CN113876718A - CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用 - Google Patents

CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用 Download PDF

Info

Publication number
CN113876718A
CN113876718A CN202111278502.7A CN202111278502A CN113876718A CN 113876718 A CN113876718 A CN 113876718A CN 202111278502 A CN202111278502 A CN 202111278502A CN 113876718 A CN113876718 A CN 113876718A
Authority
CN
China
Prior art keywords
capb
retinal
retinal degenerative
calcium
prussian blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111278502.7A
Other languages
English (en)
Inventor
谷平
汤志敏
陈雨
霍敏锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Original Assignee
Shanghai Institute of Ceramics of CAS
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS, Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202111278502.7A priority Critical patent/CN113876718A/zh
Publication of CN113876718A publication Critical patent/CN113876718A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种钙取代的普鲁士蓝类似物(CaPB)纳米颗粒在制备视网膜退行性疾病治疗药物中的应用。该纳米颗粒的内核为钙离子均匀掺杂的普鲁士蓝骨架结构,表面修饰有具有生物相容性的聚乙烯吡咯烷酮,可由铁氰根离子、钙离子和聚乙烯吡咯烷酮自组装而成。该纳米颗粒可以进入细胞,并通过简单的离子交换方法选择性地结合细胞内铁,从而防止由亚铁离子作为氧化应激来源导致的视网膜色素上皮细胞变性相关疾病的发生,是一种很有前景的氧化应激介导的视网膜细胞损伤疾病治疗的替代方案。

Description

CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用
技术领域
本发明涉及视网膜退行性疾病治疗药物,尤其涉及一种钙取代的铁结合普鲁士蓝类似物纳米颗粒在制备视网膜退行性疾病治疗药物中的应用。
背景技术
视网膜色素上皮细胞(RPE)在视网膜富氧微环境中为光感受器细胞的正常功能和生存提供支持,其主要通过发挥各种生物学作用,包括经上皮转运液体和营养物质,构成外部血-视网膜屏障,吞噬光感受器外节碎片等。因此,RPE功能障碍可导致多种眼疾,并伴有不同程度视力损害甚至失明,其中以年龄相关性黄斑变性(AMD)最为受累疾病之一。目前,全球45岁及以上人群中AMD的患病率约为8.7%。AMD分为非新生血管性和新生血管性两大类型。目前抗血管治疗对于新生血管性AMD患者的治疗效果是有限的,而对于非新生血管性AMD几乎没有令人满意的治疗策略,因此研发AMD患者的治疗药物是迫切需要的。
在AMD的发展过程中,明确的病因尚不清楚。然而,人们普遍认为在代谢活跃的RPE中,有害的氧化应激是导致RPE易损性增加和随后的光感受器细胞退化的主要因素,最终导致中央视力损害或失明。研究表明亚铁离子作为氧化应激的典型来源之一广泛参与了AMD的发生发展。与同龄人的健康黄斑相比,在AMD的病变黄斑中,除Bruch膜外,RPE细胞中总铁水平更高,在干性AMD的房水中检测到铁浓度增加2倍以上;此外,眼内出血释放的过量铁可诱发视网膜炎症和不饱和磷脂的过氧化作用,这些研究表明,在AMD进展过程中,铁毒性和氧化应激与RPE死亡密切相关,提示高效的铁还原提供了一个更好的策略来防治这类疾病。文献报道去铁胺(DFO)是一种典型的铁螯合剂,但在人体静脉注射后,其在血浆清除的半衰期约5-10分钟。此外,DFO主要积聚在溶酶体中,仅通过螯合溶酶体铁来保护细胞。然而,RPE中的铁超载也涉及线粒体铁稳态的破坏,表明DFO在减轻铁超载和氧化应激诱导的RPE损伤方面的作用有限。因此,本领域的技术人员致力于开发一种能长效抑制氧化应激,从而防护视网膜细胞的药物。
Fe与[Fe(CN)6]4-反应,生成深蓝色的沉淀,被称为普鲁士蓝(Prussian Blue),即亚铁氰化铁;而Fe与[Fe(CN)6]3-的反应,生成深蓝色的沉淀被称为滕氏蓝(Turnbull'sblue),即铁氰化亚铁。两种产物表现出相似的颜色(蓝色),且含有完全相同的化学元素和化学式络合结构。普鲁士蓝具有立方结构,在常温常压下稳定,不溶于水,溶于酸、碱。
发明内容
为实现上述目的,本发明在普鲁士蓝的结构基础上,开发了一种视网膜退行性疾病治疗药物,该药物包括一种钙取代的普鲁士蓝类似物(CaPB)纳米颗粒,其内核为钙离子均匀掺杂的普鲁士蓝骨架结构,表面修饰有具有生物相容性的聚乙烯吡咯烷酮。
进一步,所述CaPB纳米颗粒由铁氰根离子、钙离子和聚乙烯吡咯烷酮(PVP)自组装而成;其自组装形式如图1所示,CaPB内核的骨架结构如图2所示,其分子式为KCa[FeIII(CN)6]。
进一步,所述纳米颗粒的直径为20-50nm,优选为30-40nm。
优选地,PVP的重均分子量Mw为9500-10500。
优选地,所述CaPB纳米颗粒可以通过以下制备方法制得:在强酸性环境下,将铁氰化钾滴加入含钙离子的PVP溶液中。
与DFO相比,有效的CaPB纳米颗粒可以进入细胞,并通过简单的离子交换方法选择性地结合细胞内铁,而亚铁离子可通过芬顿催化剂触发活性氧(ROS)的生成,因此提示CaPB纳米颗粒可以有效抑制氧化应激,从而防护视网膜色素上皮细胞及光感受器细胞变性,最终保护视功能。
本发明所述的CaPB纳米颗粒可用于制备由亚铁离子作为氧化应激来源导致的视网膜色素上皮细胞变性相关疾病的治疗药物。
本发明所述的CaPB纳米颗粒可用于视网膜退行性疾病的治疗,包括AMD、糖尿病视网膜病、视网膜色素变性等相关疾病。
进一步,前述的治疗药物,还包括药学上可接受的载体或赋形剂。
在本发明的一种实施方式中,所述治疗药物的给药方式为玻璃体腔注射。给药后玻璃体腔内CaPB纳米颗粒浓度优选为100-300ppm,进一步优选为150-250ppm。
进一步,所述治疗药物在体内的有效时间大于两周,更优为大于四周。
本发明用提供了一种制备简单、生物相容性好、效力长久的视网膜退行性疾病治疗药物,为视网膜结构和视功能的保护,以及为氧化应激介导的视网膜细胞损伤疾病提供有前景的替代方案。
附图说明
图1是CaPB纳米颗粒自组装过程的示意图,其中球形结构代表普鲁士蓝类似物形成的内核,针状结构代表PVP修饰;
图2是钙离子取代普鲁士蓝骨架的结构示意图;
图3是CaPB纳米颗粒的透射电镜图像和相应的粒子分析;
图4显示了CaPB(40ppm)或DFO(75μM)处理NaIO3诱导ARPE-19细胞(视网膜色素上皮细胞系)24小时后,检测细胞内亚铁离子浓度的染色定量分析统计结果;
图5显示了NaIO3处理小鼠后第2、3、4周分离出的视网膜色素上皮细胞(mRPE)中检测亚铁离子浓度的结果,以及用CaPB处理NaIO3诱导的小鼠第2、3、4周后检测亚铁离子浓度的结果;
图6显示了通过免疫印迹(western blot)检测mRPE中视网膜色素上皮细胞标志物ZO-1、RPE65和RLBP1的蛋白表达结果及进一步的定量统计结果;
图7显示了视网膜切片用免疫荧光染色RPE65蛋白和RLBP1蛋白的定量统计结果;
图8显示了mRPE铺片行ZO-1免疫荧光染色评估视网膜色素上皮细胞形态学变化的结果,比例尺20μm;
图9显示了图8中ZO-1蛋白的荧光定量统计结果;
图10是用CaPB(200ppm)或DFO(100μM)玻璃体腔内处理NaIO3诱导的小鼠4周后的眼底照片;
图11显示了采用CaPB或DFO玻璃体腔内处理NaIO3诱导的小鼠4周后,视网膜切片中视网膜细胞核厚度的测量结果;
图12显示了采用CaPB或DFO玻璃体腔内处理NaIO3诱导的小鼠4周后,通过频域光学相干断层扫描(SD-OCT)评估视网膜全层厚度(以竖线长度表示)的结果;
图13显示了采用CaPB或DFO玻璃体腔内处理NaIO3诱导的小鼠4周后,通过免疫荧光染色定量分析光感受器细胞标志物Arrestin和Rhodopsin的相对蛋白表达水平的结果;
图14显示了(i)PBS组、(ii)NaIO3组、(iii)NaIO3+DFO组和(iv)NaIO3+CaPB组小鼠对暗反应中的视网膜电图(ERG)视觉功能检测结果;
图15显示了(i)PBS组、(ii)NaIO3组、(iii)NaIO3+DFO组和(iv)NaIO3+CaPB组小鼠对光反应的ERG视觉功能检测结果;
图16显示了高通量转录组测序技术RNA-seq后的热图分析CaPB处理NaIO3诱导的ARPE-19后差异表达的基因结果(差异≥1.5倍);
图17显示了CaPB暴露后,NaIO3处理的ARPE-19细胞中下调基因的主要富集通路的KEGG分析结果;
图18显示了用western blot方法进行ARPE-19中铁死亡标志物SLC39A14、IREB2和GPX4的蛋白表达水平检测及相对蛋白定量的结果;
图19显示了用CM-H2DCFDA探针对有或没有CaPB处理的NaIO3暴露24小时后ARPE-19细胞内总ROS的Image J定量分析结果;
图20显示了玻璃体内CaPB(200ppm)或DFO(100μM)处理NaIO3诱导的mRPE,4周后检测与铁死亡相关的生物标志物ROS水平的DHE染色定量结果;
图21显示了玻璃体内CaPB(200ppm)或DFO(100μM)处理NaIO3诱导的mRPE,4周后比色法检测铁死亡相关的生物标志物MDA水平的定量结果;
上述附图中的数据统计图:N.S.表示无显著差异,*表示P<0.05,**表示P<0.01,均数±SD,单因素方差分析Bonferroni校正。
具体实施方式
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
为对照方便起见,实施例中所述CaPB即为含PVP修饰的CaPB纳米颗粒。
实施例1 CaPB纳米颗粒的制备
将88.8mg氯化钙溶解于10mL pH=1的去离子水中,制得溶液1;
将263.4mg铁氰化钾溶解于40mL pH=1的去离子水中,制得溶液2;
将300mg PVP(1w)溶解在30mL pH=1的去离子水中,制得溶液3;
将溶液1和溶液3混合,然后以1秒1滴的速度加入溶液2,反应1小时,即制备得到CaPB纳米颗粒,其平均球形颗粒(含PVP)直径约为36nm,如图3所示。
本发明通过简便的聚合物介导成核过程,在钙离子均匀掺杂的普鲁士蓝类似物表面构建了具有生物相容性的聚乙烯吡咯烷酮修饰从而形成了纳米颗粒。
实施例2 CaPB纳米颗粒降低体外培养的RPE中亚铁离子水平
本实施例采用体外细胞实验,即视网膜色素上皮细胞系(ARPE-19)作为研究对象,验证了CaPB纳米颗粒在实验性氧化应激诱导剂碘酸钠(NaIO3)诱导的视网膜变性(研究视网膜退行性疾病干性AMD的典型细胞模型)中的保护效果,我们使用了亚铁螯合剂去铁铵(DFO)作为阳性对照。
通过FerroOrange探针染色,我们发现NaIO3(30mM)培养的ARPE-19细胞中,亚铁离子水平显著升高,而CaPB(40ppm)和DFO(75μM)处理后均显著降低了NaIO3诱导的亚铁离子水平(图4),暗示了CaPB显著的铁结合能力。
实施例3 CaPB纳米颗粒防护视网膜色素上皮细胞变性
我们进一步研究了CaPB纳米颗粒在体内是否具有与体外相似的治疗效果。NaIO3处理的方法是通过小鼠尾静脉注射35mg/kg的NaIO3,体内给药的方法是通过小鼠玻璃体腔注射1μL浓度为200ppm的CaPB,或1μL浓度为100μM的DFO;给药的时间是玻璃体腔注射CaPB或DFO 15分钟后再通过NaIO3尾静脉注射。检测的样本为从经过相应处理后的小鼠视网膜中分离出来的RPE原代细胞,缩写为mRPE。
通过mRPE元素分析,我们发现NaIO3处理组的亚铁离子水平随着时间的推移逐渐升高(图5左),当用CaPB纳米颗粒处理NaIO3注射的小鼠视网膜2周、3周和4周后,mRPE中亚铁离子水平随着时间持续降低(图5右),表明CaPB在体内的长期治疗窗口至少为4周。
为了进一步探讨CaPB对NaIO3处理的mRPE中视网膜色素上皮细胞相关生物标志物表达水平的影响,我们对视网膜色素上皮细胞标志物RLBP1蛋白和RPE65蛋白,以及视网膜色素上皮细胞紧密连接标志物ZO-1蛋白进行了western blot分析。结果表明,在CaPB或DFO处理NaIO3注射的小鼠4周后,只有CaPB纳米颗粒明显阻止了NaIO3导致的单层mRPE中ZO-1、RLBP1和RPE65蛋白水平的下降,而DFO没有明显保护效果(图6)。RLBP1和RPE65在视网膜切片的免疫荧光染色的结果进一步支持了western blot的结果(图7)。为了进一步评估体内mRPE细胞形态变化,我们另外对提取的小鼠RPE铺片进行了ZO-1染色。结果发现,DFO处理后几乎没有阻止NaIO3诱导的ZO-1的异常表达与RPE异常形态,而CaPB治疗明显抑制了NaIO3暴露后的细胞完整性和紧密连接的广泛破坏(图8和图9)。以上结果表明CaPB可通过与亚铁离子结合抑制RPE异常和死亡。
实施例4 CaPB纳米颗粒防护光感受器细胞变性
无数研究表明RPE细胞异常与其导致的光感受器细胞变性在不同类型的视网膜退行性疾病中发挥重要作用,尤其是干性AMD。由于我们以上研究结果发现CaPB纳米颗粒能够有效防止RPE功能障碍和死亡,因此我们从形态学和功能学方面进一步研究了CaPB纳米颗粒体内给药4周后是否具有类似的细胞保护行为。通过眼底照相评估发现单次玻璃体腔注射CaPB纳米颗粒后可持续发挥保护作用,其显著抑制NaIO3处理视网膜后的广泛萎缩病灶(亮白色斑点),而DFO处理之后的NaIO3注射的小鼠视网膜与NaIO3注射后没有治疗的效果相比没有明显变化,表明DFO注射4周后无法有效保护视网膜(图10)。
理论上,RPE的功能变性甚至死亡将随后导致光感受器细胞变性。事实上,我们发现在NaIO3处理过的视网膜中,与功能失调的RPE层相邻的光感受器细胞数量明显减少,通过测量外核层(ONL)厚度(与光感受器数量成正比)发现光感受器层约为正常视网膜ONL厚度的56%(图11)。CaPB纳米颗粒治疗显著地防止了NaIO3导致的ONL厚度的变薄,其达到了85%正常视网膜的ONL厚度,证实了CaPB的持续的保护作用,而DFO的长期保护作用有限。
进一步通过SD-OCT检查证实,如图12所示,经NaIO3处理的视网膜存在明显的解剖结构异常,其视网膜层厚度明显变薄(竖线长度标记),尤其是由于ONL厚度变薄。与DFO处理的NaIO3诱导的视网膜相比,CaPB显著预防了NaIO3损伤后的视网膜厚度降低,进一步验证了CaPB对视网膜的长期有效保护作用。这些结果表明,CaPB纳米颗粒通过对视网膜结构(尤其是ONL和RPE层)的形态学保护,将有效地抑制氧化应激介导的视网膜退化。
为了在分子水平上证明CaPB纳米颗粒治疗的有效性,我们还分析了光感受器细胞相关的典型生物标志物的蛋白表达水平,主要包括视紫红质(Rhodopsin)和Arrestin。如图13所示,视网膜切片免疫染色统计结果显示,经NaIO3处理后Rhodopsin和Arrestin蛋白表达水平明显下降,表明剩余的光感受器细胞也不可避免地退化。而这些指标在CaPB处理组中得到了明显改善,但在DFO注射组中没有提高,再次证实了CaPB纳米颗粒的长期保护作用。以上所有结果支持了CaPB纳米颗粒相对于传统铁螯合剂DFO可作为一种更长效的防治体内视网膜光感受器细胞变性的替代药物。
此外,对NaIO3诱导的视网膜的视觉功能的保护是防治视网膜退化的最终目标。通过视网膜电图ERG(临床上视网膜视觉功能评估的金标准方法)分析暗环境(图14)和光环境条件(图15)下小鼠的视觉电生理活动,我们发现健康老鼠(不暴露NaIO3)的ERG曲线高耸,其可作为此实验中正常的ERG曲线并被认为是正常的视网膜功能(图14i、图15i),而老鼠暴露NaIO3后,注射无菌生理盐水治疗(图14ii、图15ii)或DFO(图14iii、图15iii)出现的ERG曲线振幅明显降低,也提示了视网膜视觉功能受损。而CaPB纳米颗粒治疗显著预防了NaIO3诱导的ERG曲线的降低,表明CaPB纳米颗粒亦可高效对视网膜的视觉功能进行保护。以上所有结果均表明CaPB纳米颗粒可高效防治氧化应激诱导的视网膜变性,其在氧化应激诱导的视网膜相关疾病的防治中具有潜在应用价值。
实施例5 CaPB纳米颗粒通过抑制铁死亡保护视网膜色素上皮细胞
为深入探讨CaPB纳米颗粒保护NaIO3诱导的RPE变性的潜在机制,我们进行了高通量转录组测序技术RNA-seq分析。从图16中的测序结果可以看出,经CaPB纳米颗粒处理后,NaIO3处理ARPE-19细胞后有463个基因表达显著上调,397个基因表达下调。进一步对下调的基因进行了KEGG通路的富集分析,结果发现CaPB纳米颗粒处理NaIO3诱导的细胞后,“铁死亡(Ferroptosis)”通路下调最显著(图17)。先前的研究报道,程序性铁死亡可能是氧化应激导致RPE功能障碍和死亡的主要病理因素,并提示抗铁死亡策略在保护RPE功能障碍方面发挥了十分重要的作用。因此,CaPB纳米颗粒对氧化应激介导的RPE死亡的保护机制可能是通过抑制RPE的铁死亡。
我们进一步通过western blot发现经过CaPB处理显著抑制了的NaIO3诱导的ARPE-19细胞中异常表达的铁死亡密切相关的标志物基因水平,尤其是谷胱甘肽过氧化物酶4(GPX4)、铁反应元件结合蛋白2(IREB2)和溶质载体家族39(锌转运体)成员14(SLC39A14)(图18)。此外,我们用CM-H2DCFDA荧光探针检测RPE细胞内ROS的总浓度发现CaPB在NaIO3诱导的ARPE-19细胞中显示出强大的抑制氧化损伤的能力,如图19所示,DCF的荧光强度显著降低,证实CaPB可以结合细胞内的亚铁离子,从而缓解RPE中铁依赖的铁死亡。体内实验中通过mRPE中的DHE染色(评估体内ROS的方法)和MDA(评估脂质过氧化化物方法)检测发现,在注射了NaIO3的小鼠后,只有CaPB纳米颗粒治疗4周后仍持续抑制了NaIO3导致的DHE和MDA水平的升高,而DFO没有显示相同保护效果(图20和图21)。以上所有结果表明CaPB可能是DFO的一个有前景的替代药物。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种视网膜退行性疾病治疗药物,其特征在于,所述药物包括钙取代的普鲁士蓝类似物纳米颗粒,其内核为钙离子均匀掺杂的普鲁士蓝骨架结构,表面修饰有聚乙烯吡咯烷酮。
2.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,所述钙取代的普鲁士蓝类似物纳米颗粒由铁氰根离子、钙离子和聚乙烯吡咯烷酮自组装而成。
3.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,所述内核的分子式为KCa[FeIII(CN)6]。
4.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,所述钙取代的普鲁士蓝类似物纳米颗粒的直径为20-50nm。
5.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,聚乙烯吡咯烷酮的重均分子量Mw为9500-10500。
6.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,所述药物还包括药学上可接受的载体或赋形剂。
7.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,所述视网膜退行性疾病包括年龄相关性黄斑变性、糖尿病视网膜病、视网膜色素变性。
8.如权利要求1所述的视网膜退行性疾病治疗药物,其特征在于,给药方式为玻璃体腔注射。
9.如权利要求1所述的钙取代的普鲁士蓝类似物纳米颗粒在制备视网膜退行性疾病治疗药物中的应用。
10.如权利要求1所述的钙取代的普鲁士蓝类似物纳米颗粒在制备由亚铁离子作为氧化应激来源导致的视网膜色素上皮细胞变性相关疾病治疗药物中的应用。
CN202111278502.7A 2021-10-30 2021-10-30 CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用 Pending CN113876718A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111278502.7A CN113876718A (zh) 2021-10-30 2021-10-30 CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111278502.7A CN113876718A (zh) 2021-10-30 2021-10-30 CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用

