎层
301 FCVA合金阴极
302 磁过滤弯管
303 工件台及负压负端
304 考夫曼气体离子源
305 金属真空蒸汽离子源阴极
306 金属真空蒸汽离子源加速管
方法实施例
本实施例中,在关键部件基底层上制备四元合金/氮化物/碳化物碳基涂层,参照图1,其示出了本实施例涂层制备方法,该制备方法包括以下步骤:
S100:利用考夫曼气体离子源,对基材进行表面清洗、活化提高镀层结合强度。
S200:利用金属蒸汽真空弧(MEVVA)离子源,向基底层注入合金元素,形成合金混合层。
需要指出的是,S200中,第一合金金属元素为TiMoCuNi合金。作为一种可选实施方式,合金元素的注入电压为4~15kV,束流强度为1~15mA(含端值),注入剂量为1×1015~1×1017/cm2(含端值),注入深度为70~120nm(含端值)。
S300:利用磁过滤阴极真空弧(FCVA)系统,在基材混合层表面,磁过滤沉积得到第一层合金膜层内应力释放层。
本步骤中,可选的是,合金膜层为TiMoCuNi,且厚度为10~500nm。
S400:同时利用磁过滤阴极真空弧(FCVA)系统和金属真空蒸汽离子源系统,沉积得到抗辐照的四元合金/氮化物/碳化物碳基涂层。
本步骤中,磁过滤沉积得到固体润滑膜层的总厚度为1~50微米。
合金混合层,合金应力释放层以及四元合金/氮化物/碳化物碳基涂层,构成了膜层的主体结构,该结构膜层利用考夫曼气体离子源和金属离子注入双注入清洗系统处理基材使后续沉积膜层与基底材料有着非常好的结合强度;同时结合了合金膜层的高弹性模量以及强韧性的特点,使其作为应力释放层时具有明显的优势。
图4分别用高低温循环(-200-600℃)测试了该发明涂层的耐温性能,发现四元合金/氮化物/碳化物碳基涂层没有明显的硬度降低,硬度都维持在2500HV左右,说明该涂层具有很好的耐温性能,因为在核电站内涂层受到辐照后温度会迅速上升,涂层的耐温性能十分重要。
图5是涂层相对电阻率变化随He注入剂量的变化曲线,从图中很容易发现,剂量的增加电阻率明显变大,但该涂层注入剂量范围在1×1014-6×1014cm-2内,电阻率变化始终在2nΩ·cm以内。电阻率直接反映涂层内结构的完整性,电阻率变化越小,结构保持的越完整,该图结果表明这种四元合金/氮化物/碳化物碳基涂层具有很好的抗辐照性能。
图6是涂层最大孔洞直径随He辐照剂量的变化情况。从图中可以看出,总体上最大孔洞尺寸是随着辐照剂量的增大而增大的,在辐照剂量达到1×1015/cm2之前孔洞增殖速率较大,之后随辐照剂量增大孔洞的增殖速率减小并变得平缓。最大孔洞直径的变化规律都在3nm以内,涂层相对耐辐照性能较强,不容易形成大气泡。
综合试验结果来看,四元合金/氮化物/碳化物碳基涂层在核电站内能够有很好的温度稳定性以及抗He离子辐照性能。

Claims (2)

1.一种耐辐照涂层制备方法,其特征在于,包括:
采用考夫曼气体离子源对基材表面进行表面清洗、活化,提高涂层表面结合力;
采用金属真空蒸汽离子源(MEVVA)注入方法,在核反应堆防护材料表面注入合金金属元素,形成金属″钉扎层″,注入合金金属元素为四元合金靶材,TiMoCuNi,靶材成分20-80%的Ti,10-30%的Mo,20-50%的Cu,20-40%的Ni;其注入电压为4~12kV,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm;
采用磁过滤沉积技术(FCVA)沉积第一层合金金属过渡层;
同时采用金属真空蒸汽离子源(MEVVA)和磁过滤沉积技术(FCVA),并在真空室内通入反应气体乙炔和氮气沉积第二层多相镶嵌的合金/氮化物/碳化物碳基涂层。
2.根据权利要求1所述的耐辐照涂层制备方法,其特征在于:
(a)在沉积所述第一层合金过渡层时,采用的靶材为TiMoCuNi合金靶材,靶材成分20-80%的Ti,10-30%的Mo,20-50%的Cu,20-40%的Ni,起弧电流90-120A,弯管磁场2.0~4.0A,束流200~800mA,顺序采用负压-800V、-600V、-400V、及-300V进行沉积占空比为50-100%;
(b)在沉积多相镶嵌的合金/氮化物/碳化物碳基涂层,采用的靶材为TiMoCuNi四元合金靶材,靶材成分20-80%的Ti,10-30%的Mo,20-50%的Cu,20-40%的Ni,起弧电流90~120A,弯管磁场5.0~8.0A,负压-800~6000V,沉积时间10~120min,占空比为0.01~1%,乙炔进气量为50~100sccm,氮气进气量为10-30sccm,膜层总厚度1-50μm,膜层硬度为2500HV。
CN201710368145.0A 2017-05-23 2017-05-23 一种耐辐照涂层制备方法 Active CN107130224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710368145.0A CN107130224B (zh) 2017-05-23 2017-05-23 一种耐辐照涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710368145.0A CN107130224B (zh) 2017-05-23 2017-05-23 一种耐辐照涂层制备方法