Publications (1)

Publication Number Publication Date
CN113876718A true CN113876718A (zh) 2022-01-04

Family

ID=79014685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111278502.7A Pending CN113876718A (zh) 2021-10-30 2021-10-30 CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用

Country Status (1)

Country Link
CN (1) CN113876718A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931642A (zh) * 2022-04-28 2022-08-23 深圳爱尔眼科医院 一种用于治疗老年性黄斑变性的铁死亡抑制剂
CN116942697A (zh) * 2023-08-14 2023-10-27 上海市第六人民医院 普鲁士蓝在制备治疗内质网应激相关疾病药物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106727432A (zh) * 2017-03-07 2017-05-31 上海凌凯医药科技有限公司 一种类普鲁士蓝纳米颗粒及其制备方法与应用
CN108324733A (zh) * 2018-01-30 2018-07-27 东南大学 一种pvp修饰的普鲁士蓝纳米材料的制备方法
US20200016086A1 (en) * 2017-02-17 2020-01-16 Kent State University Nanoparticulate Materials and Methods for Targeting Iron Acquisition and Metabolism for Treating Bacterial Infections
CN111529546A (zh) * 2020-05-08 2020-08-14 深圳市大美康桥生物科技有限公司 一种具有治疗作用的夺铁剂复合物及其制备方法
CN111529547A (zh) * 2020-04-30 2020-08-14 天津大学 普鲁士蓝纳米颗粒在制备预防、延缓或治疗神经系统退行性疾病药物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200016086A1 (en) * 2017-02-17 2020-01-16 Kent State University Nanoparticulate Materials and Methods for Targeting Iron Acquisition and Metabolism for Treating Bacterial Infections
CN106727432A (zh) * 2017-03-07 2017-05-31 上海凌凯医药科技有限公司 一种类普鲁士蓝纳米颗粒及其制备方法与应用
CN108324733A (zh) * 2018-01-30 2018-07-27 东南大学 一种pvp修饰的普鲁士蓝纳米材料的制备方法
CN111529547A (zh) * 2020-04-30 2020-08-14 天津大学 普鲁士蓝纳米颗粒在制备预防、延缓或治疗神经系统退行性疾病药物中的应用
CN111529546A (zh) * 2020-05-08 2020-08-14 深圳市大美康桥生物科技有限公司 一种具有治疗作用的夺铁剂复合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔芹等: "聚乙烯吡咯烷酮修饰六氰合铁酸钴纳米粒子的制备", 《成都理工大学学报(自然科学版)》 *
王希莹等: "线粒体铁蛋白在年龄相关性黄斑变性视网膜的表达及抗氧化应激作用的研究", 《哈尔滨医科大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931642A (zh) * 2022-04-28 2022-08-23 深圳爱尔眼科医院 一种用于治疗老年性黄斑变性的铁死亡抑制剂
CN116942697A (zh) * 2023-08-14 2023-10-27 上海市第六人民医院 普鲁士蓝在制备治疗内质网应激相关疾病药物中的应用

Similar Documents

Publication Publication Date Title
Luo et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis
Lai et al. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy
Wang et al. Light-induced Nrf2−/− mice as atrophic age-related macular degeneration model and treatment with nanoceria laden injectable hydrogel
Zhao et al. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy
Sharma et al. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea
CN113876718A (zh) CaPB纳米颗粒在制备视网膜退行性疾病治疗药物中的应用
HRP20040406A2 (en) Methods for treating ocular neovascular diseases
Zhao et al. Systemic administration of the antioxidant/iron chelator α-lipoic acid protects against light-induced photoreceptor degeneration in the mouse retina
EP3233174B1 (en) Intraocular delivery of bioactive molecules using iontophoresis
Delrish et al. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma
Xue et al. Mitochondria-targeted nanozymes eliminate oxidative damage in retinal neovascularization disease
Zhang et al. The emerging roles of clusterin in reduction of both blood retina barrier breakdown and neural retina damage in diabetic retinopathy
Zhou et al. A Novel Photosynthetic Biohybrid System for Microenvironment Regulation of Diabetes Retinopathy through Continuous Oxygen Supply and Nanozyme Cascade Reaction
Akiyama et al. Edaravone prevents retinal degeneration in adult mice following optic nerve injury
Lou et al. Suppression of NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis using melatonin-loaded liposomes to inhibit benzalkonium chloride-induced dry eye disease
Chen et al. ATB0,+-targeted nanoparticles initiate autophagy suppression to overcome chemoresistance for enhanced colorectal cancer therapy
Xu et al. Red Light‐Triggered Anti‐Angiogenic and Photodynamic Combination Therapy of Age‐Related Macular Degeneration
JP7436067B2 (ja) ナノ低分子ペプチドfg及びその眼底血管疾患の治療用薬物又は予防用薬物の調製への使用
CN110974804A (zh) p53信使RNA纳米粒及其制备方法和在制备治疗肿瘤药物中的应用
US20220110953A1 (en) Methods and compositions for treating human papillomavirus (hpv)-induced cancers
Dengler et al. Targeted delivery of magnetic cobalt nanoparticles to the eye following systemic administration
Kumar et al. Nanoparticles mediated localized therapy abrogates autophagy through modulation of Beclin1 and Atg7 for the management of ischemia-reperfusion disorder
Qin et al. Macromolecular carrier with long retention and body-temperature triggered nitric oxide release for corneal alkali burn therapy via leptin-related signaling
CN112913775A (zh) 一种药物(调往诱导剂mnu)诱导自发性白内障的方法
CN109789115A (zh) 用于治疗眼疾的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220104

RJ01 Rejection of invention patent application after publication