Publications (2)

Publication Number Publication Date
CN107130224A CN107130224A (zh) 2017-09-05
CN107130224B true CN107130224B (zh) 2019-11-01

Family

ID=59732684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710368145.0A Active CN107130224B (zh) 2017-05-23 2017-05-23 一种耐辐照涂层制备方法

Country Status (1)

Country Link
CN (1) CN107130224B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504963B (zh) * 2018-12-20 2020-08-18 兰州空间技术物理研究所 一种抗辐射固体润滑涂层及其制备方法
CN110578124B (zh) * 2019-10-22 2021-10-01 北京市辐射中心 在柔性基体上制备硬质薄膜的方法及相关产品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589676B1 (en) * 2000-07-25 2003-07-08 Seagate Technology Llc Corrosion resistant magnetic thin film media
KR100505003B1 (ko) * 2002-12-27 2005-08-01 김광호 티아이 에이엘 에스아이 엔계 경질코팅막의 증착방법
CN101787512A (zh) * 2009-12-31 2010-07-28 中国地质大学(北京) 一种多元金属元素掺杂类金刚石膜的制备方法
CN102994964A (zh) * 2012-12-07 2013-03-27 中国地质大学(北京) 一种金属硫化物掺杂类金刚石复合薄膜的制备方法
CN104928622B (zh) * 2014-09-05 2018-05-01 北京机械工业自动化研究所 一种ws2固体润滑薄膜的制造方法
CN105755429B (zh) * 2015-11-06 2019-04-23 北京师范大学 一种离子束双过滤沉积技术制备手机屏幕抗划伤氧化铝涂层的方法
CN105755442B (zh) * 2015-11-06 2019-07-26 北京师范大学 一种高效磁过滤等离子体沉积制备dlc厚膜方法

Also Published As

Publication number Publication date
CN107130224A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
CN101257119B (zh) 一种燃料电池用双极板及其表面氮镍铬薄膜制备方法
CN109898064A (zh) 一种DLC/Me-C复合薄膜及其制备方法
CN109972098A (zh) 一种包壳材料表面CrN厚涂层的制备方法
CN107130224B (zh) 一种耐辐照涂层制备方法
CN105755465B (zh) 一种基于离子束技术的新型无烟锅的制造方法及设备
CN100393909C (zh) 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法
CN107068205B (zh) Ub2薄膜在黑腔上的应用
CN104141109B (zh) 钛金属表面原位合成TiC‑DLC复合涂层的方法
CN102169912A (zh) 太阳能电池互连片用钼/银层状金属基复合材料与制备工艺
CN107326360A (zh) 一种纳米多层梯度复合的抗冲蚀涂层结构及其制备方法
CN109943811B (zh) 一种用于锆合金包壳上涂层的制备方法
US20200273684A1 (en) Method and apparatus for metal and ceramic nanolayering for accident tolerant nuclear fuel, particle accelerators, and aerospace leading edges
CN108842133A (zh) 一种图形化静电卡盘的制备方法和设备
CN109913771A (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
Song et al. Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer
TWI435352B (zh) 高比表面積鋁材及其製作方法
CN111763945A (zh) 一种具有多层强化涂层的剃须刀片及其制备方法
CN105773462B (zh) 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
CN106282887B (zh) 微晶氧化物颗粒弥散强化合金涂层的原位制备方法
Semenov et al. An apparatus for vacuum deposition of composite TiN− Cu coatings using coupled vacuum-arc and ion-plasma processes
CN105220122B (zh) 具高功率脉冲离子源的磁控溅射装置
CN107130223A (zh) 一种新型超润滑固体涂层制备方法
JPS6365078A (ja) 保護層を有する熱負荷される建造物部材を造るための方法
CN102650052B (zh) 铝或铝合金的壳体及其制造方法
CN107881469A (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant