CN113874615A - 用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统以及具有这样的喷入系统的内燃机 - Google Patents

用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统以及具有这样的喷入系统的内燃机 Download PDF

Info

Publication number
CN113874615A
CN113874615A CN202080028598.9A CN202080028598A CN113874615A CN 113874615 A CN113874615 A CN 113874615A CN 202080028598 A CN202080028598 A CN 202080028598A CN 113874615 A CN113874615 A CN 113874615A
Authority
CN
China
Prior art keywords
pressure
value
injection system
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080028598.9A
Other languages
English (en)
Inventor
A·多尔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions Ltd
Rolls Royce Solutions GmbH
Original Assignee
Rolls Royce Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Solutions Ltd filed Critical Rolls Royce Solutions Ltd
Publication of CN113874615A publication Critical patent/CN113874615A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明涉及一种用于运行内燃机(1)的喷入系统(3)的方法,其中,所述喷入系统(3)具有高压存储器(13),其中,在所述高压存储器(13)中的高压在正常运行中通过低压侧的抽吸节流件(9)的操控进行调节,其中,所述高压在保护运行的第一运行类型中通过至少一个高压侧的压力调节阀(19)的操控进行调节,其中,如果所述高压达到或超过第一压力极值,则从所述正常运行切换到所述保护运行的第一运行类型中,并且其中,如果所述高压从压力理论值之上出发达到或低于所述压力理论值,则从所述保护运行的第一运行类型切换到所述正常运行中,其中,所述压力理论值小于所述第一压力极值。

Description

用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统 以及具有这样的喷入系统的内燃机
技术领域
本发明涉及一种用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统和具有这样的喷入系统的内燃机。
背景技术
喷入系统和用于其运行的方法例如从DE 10 2014 213 648 B3和DE 10 2015 209377 B4中得出。
在此谈及的类型的喷入系统具有至少一个喷射器,其尤其设立成用于将燃烧物引入到内燃机的燃烧室中,以及具有高压存储器,其一方面与至少一个喷射器并且另一方面通过高压泵与燃料贮存器处于流体技术的连接中。以这种方式,燃料或燃烧物(其中,所述概念同义地应用)能够借助于高压泵从燃料贮存器输送到高压存储器中。高压泵配属有低压侧的抽吸节流件。尤其抽吸节流件能够作为第一压力调整环节进行操控并且处于燃料贮存器与高压存储器之间的流动技术的连接中地进行布置,优选地布置在高压泵上游。因此,通过抽吸节流件能够影响高压泵的输送功率并且由此同时影响在高压存储器中的压力。此外,喷入系统具有至少一个高压侧的压力调节阀,通过其将高压存储器与燃料贮存器(尤其平行于走向通过高压泵的流动线路地)与燃料贮存器流动技术地连接。由此,通过压力调节阀能够将燃料从高压存储器调控到燃料贮存器中。
在燃料贮存器与高压存储器之间的流动技术的连接中能够设置有燃料过滤器,所述燃料过滤器用于将水从燃料中过滤出来。在此,然而,同时还将空气从燃料中过滤出来,所述空气在流动线路中能够被收集到高压存储器中,从而形成空气柱。空气能够又通过高压泵与燃料一起被输送到高压存储器中,在那儿其能够导致不期望的压力波动。在此,尤其可能的是,在高压存储器中的高压由于所述不期望的波动而超过第一压力极值。
在用于运行喷入系统的方法的范围内设置成,在高压存储器中的高压在正常运行中通过低压侧的抽吸节流件的操控进行调节,其中,高压在保护运行的第一运行类型中通过至少一个高压侧的压力调节阀的操控进行调节。如果所述高压达到或超过第一压力极值,则从正常运行切换到保护运行的第一运行类型中。因为这呈现保护机制,所以典型地设置成,保持保护运行,直至具有喷入系统的内燃机断开。如果此时不存在真实的错误,而是第一压力极值仅仅由于高压的不期望的压力波动而暂时被超过,那么通过第一压力调节阀进行继续的压力调节被证明为不利的,尤其因为燃料在所述运行类型中被过度加热,由此内燃机的效率下降并且排放增加。
发明内容
本发明基于如下任务,即提供一种用于运行喷入系统的方法、用于内燃机的喷入系统和具有这样的喷入系统的内燃机,其中,不出现所提及的缺点。
所述任务通过如下方式来解决,即提供当前的技术教导,尤其独立权利要求的教导以及在从属权利要求和说明书中所公开的优选的实施方式的教导。
所述任务尤其通过如下方式来解决,即在用于运行喷入系统的方法的范围内,如果高压从压力理论值之上、尤其从第一压力极值出发达到或低于压力理论值,则从保护运行的第一运行类型切换到正常运行中,其中,压力理论值小于第一压力极值。以这种方式,在内燃机断开之前(也就是说,在内燃机的持续的运行中),实现喷入系统从保护运行返回到正常运行中。高压从所述压力理论值之上(尤其从第一压力极值出发)又达到或低于压力理论值示出,没有喷入系统的技术问题或错误持久地继续存在,而是超过第一压力极值更确切地说基于时间上受限的、不危险的事情,如例如不期望的高压波动,从而能够无危险地离开保护运行并且切换回到正常运行中。在此,能够尤其避免从喷入系统在保护运行中的运行而得出的缺点(如燃料的不被允许的加热)。尤其在高压波动的情况下,所述高压波动通过在喷入系统中的空气决定,所述喷入系统仅仅暂时变换到保护运行中并且能够接着尤其当空气通过借助于压力调节阀的调控又从高压存储器漏出时又返回到正常运行中,在所述正常运行中高压借助于抽吸节流件作为第一压力调整环节进行调节。由此避免燃料的不需要的加热以及压力调节阀的不需要的负荷。内燃机的耐久性得到延长并且效率得到改善。此外,排放被降低。
压力理论值尤其是高压值,在高压存储器中的高压根据规定被调节到所述高压值。
至少一个压力调节阀在保护运行的第一运行类型中尤其作为第二压力调整环节进行操控,以便调节所述高压。
在正常运行中,优选地高压扰动参量借助于至少一个压力调节阀来产生,以便稳定高压调节。
高压存储器优选地构造为共同的高压存储器,多个喷射器与所述高压存储器处于流体连接中。这样的高压存储器还被称为轨道,其中,喷入系统优选地设计为共轨喷入系统。
为了与第一压力极值进行比对,优选地应用动态的轨道压力,其由尤其以相对短的时间常数来过滤借助于高压传感器测量的高压来产生。但是,备选地还可行的是,将所测量的高压直接与第一压力极值进行比对。所述过滤与此相对地具有如下优点,即超过第一压力极值的暂时的超调(Überschwinger)不直接导致,切换到保护运行的第一运行类型中。
可行的是,喷入系统具有刚好一个高压侧的压力调节阀。备选地,但是还可行的是,喷入系统具有多个高压侧的压力调节阀,在优选的设计方案中具有刚好两个高压侧的压力调节阀。在此,可行的是,在保护运行的第一运行类型中多个高压侧的压力调节阀、尤其所述两个高压侧的压力调节阀作为压力调整环节被操控,以便对在高压存储器中的高压进行调节。根据优选的设计方案设置成,保护运行的第一运行类型被划分成第一运行类型的第一运行类型范围,在其中刚好一个第一高压侧的压力调节阀作为用于调节高压的压力调整环节被操控,其中,通过至少一个其它的高压侧的压力调节阀优选地产生高压扰动参量用于稳定所述调节。在第一运行类型的第二运行类型范围中,多个压力调节阀中的至少一个第二压力调节阀附加于第一压力调节阀作为压力调整环节被操控,以便对在高压存储器中的高压进行调节。如果所述高压达到或超过大于第一压力极值的运行类型范围变换压力极值,则在第一运行类型范围与第二运行类型范围之间优选地取决于压力地进行转换,尤其优选地从第一运行类型范围变换到第二运行类型范围中。以这种方式,如果通过第一压力调节阀的调节不再足以调节高压(尤其因为通过第一压力调节阀不能够从高压存储器调控足够的燃料),能够考虑将至少一个第二压力调节阀用于调节。
根据本发明的改进方案设置成,如果从保护运行的第一运行类型转换到正常运行中,则用于高压调节器(其设立成用于操控用于在正常运行中调节高压的抽吸节流件)的积分份额以积分初始值初始化。在此,积分初始值取决于内燃机的当前的运行点被求得为喷入系统的泄漏特征值。由此,有利地保证,抽吸节流件通过高压调节器在转换到正常运行中之后马上合适地被操控,尤其如下地被操控,使得喷入系统的取决于运行点的泄漏能够通过将匹配的燃料量输送到高压存储器中来平衡。否则,由于在保护运行的第一运行类型中通过高压调节器进行的高压调节的中断会存在如下危险,即其直接在转换到正常运行中之后以不合适的方式来操控抽吸节流件,从而要么过少的要么过多的燃料被输送到高压存储器中。
内燃机的运行点在此尤其理解为由内燃机的当前的转速以及确定内燃机的当前的功率的参量(尤其当前的转矩、当前的功率、或燃料的当前的理论喷入量)构成的值对。在此,明显的是,燃料的当前的从高压存储器的泄漏一方面取决于转速并且另一方面取决于当前的功率,因为这是确定有多少燃料从高压存储器流出的重要的参量。
根据本发明的改进方案设置成,积分初始值通过如下方式来求得,即从内燃机的泄漏特征区中取决于当前的运行点地读出泄漏值。这呈现了特别简单的用于求得泄漏值的方式。在此,根据一设计方案可行的是,将泄漏值用作泄漏特征值。尤其可行的是,将泄漏值直接用作用于初始化高压调节器的积分初始值。在这种情况下不需要另外的计算步骤,从而所述方法是特别简单的。备选地可行的是,泄漏值以至少一个调节因数进行结算,以便获得泄漏特征值。这实现了对高压调节器的调节行为的附加的影响,尤其以便影响高压到压力理论值上的起振过程(Einschwingvorgang)。优选地,调节因数选择为小于1,尤其为0.8,以便在从保护运行的第一运行类型转换到正常运行中时引起高压到压力理论值之下的下冲(Unterschwingen)并且由此保证到借助于抽吸节流件作为压力调整环节的高压调节的鲁棒性的过渡。
根据本发明的改进方案设置成,作为泄漏特征区应用恒定的特征区。因此,能够以特别简单的方式一次性地对泄漏特征区进行填充数据。泄漏特征区优选地以从台架试验获得的数据进行填充数据。备选地或附加地,泄漏特征区在喷入系统的运行中进行更新。以这种方式,有利地可行的是,泄漏特征区始终被保持最新并且由此尤其与内燃机的改变了的运行条件、例如老化效应或类似运行条件相匹配。优选地,泄漏特征区以高压调节器的积分份额的当前的值(在正常运行期间)作为泄漏值进行填充数据。优选地,为此应用由内燃机的静态的运行点构成的积分份额的值。在此,高压调节器的积分份额在静态的运行中至少基本上相应于喷入系统的当前的泄漏并且因此以特别的方式作为泄漏值适用于泄漏特征区的填充数据。另一方面,在此所提出的方法的范围内,如果积分份额的值储存在所述泄漏特征区中,所述值然后还又能够毫无问题地用于初始化用于高压调节器的积分份额,也就是说,用作积分初始值,那么所述方法明显简化了泄漏特征区的应用。在此,可行的是,当前的积分份额在其被储存在泄漏特征区中之前以至少一个因数进行结算,尤其以便如有可能平衡如下效应,所述效应由于将因数在其从泄漏特征区中读出之后较晚地应用于泄漏值而出现。特别优选地,泄漏特征区以当前的积分份额的经过滤的值进行填充数据。这以有利的方式实现过滤出短暂波动;只要特别优选地应用低通过滤。
根据本发明的改进方案设置成,在从保护运行的第一运行类型切换到正常运行之前检查,抽吸节流件是否有错误。仅仅当确定抽吸节流件没有错误时,或换言之,当确定抽吸节流件能够根据规定进行工作时,才切换到正常运行中。这有利地避免,虽然存在有错误并且没有保证高压能够在正常运行中实际被调节,如有可能仍然切换到正常运行中。也就是说,有利地仅仅当实际上保证抽吸节流件能够在正常运行中被操控以调节高压时才切换到正常运行中。由此,也能够避免损伤内燃机。
优选地,抽吸节流件在保护运行的第一运行类型中持久地打开。
根据本发明的改进方案设置成,如果高压超过第二压力极值,则切换到保护运行的第二运行类型中,其中,在保护运行的第二运行类型中至少一个压力调节阀和抽吸节流件持久地被打开。第二压力极值尤其大于第一压力极值并且优选地大于运行类型范围变换压力极值。在保护运行的第二运行类型中保证,在高压存储器中的过高的高压的情况下能够持久地从高压存储器中调控足够大的燃料量,其方式为,至少一个压力调节阀持久地被打开。在此,为了保护喷入系统和内燃机以免过高的压力而放弃对所述高压的调节。同时,抽吸节流件持久地被打开,以便保证,即使在内燃机的中等的功率范围中以及当高压泵在低转速的情况下运转时在低的负载点中也有足够的燃料被输送到高压存储器中,从而内燃机的运行没有由于过少的燃料输送而被中断。否则,由于通过持久地打开的压力调节阀从高压存储器的长期的泄漏能够引起燃烧室的燃料的供给不足(Unterversorgung),从而内燃机最终被停止。保护运行的第二运行类型尤其呈现安全功能,所述安全功能应该保证内燃机在紧急运行模式中的尽可能无损伤的继续运行,尤其以便提供所谓的跛行回家功能(Limp Home-Funktion)。在此,至少一个压力调节阀尤其能够满足过压阀的功能,从而有利地能够放弃机械的过压阀。
根据一设计方案可行的是,压力调节阀和/或抽吸节流件主动地持久地打开,也就是说,被操控成持久地打开的状态。根据备选的设计方案,可行的是,压力调节阀和/或抽吸节流件被动地持久地打开。这尤其当所述元件中的至少一个构造成无电流地打开时是可行的。在这种情况下,相应的元件优选地不被操控,从而其持久地、尤其完全地打开。还可行的是,至少一个压力调节阀无电流地并且无压力地被关闭,然而,构造成无电流地并且在压力下打开。这意味着,压力调节阀在其不被通电流并且不处于压力之下的状态中被关闭,其中,其在无电流的状态中自预先确定的极限打开压力值起打开。在这种情况下,压力调节阀能够在保护运行的第二运行类型中无操控地持久地打开,因为其在打开位置中保持在高压存储器中的高压。此外,压力调节阀在内燃机的起动运行中当在高压存储器中还没有构建足够的高压时能够无电流地被关闭,这实现了较快速的压力构建,而不必主动地在关闭的状态中操控压力调节阀。在压力下操控压力调节阀促使压力调节阀的关闭。
所述方法的如下实施方式变得是优选的,所述实施方式通过如下方式出众,即为在正常运行中的压力调节阀设定正常功能,在所述正常功能中,压力调节阀取决于理论体积流进行操控。在正常运行中,正常功能在此为压力调节阀提供如下运行方式,在所述运行方式中所述压力调节阀产生高压扰动参量,其方式为,所述压力调节阀将燃料从高压存储器调控到燃料贮存器中。
优选地,为压力调节阀在保护运行的第一运行类型中也设定正常功能,从而压力调节阀取决于理论体积流进行操控。一方面正常运行并且另一方面保护区域的第一运行类型在这种情况下在方法和方式上不同,以所述方法和方式来计算用于操控压力调节阀的理论体积流:
在正常运行中,理论体积流优选地由静态的和动态的理论体积流来计算。静态的理论体积流又优选地取决于内燃机的理论喷入量和转速通过理论体积流特征区来计算。在力矩定向的结构中,在此,代替理论喷入量还能够应用理论力矩或理论功率。通过静态的理论体积流来模拟恒定泄漏,其方式为,燃料仅仅在低负载范围中并且以小的量进行调控。在此,有利的是,没有出现燃料温度的明显的提高并且也没有出现内燃机的效率的明显的降低。通过模拟用于喷入系统的通过压力调节阀的恒定泄漏,高压调节在低负载范围中的稳定性得到提高,这例如能够在如下方面被识别出,即高压在滑行运行中大约保持恒定。动态的理论体积流通过动态的修正取决于理论高压和实际高压或从中推导出的调节偏差来计算。如果调节偏差是负的(例如在内燃机卸载时),通过动态的理论体积流来修正静态的理论体积流。否则(也就是说,尤其在正的调节偏差时),静态的理论体积流不进行改变。通过动态的理论体积流,反作用于所述高压的压力提高,具有如下优点,即系统的调整时间能够再次得到改善。
所述处理方法在德国专利文献DE 10 2009 031 529 B3中详细地描述。
反之,在保护运行的第一运行类型中,理论体积流通过用于调节高压的压力调节阀压力调节器来计算。在这种情况下,理论体积流呈现用于调节高压的调整参量。
备选地或附加地,变得优选的是,为在保护运行的第二运行类型中的压力调节阀设定停止功能,其中,压力调节阀在停止功能中不被操控。这尤其当应用无电流地打开或无电流地并且无压力地关闭的压力调节阀时是这种情况。通过压力调节阀然后在停止功能中不被操控(也就是说,不被通电流),得出(如有可能由于在输入侧存在的高压)所述压力调节阀的最大程度的打开,从而最大的燃料体积流通过压力调节阀从高压存储器调控到燃料贮存器中。以这种方式,压力调节阀能够完全承担在其它情况下设置的机械的过压阀的功能性,从而能够放弃机械的过压阀。在此,压力调节阀的无电流地打开或无压力地并且无电流地关闭的设计方案具有如下优点,即所述压力调节阀即使当其由于错误不再被通电流时也可靠地完全打开。
如果高压(尤其动态的轨道压力)超过第二压力极值,或如果识别出高压传感器的错误,则优选地执行从正常功能到停止功能中的过渡。如果高压传感器有错误,则不再能够调节高压,并且也不再能够识别出在高压存储器中的不被允许地高的压力。出于安全原因,因此在这种情况下为压力调节阀设定停止功能,从而所述压力调节阀被最大程度地打开并且由此喷入系统被带到如下安全的状态中,所述安全的状态相应于如下状态,在所述状态中,在其它情况下,机械的过压阀会被打开。然后,不再能够引起高压的不被允许的提高。优选地,即使确定了内燃机的停止也从正常功能出发来设定停止功能。尤其当内燃机的转速经过预先确定的时间下降到预先确定的值之下时,识别出内燃机的停止,并且为压力调节阀设定停止功能。这尤其当内燃机停止时是这种情况。在停止功能与正常功能之间的过渡在起动内燃机时优选地当确定内燃机运转时进行,其中,同时高压超过起动压力时。也就是说,在压力调节阀在正常功能中为了产生高压扰动参量被操控之前,优选地首先在高压存储器中进行一定的最小压力构建。优选地,能够通过如下方式来识别内燃机在运转,即经过预先确定的时间超过预先确定的极限转速。
根据本发明的改进方案设置成,仅仅从保护运行的第一运行类型切换回到正常运行中。这尤其意味着,不从保护运行的第二运行类型切换回到正常运行中。这出于如下考虑,即第二压力极值优选地如此进行选择,使得所述第二压力极值仅仅当在喷入系统中实际存在严重的错误时才由高压超过,从而接着不再能够有根据地返回到正常运行中。优选地,相应地附加地设置成,不从保护运行的第二运行类型切换回到保护运行的第一运行类型中。保护运行的第二运行类型由此有利地保持存在,直至内燃机停止,并且优选地此外还直至以合适的方式用信号传递或证实在喷入系统处的错误被消除,例如通过切换器的操纵、电子的输入或类似操作。
所述任务还通过提供用于内燃机的喷入系统来解决,所述喷入系统具有至少一个喷射器以及高压存储器,所述高压存储器一方面与至少一个喷射器并且另一方面通过高压泵与燃料贮存器处于流动技术的连接中,其中,高压泵配属有抽吸节流件作为第一压力调整环节。此外,喷入系统具有至少一个压力调节阀,通过其将高压存储器与燃料贮存器流动技术地连接。此外,喷入系统具有控制仪器,所述控制仪器与至少一个喷射器、抽吸节流件和至少一个压力调节阀(分别为了其操控)有效连接。在此,控制仪器设立成用于执行根据本发明的方法或根据前面描述的实施方式中的一个的方法。结合喷入系统尤其得出已经结合所述方法阐释的优点。
控制仪器优选地构造为内燃机的马达控制仪器(Engine Control Unit,ECU)。备选地,然而还可行的是,单独的控制仪器专门设置成用于执行所述方法。
优选地,低压泵布置在高压泵和抽吸节流件上游,以便将燃料从燃料贮存器输送到抽吸节流件和高压泵。
在高压存储器处优选地布置有压力传感器,所述压力传感器设立成用于检测在高压存储器中的高压并且与控制仪器有效连接,从而在控制仪器中能够记录高压。控制仪器优选地设立成用于过滤所测量的高压,尤其用于以第一、较长的时间常数进行过滤,以便计算在压力调节的范围内待应用的实际高压,并且用于以第二、较短的时间常数过滤所测量的高压,以便计算动态的轨道压力。
根据优选的设计方案,喷入系统具有刚好一个压力调节阀。
根据其它的优选的设计方案,喷入系统具有多个压力调节阀,特别优选地具有刚好两个压力调节阀,其中,高压存储器通过压力调节阀中的每个(优选地流动技术地平行于彼此地)与燃料贮存器流动技术地连接。
优选地,至少一个压力调节阀构造成无电流地打开。所述设计方案具有如下优点,即压力调节阀在其不被操控或不通电流的情况下最大程度地打开,这尤其当放弃机械的过压阀时实现特别安全且可靠的运行。当由于技术故障不能够给压力调节阀通电流时,也能够避免在高压存储器中的高压的不允许的升高。
至少一个压力调节阀特别优选地构造成无压力地并且无电流地关闭。在此,优选地如下地进行构造,使得其在输入侧存在的压力的情况下直至预先确定的极限打开压力值是关闭的,其中,当在输入侧存在的压力在无电流的状态中达到或超过极限打开压力值时,所述压力调节阀打开。在此,尤其得出已经结合所述方法阐释的优点。
根据本发明的改进方案设置成,喷入系统没有机械的过压阀。更确切地说,如结合所述方法阐释的那样,所述机械的过压阀的功能能够有利地通过至少一个压力调节阀在保护运行的第二运行类型中来承担。
所述任务最终还通过提供一种内燃机来解决,所述内燃机具有根据本发明的喷入系统或根据前面描述的实施例中的一个的喷入系统。结合内燃机尤其得出已经结合所述喷入系统和所述方法阐释的优点。
内燃机优选地具有多个(优选地等同地构造的)燃烧室。每个燃烧室优选地配属有喷入系统的至少一个喷射器,以用于将燃料引入到燃烧室中。由此,喷入系统优选地具有至少与内燃机所具有的燃烧室一样多的喷射器,根据优选的设计方案尤其具有刚好一样多的喷射器,其中,但是同样可行的是,例如每个燃烧室配属有两个或更多个喷射器。内燃机能够具有尤其四个、六个、八个、十个、十二个、十四个、十六个、十八个或二十个燃烧室。但是,其它的、尤其较小的或较大数量的燃烧室也是可行的。优选地,内燃机构造为往复活塞马达。优选地,内燃机构造为柴油马达。
附图说明
在下面,根据附图更详细地阐释本发明。在此:
图1示出具有喷入系统的一种实施例的内燃机的第一实施例的示意性的图示;
图2示出具有喷入系统的第二实施例的内燃机的第二实施例的示意性的图示;
图3示出用于运行根据现有技术的喷入系统的方法的细节图示;
图4示出用于运行喷入系统的方法的示意性的细节图示;
图5示出用于运行根据现有技术的喷入系统的方法的细节图示;
图6示出用于运行喷入系统的方法的一种实施例的细节图示;
图7示出用于运行喷入系统的方法的一种实施例的细节图示;
图8示出用于运行喷入系统的方法的一种实施例的细节图示;
图9示出用于运行喷入系统的方法的一种实施例的细节图示;
图10示出用于运行喷入系统的方法的一种实施例的细节图示,以及
图11示出用于运行喷入系统的方法的一种实施例的工作原理的图表式的图示。
具体实施方式
图1示出具有喷入系统3的第一实施例的内燃机1的第一实施例的示意性的图示。喷入系统3优选地构造为共轨喷入系统。其具有用于输送来自燃料贮存器7的燃料的低压泵5、能够调节的、低压侧的抽吸节流件9用于影响流过所述抽吸节流件的燃料体积流、高压泵11用于在压力提高的情况下将燃料输送到高压存储器13中、高压存储器13用于存储燃料,并且具有多个喷射器15用于将燃料喷入到内燃机1的燃烧室16中。可选地,可行的是,喷入系统3还实施有单个存储器,其中,然后例如在喷射器15中集成有单个存储器17作为附加的缓冲容积。设置有尤其能够电操控的压力调节阀19,通过所述压力调节阀将高压存储器13与燃料贮存器7流体连接。通过压力调节阀19的位置来界定燃料体积流,所述燃料体积流从高压存储器13调控到燃料贮存器7中。所述燃料体积流在图1中以及在下文中以VDRV进行标记并且呈现喷入系统3的高压扰动参量。
喷入系统3不具有传统地设置的并且将高压存储器13与燃料贮存器7连接的机械的过压阀。能够放弃机械的过压阀,因为其功能优选地完全通过压力调节阀19来承担。
内燃机1的运行方式通过电子的控制仪器21来确定,所述控制仪器优选地构造为内燃机1的马达控制仪器,尤其构造为所谓的马达控制单元(ECU)。电子的控制仪器21包含微计算机系统的常见的组成部件,例如微处理器、I/O模块、缓冲器和存储模块(EEPROM、RAM)。在存储模块中,对于内燃机1的运行相关的运行数据运用在特征区/特征线中。电子的控制仪器21通过所述特征区/特征线从输入参量计算输出参量。在图1中示范性地示出如下输入参量:所测量的、还未被过滤的高压p(其存在于高压存储器13中并且借助于高压传感器23进行测量)、当前的马达转速nI、用于通过内燃机1的运行者预设功率的信号FP、以及输入参量E。优选地,另外的传感器信号、例如废气涡轮增压器的增压空气压力被概括为输入参量E。在具有单个存储器17的喷入系统3中,单个存储器压力pE优选地为控制仪器21的附加的输入参量。
在图1中,作为电子的控制仪器21的输出参量示例性地示出:信号PWMSD用于操控抽吸节流件9作为第一压力调整环节、信号ve用于操控喷射器15(所述信号尤其预设喷射开始和/或喷射结束或预设喷射持续时间)、信号PWMDRV用于操控压力调节阀19作为第二压力调整环节以及输出参量A。通过优选地经脉宽调制的信号PWMDRV来界定压力调节阀19的位置并且由此界定高压扰动参量VDRV。输出参量A代表性地代表另外的用于控制和/或调节内燃机1的调整信号,例如代表用于在分级增压的情况下激活第二废气涡轮增压器的调整信号。
图2示出具有喷入系统3的第二实施例的内燃机1的第二实施例的示意性的图示。在此,设置有第一、尤其能够电操控的压力调节阀19,通过所述压力调节阀将高压存储器13与燃料贮存器7流体连接。通过第一压力调节阀19的位置来界定从高压存储器13调控到燃料贮存器7中的燃料体积流。所述燃料体积流在图2中以VDRV1进行标记并且呈现喷入系统3的高压扰动参量。
在此,喷入系统3附加地具有第二、尤其能够电操控的压力调节阀20,通过所述压力调节阀,同样将高压存储器13与燃料贮存器7流体连接。因此,所述两个压力调节阀19、20尤其流动技术地彼此平行地进行布置。还能够通过第二压力调节阀20来界定能够从高压存储器13调控到燃料贮存器7中的燃料体积流。所述燃料体积流在图2中以VDRV2进行标记。
可行的是,喷入系统3具有多于两个的压力调节阀19、20。
与图1不同,作为电子的控制仪器21的输出参量在此示出:第一信号PWMDRV1用于操控所述两个压力调节阀19、20中的第一压力调节阀、以及第二信号PWMDRV2用于操控所述两个压力调节阀19、20中的第二压力调节阀。在图2中示出的第一信号PWMDRV1相对于第一压力调节阀19的配属、以及第二信号PWMDRV2相对于第二压力调节阀20的配属优选地不是一直是固定的,更确切地说,压力调节阀19、20优选地交替地借助信号PWMDRV1、PWMDRV2进行操控。信号PWMDRV1、PWMDRV2优选地涉及经脉宽模制的信号,通过其能够界定压力调节阀19、20的位置并且由此界定相应地配属于压力调节阀19、20的体积流VDRV1、VDRV2。
如果加入第二压力调节阀20,在下面针对刚好一个压力调节阀19进行阐释的方法中优选地仅仅如下内容发生改变:第二压力调节阀20在正常运行中并且在保护运行的第一运行类型的第一运行类型范围中为了产生高压扰动参量被操控。在保护运行的第一运行类型的第二运行类型范围中,优选地除了第一压力调节阀19还对第二压力调节阀20进行操控,以用于压力调节,尤其通过压力调节阀压力调节器进行操控。在保护运行的第二运行类型中,第二压力调节阀20优选地还持久地打开。在随后结合作为唯一的压力调节阀的第一压力调节阀19所进行的阐释的基础上,所述功能性能够不难实现。此外,第二压力调节阀的相应的应用在德国专利文献DE 10 2015 209 377 B4中公开。
为了较简单的图示,在下面根据在图1中示出的实施例来阐释喷入系统1的工作原理,所述喷入系统具有刚好一个压力调节阀19。
图3在a)中示出用于运行根据图1的喷入系统3的方法的示例的示意性的图示。设置有第一高压调节回路25,通过所述第一高压调节回路在喷入系统3的正常运行中借助于作为第一压力调整环节的抽吸节流件9来调节在高压存储器13中的高压。第一高压调节回路25结合图5更详细地进行阐释,在所述图5中其被详细地示出。第一高压调节回路25具有用于喷入系统3的压力理论值pS(在下面还被称为理论高压pS)作为输入参量。所述压力理论值优选地取决于内燃机1的转速、对内燃机1的负载或转矩要求,和/或取决于另外的、尤其用于修正的参量从特征区读出。第一高压调节回路25的另外的输入参量尤其是内燃机1的当前的转速nI以及优选地由转速调节器所计算的理论喷入量QS。作为输出参量,第一高压调节回路25尤其具有由高压传感器23测量的高压p,其优选地经受具有较大的时间常数的第一过滤,以便确定实际高压pI,其中,其同时优选地经受具有较小的时间常数的第二过滤,以便计算动态的轨道压力pdyn。所述两个压力值pI、pdyn呈现第一高压调节回路25的另外的输出参量。
在图3a)中示出压力调节阀19的操控。设置有第一切换元件27,借助所述第一切换元件能够取决于第一逻辑信号SIG1地在正常运行与保护运行的第一运行类型之间进行转换。优选地,第一切换元件27完全在电子的或软件层面上来实现。在此,在下面进行描述的功能性优选地取决于相应于第一逻辑信号SIG1的变量(所述变量尤其构造为所谓的标志并且能够采用“真”或“假”这些值)的值进行转换。备选地,然而显然还可行的是,第一切换元件27构造为真实的切换器、例如构造为继电器。然后,所述切换器能够例如取决于电信号的电平进行切换。在在此具体地示出的设计方案中,当第一逻辑信号SIG1具有“假”(False)这一值时,设定正常运行。反之,当第一逻辑信号SIG1具有“真”(Ture)这一值时,设定保护运行的第一运行类型。
设置有第二切换元件29,其设立成用于切换压力调节阀19从正常功能到停止功能中的操控以及返回的操控。在此,第二切换元件29取决于第二逻辑信号SIG2或相应的变量的值进行控制。第二切换元件29能够设计为虚拟的、尤其基于软件的切换元件,其取决于尤其设计为标志的变量的值在正常功能与停止功能之间进行切换。但是,备选地还可行的是,第二切换元件构造为真实的切换器,例如构造为继电器,其取决于电信号的信号值进行切换。在在此具体地示出的实施方式中,第二逻辑信号SIG2相应于如下状态变量,所述状态变量能够采用值1用于第一状态和值2用于第二状态。在此,当第二逻辑信号SIG2采用值2时,在此为压力调节阀设定正常功能,其中,当第二逻辑信号SIG2采用值1时,设定停止功能。显然,第二逻辑信号SIG2的不同的定义是可行的,尤其如下的定义是可行的,即相应的变量能够采用值0和1。
首先,此时,对在正常运行中以及在所设定的正常功能中的压力调节阀19的操控进行描述。设置有第一计算环节31,其输出所计算的理论体积流VS,ber作为输出参量,其中,当前的转速nI、理论喷入量QS、理论高压pS、动态的轨道压力pdyn、以及实际高压pI作为输入参量输入到第一计算环节31中。第一计算环节31的工作原理详细地在德国专利文献DE 102009 031 528 B3和DE 10 2009 031 527 B3中进行描述。在此,尤其示出,在低负载范围中,例如在内燃机1空转时,对于静态的理论体积流计算正的值,而在低负载范围之外静态的理论体积流被计算为0。静态的理论体积流优选地通过加上动态的理论体积流进行修正,所述动态的理论体积流本身通过取决于理论高压pS、实际高压pI和动态的轨道压力pdyn的动态的修正来计算。所计算的理论体积流VS,ber最终为由静态的理论体积流和动态的理论体积流组成的和。就此而言,所计算的理论体积流VS,ber涉及合成的理论体积流。
在正常运行中,当第一逻辑信号SIG1具有“假”这一值时,则所计算的理论体积流VS,ber作为理论体积流VS被递交到压力调节阀特征区33处。压力调节阀特征区33在此(如在德国专利文献DE 10 2009 031 528 B3中所描述的那样)描绘压力调节阀19的逆特征。所述特征区的输出参量是压力调节阀理论电流IS,输入参量是待调控的理论体积流VS以及实际高压pI
备选地,还可行的是,理论体积流VS不借助于第一计算环节31进行计算,而是在正常运行中被预设为恒定的。
压力调节阀理论电流IS被供应给电流调节器35,所述电流调节器具有如下任务,即对用于操控压力调节阀19的电流进行调节。电流调节器35的另外的输入参量例如是压力调节阀19的比例系数kpI,DRV和欧姆电阻RI,DRV。电流调节器35的输出参量是用于压力调节阀19的理论电压US,其通过参考运行电压UB以本身常见的方式换算成用于经脉宽模制的用于操控压力调节阀19的信号PWMDRV的接通持续时间并且在正常功能(也就是说,当第二逻辑信号SIG2具有值2时)被供应给所述压力调节阀。为了电流调节,在压力调节阀19处的电流被测量为电流参量IDRV,在第一电流过滤器37中进行过滤并且作为经过滤的实际电流II又被供应给电流调节器35。
如已经说明那样,用于操控压力调节阀19的经脉宽模制的信号PWMDRV的接通持续时间以本身常见的方式根据如下的方程式由理论电压US和运行电压UB来计算:
Figure DEST_PATH_IMAGE001
以这种方式,在正常运行中,通过压力调节阀19产生高压扰动参量、即经调控的理论体积流VS
如果第一逻辑信号SIG1采用“真”这一值,则第一切换元件27从正常运行转换到保护运行的第一运行类型中。在哪些条件下这是这样的情况,结合图3b)进行阐述。关于压力调节阀19的操控,无论如何只要通过切换元件29来设定正常功能,则在保护运行的第一运行类型中只要在此压力调节阀19也借助理论体积流VS来操控就不得出区别。就此而言,在图3a)中,在切换元件27的右边关于之前所给出的阐释没有得出改变。然而,理论体积流VS在保护运行的第一运行类型中与在正常运行中不同地进行计算,即通过第二高压调节回路39进行计算。
理论体积流VS在这种情况下与压力调节阀压力调节器41的受限制的输出体积流VR等同地进行设定。这相应于第一切换元件27的上方的切换位置。压力调节阀压力调节器41具有高压调节偏差ep作为输入参量,所述高压调节偏差被计算为理论高压pS与实际高压pI的差。压力调节阀压力调节器41的另外的输入参量优选地是用于压力调节阀19的最大的体积流Vmax、在第一计算环节31中所计算的理论体积流VS,ber和/或比例系数kpDRV。压力调节阀压力调节器41优选地实施为PI(DT1)算法。在此,积分份额(I份额)在如下时间点时以所计算的理论体积流VS,ber进行初始化,在所述时间点时第一切换元件27从其在图3a)中示出的下方的切换位置转换到其上方的切换位置中。压力调节阀压力调节器41的I份额向上被限制到用于压力调节阀19的最大的体积流Vmax。在此,最大的体积流Vmax优选地是二维的特征线43的输出参量,其具有取决于高压的、最大程度穿过压力调节阀19的体积流,其中,特征线43获得实际高压pI作为输入参量。压力调节阀压力调节器41的输出参量是未受限制的体积流VU,其在第一限制元件45中被限制到最大的体积流Vmax。第一限制元件45最终输出受限制的理论体积流VR作为输出参量。借助作为理论体积流VS的输出参量,然后操控压力调节阀19,其方式为,理论体积流VS以已经描述的方式被供应给压力调节阀特征区33。
图3在b)中示出第一逻辑信号SIG1在哪些条件下采用“真”和“假”这些值。只要动态的轨道压力pdyn没有达到或没有超过第一压力极值pG1,则第一比较元件47的输出就具有“假”这一值。在起动内燃机1时,第一逻辑信号SIG1的值以“假”进行初始化。由此,只要第一比较元件47的输出具有“假”这一值,则第一取或环节49的结果也为“假”。第一取或环节49的输出被供应给第一取与环节51的输入,将变量MS的通过横线示出的取非供应给其另外的输入,其中,当内燃机1停止时,变量MS具有“真”这一值,并且当内燃机1运转时,具有“假”这一值。因此,在内燃机1的运行中,变量MS的取非的值为“真”。总体上,此时示出,只要动态的轨道压力pdyn没有达到或没有超过第一压力极值pG1,第一取与环节51的输出和由此第一逻辑信号SIG1的值就为“假”。
如果动态的轨道压力pdyn达到或超过第一压力极值pG1,则第一比较元件47的输出从“假”跳到“真”。由此,第一取或环节49的输出也从“假”跳到“真”。由此,然而,第一取与环节51的输出也从“假”跳到“真”,从而第一逻辑信号SIG1的值变为“真”。所述值又被供应给第一取或环节49,然而,这没有改变的是,其输出保持为“真”。即使动态的轨道压力pdyn下降到第一压力极值pG1之下,第一逻辑信号SIG1的真值也能够不再改变。更确切地说,所述真值一直保持为“真”,直至变量MS和由此还有其取非改变其真值,即当内燃机1不再运转时。
由此,示出如下内容:只要动态的轨道压力pdyn低于极值pG1,则实现正常运行。在这种情况下,理论体积流VS与所计算的理论体积流VS,ber等同,因为第一逻辑信号SIG1采用“假”这一值并且由此切换元件27布置在其在图3中的下方的位置中。如果动态的轨道压力pdyn达到或超过极值pG1,第一逻辑信号SIG1采用“真”这一值,并且第一切换元件27占据其上方的切换位置。由此,理论体积流VS在这种情况下与第二高压调节回路39的受限的体积流VR等同。这意味着,在正常运行中通过压力调节阀19来产生高压扰动参量,其中,当动态的轨道压力pdyn达到第一压力极值pG1,并且所述高压接着由压力调节阀压力调节器41进行调节时,保护运行的第一运行类型被激活,并且这一直直至识别出内燃机1的停止状态,因为仅仅在这种情况下变量MS采用“真”这一值,由此其取非采用“假”这一值并且由此最后第一逻辑信号SIG1又采用“假”这一值,由此第一切换元件27重新被带到其下方的切换位置中。
在保护运行的第一运行类型中,压力调节阀19通过第二高压调节回路39承担所述高压的调节。
还变得清楚的是,在所述方法中,只要内燃机1运转,就不能够从保护区域的第一运行类型回到正常运行。因此,不期望的、空气引起的高压的波动能够以不适宜的方式导致设定保护运行的第一运行类型,而当高压又下降时,不能够又离开所述第一运行类型。
回到图3a),在下面阐释保护运行的第二运行类型:当在此第二逻辑信号SIG2采用值1时,则切换到第二运行类型中。在这种情况下,第二切换元件29布置在其在图3中示出的上方的切换位置中,其中,由此为压力调节阀19设定停止功能。在所述停止功能中,压力调节阀19不被操控,也就是说,信号PWMDRV被设定到0。因为优选地应用无电流地打开的压力调节阀19,这此时持久地将最大的燃料体积流从高压存储器13调控到燃料贮存器7中。
反之,如果第二逻辑信号SIG2具有值2,则如已经阐释的那样为压力调节阀19设定正常功能,并且所述压力调节阀借助于理论体积流VS和由此计算出的信号PWMDRV来操控。
图4示意性地示出用于压力调节阀19从正常功能到停止功能中的和反过来的状态过渡线图。压力调节阀19特别优选地如下地进行构造,使得其构造成无压力地且无电流地关闭,其中,其进一步如下地构造,使得其在输入侧施加的压力的情况下直到极限打开压力值为止是关闭的,其中,当在输入侧施加的压力在无电流的状态中达到或超过极限打开压力值时,则所述压力调节阀打开。极限打开压力值例如能够为850 bar。
在图4中利用第一回路K1来表示停止功能,其中,右上利用第二回路K2来表示正常功能。第一箭头P1呈现为在停止功能和正常功能之间的过渡,其中,第二箭头P2呈现为在正常功能和停止功能之间的过渡。利用第三箭头P3表示内燃机1在起动之后的初始化,其中,压力调节阀19首先在停止功能中初始化。
当同时识别出内燃机1的连续的运行并且实际高压pI超过起动值pSt时,才为所述压力调节阀19沿着箭头P1设定正常功能并且重置停止功能。当动态的轨道压力pdyn超过第二压力极值pG2时,或当识别出高压传感器的错误(在此通过逻辑变量HDSD示出),或当识别出内燃机1静止时,则正常功能被重置并且停止功能沿着箭头P2设定。在停止功能中,压力调节阀19不被操控,其中,其在正常功能中如结合图3阐述的那样借助于理论体积流VS来操控。
此时得出如下功能性:如果内燃机1起动,则首先没有高压在高压存储器13中存在,并且压力调节阀19布置在其停止功能中,从而所述压力调节阀是无压力且无电流的、也就是说是关闭的。在加速(Hochlaufen)内燃机1时,因此能够快速地在高压存储器13中构造高压,所述高压任何时候都超过起动值pSt。所述高压优选地处于低于压力调节阀19的极限打开压力值,从而在所述压力调节阀打开之前首先为所述压力调节阀设定正常功能。由此以有利的方式保证,当所述压力调节阀首次打开时,压力调节阀19无论如何都被操控。因为所述压力调节阀是无压力地关闭的,所以所述压力调节阀即使在操控的情况下也继续保持关闭,直至实际高压pI也超过极限打开压力值,其中,所述压力调节阀然后打开并且在正常功能中进行操控,即,要么在正常运行中要么在保护运行的第一运行类型中进行操控。
然而,如果之前描述的情况中的一种出现,则又为压力调节阀19设定停止功能。
尤其当动态的轨道压力pdyn超过第二压力极值PG2时,则这为这种情况,其中,所述第二压力极值优选地选择成大于第一压力极值pG1并且尤其具有如下的值,在所述值的情况下,在喷入系统3的传统的设计方案中机械的过压阀会打开。因为压力调节阀19在压力下是无电流地打开的,所以所述压力调节阀在停止功能中在这种情况中完全打开并且由此安全且可靠地满足过压阀的功能。
当在高压传感器23中的错误得到确定时,也进行从正常功能到停止功能中的过渡。如果在此存在有错误,那么不再能够对在高压存储器13中的高压进行调节。为了使得内燃机1尽管如此仍然能够安全地运行,为压力调节阀19引起从所述正常功能到停止功能中的过渡,从而所述压力调节阀打开并且由此防止所述高压不允许地上升。
此外,在如下情况中进行从正常功能到停止功能中的过渡,在所述情况中内燃机1的停止得到确定。这相应于重置压力调节阀19,从而在重新起动内燃机1时在此描述的循环能够又重新开始。
如果在高压储存器13中的压力下为压力调节阀19设定停止功能,则所述压力调节阀最大程度地打开并且将最大的体积流从高压储存器13调控到所述燃料贮存器7中。这相应于用于内燃机1和喷入系统3的保护功能,其中,所述保护功能尤其能够代替机械的过压阀的缺失。
在此重要的是,压力调节阀19具有仅仅两个状态、即停止功能和正常功能,其中,所述两个状态充分足以呈现压力调节阀19的整个相关的功能性连同用于代替机械的过压阀的保护功能在内。
图5在a)中示出用于计算第三逻辑信号SIG3的值的逻辑的示意性的图示,所述第三逻辑信号用于保证在保护运行的第一和第二运行类型中将抽吸节流件9操控成持久打开的运行。这种处理方法结合图5b)更详细地进行阐释。第三逻辑信号SIG3的值由第二取与环节61产生,在所述第二取与环节的第一输入中又输入变量MS的取非,其中,之前的、在下面更详细地阐述的计算的结果输入到第二输入中。第三逻辑信号SIG3在内燃机1起动时首先以“假”这一值初始化。第二比较元件65的结果输入到第二取或环节63的第一输入中,在所述第二比较元件中检查,动态的轨道压力pdyn大于还是等于第一压力极值pG1。比对元件67的结果输入到第二取或环节63的第二输入中,所述比对元件检查,表明高压传感器23的传感器错误的逻辑变量HDSD的值是否等于1,其中,在这种情况中存在有传感器错误,并且其中,如果变量HDSD的值等于0,则不存在传感器错误。由此示出,如果第二比较元件65的或比对元件67的输出中的至少一个采用“真”这一值,则第二取或环节63的输出采用“真”这一值。也就是说,为了所述第二取或环节63的输出采用“真”这一值,必须满足如下条件中的至少一个:动态的轨道压力pdyn必须已经达到或超过第一压力极值pG1,和/或在高压传感器23中的传感器错误必须已经得到确定,从而变量HDSD采用值1。如果这些条件中的任何一个都没有被满足,则第二取或环节63的输出具有“假”这一值。
第二取或环节63的输出输入到第三取或环节69的第一输入中,第三逻辑信号SIG3的值输入到所述第三取或环节的第二输入中。因为所述第三逻辑信号SIG3最初以“假”这一值初始化,所以第三取或环节69的输出一直具有“假”这一值,直至第二取或环节63的输出采用“真”这一值。如果这为这种情况,则第三取或环节69的输出也跳到“真”这一值上。在这种情况中,如果内燃机1运转(也就是说,变量MS的取非具有值1),则第二取与环节61的值也跳到“真”上,从而第三逻辑信号SIG3的值也跳到“真”上。根据图5a)示出,第三逻辑信号SIG3的值一直保持“真”,直至识别出内燃机1的停止,其中,在这种情况中变量MS采用“真”这一值并且由此所述变量的取非采用“假”这一值。
图5在b)中示出第一高压调节回路25连同第三切换元件71在内的示意性的图示以用于呈现抽吸节流件9在保护运行的第一和第二运行类型中持久地打开的运行,其中,第三逻辑信号SIG3输入到第三切换元件71中用于操控所述第三切换元件,所述第三逻辑信号的计算已结合图5a)进行描述。可行的是,第三切换元件71构造为软件切换器,也就是说,构造为纯虚拟的切换器,如这已经结合切换元件27、29进行描述的那样。备选地,显然还可行的是,第三切换元件71构造为真实的切换器,例如构造为继电器。
如已经阐述的那样,高压调节回路25的输入参量为理论高压pS,其为了计算调节偏差eP与实际高压pI相比对。所述调节偏差eP为高压调节器73的输入参量,所述高压调节器优选地实施为PI(DT1)算法并且结合图10更详细地进行阐释。高压调节器73的另一输入参量优选地为比例系数kpSD。高压调节器73的输出参量为用于抽吸节流件9的燃料体积流VSD,在加法部位75中将燃料理论消耗VQ加到所述燃料体积流VSD上。所述燃料理论消耗VQ在第二计算环节77中取决于当前的转速nI和理论喷入量QS来计算并且呈现第一高压调节回路25的扰动参量。未受限制的燃料理论体积流VU,SD得出为高压调节器73的输出参量VSD和扰动参量VQ的和。所述未受限制的燃料理论体积流在第二限制元件79中取决于当前的转速nI被限制到用于抽吸节流件9的最大的体积流Vmax,SD。用于抽吸节流件9的受限的燃料理论体积流VS,SD作为第二限制元件79的输出来得出,所述受限的燃料理论体积流作为输入参量输入到泵特征线81中。所述泵特征线将受限的燃料理论体积流VS,SD换算成特征线抽吸节流件电流IKL,SD
如果第三切换元件71具有在图5b)中示出的、上方的切换状态(如果第三逻辑信号SIG3具有“假”这一值,则这是这种情况),则抽吸节流件理论电流IS,SD与特征线抽吸节流件电流IKL,SD相等。所述抽吸节流件理论电流IS,SD呈现抽吸节流件电流调节器83的输入参量,所述抽吸节流件电流调节器具有如下任务,即调节通过抽吸节流件9的抽吸节流件电流。抽吸节流件电流调节器83的另一输入参量尤其是实际抽吸节流件电流II,SD。抽吸节流件电流调节器83的输出参量是抽吸节流件理论电压US,SD,所述抽吸节流件理论电压最终在第三计算环节85中以本身已知的方式换算成用于抽吸节流件9的脉宽模制的信号PWMSD的接通持续时间。利用所述信号来操控抽吸节流件9,其中,所述信号由此总体上作用于调节路段87,所述调节路段尤其具有抽吸节流件9、高压泵11和高压储存器13。抽吸节流件电流被测量,其中,产生原始测量值IR,SD,其在第二电流过滤器89中被过滤。第二电流过滤器89优选地构造为PT1过滤器。所述过滤器的输出参量为实际抽吸节流件电流II,SD,所述实际抽吸节流件电流又被供应给抽吸节流件电流调节器83。
第一高压调节回路25的调节参量为在高压储存器13中的高压。所述高压p的原始值通过高压传感器23测量并且通过第一高压过滤元件91过滤,所述第一高压过滤元件具有实际高压pI作为输出参量。此外,高压p的原始值通过第二高压过滤元件93过滤,其输出参量为动态的轨道压力pdyn。所述两个过滤器优选地通过PT1算法实现,其中,第一高压过滤元件91的时间常数大于第二高压过滤元件93的时间常数。尤其,第二高压过滤元件93构造为比第一高压过滤元件91快的过滤器。第二高压过滤元件93的时间常数也能够与值“零”等同,从而那么动态的轨道压力pdyn相应于高压p的所测量的原始值或与其等同。由此用于高压的高动态的值以动态的轨道压力pdyn存在,所述高动态的值尤其始终当应该对一定的出现的事件快速进行反应时是有利的。
由此,第一高压调节回路25的输出参量除了未过滤的高压p之外是经过滤的高压力值pI、pdyn
如果第三逻辑信号SIG3采用“真”这一值,则第三切换元件71切换到其在图5b)中示出的下方的切换位置中。在这种情况中,抽吸节流件理论电流IS,SD不再与特征线抽吸节流件电流IKL,SD等同,而是反而与抽吸节流件紧急电流IN相等。抽吸节流件紧急电流IN优选地具有预先确定的恒定的值、例如0 A,其中,然后优选地无电流地打开的抽吸节流件9最大程度地打开,或所述抽吸节流件紧急电流具有相比于抽吸节流件9的最大的关闭位置小的电流值、例如0.5 A,从而抽吸节流件9虽然没有完全地打开、但却很大程度地打开。在此,抽吸节流件9的抽吸节流件紧急电流IN和与其相关的打开可靠地防止,当内燃机1在保护运行的第二运行类型中利用最大程度打开的压力调节阀19来运行时,内燃机1保持停止。抽吸节流件9的打开在此促使,即使在中等的直到低的转速范围中仍有足够多的燃料能够被输送到高压储存器13中,从而实现内燃机1不停地运行。
变得清楚的是,只要内燃机1运转,就不设置从保护运行的第二运行类型回到正常运行中(并且此外还回到保护运行的第一运行类型中)。回到正常运行中仅仅在内燃机1停止和重新起动之后才是可行的,并且优选地此外仅仅在证实可能存在的错误被消除之后才是可行的。
图6示出用于运行喷入系统3的方法的实施方式的示意性的图示,其中,在高压存储器13中的高压在正常运行中通过低压侧的抽吸节流件9的操控进行调节,其中,所述高压在保护运行的第一运行类型中通过高压侧的压力调节阀19的操控进行调节,其中,当所述高压达到或超过第一压力极值pG1时,则从正常运行切换到保护运行的第一运行类型中。在此,此时根据本发明设置成,当高压从压力理论值pS之上出发(尤其从第一压力极值pG1出发)达到或低于压力理论值pS时,其中,压力理论值pS小于第一压力极值PG1,则从保护运行的第一运行类型切换回到正常运行中。由此,根据在此所提出的方法,在内燃机1运转期间,能够有利地从保护运行的第一运行类型回到正常运行中。由此,能够尤其避免,喷入系统3根据高压的由于空气引起的本身不期望的压力波动持久地在保护运行的第一运行类型中运行,虽然例如被输送到高压存储器13中的空气已经又通过压力调节阀19漏出。
在图6中,不同的运行模式配属有变量BM的不同的值。在不限制一般性的情况下,如果变量BM具有值0,则喷入系统3在正常运行中运行;如果变量BM具有值1,则喷入系统3在保护运行的第一运行类型中运行;如果变量BM具有值2,则喷入系统3在保护运行的第二运行类型中运行。运行模式的转换优选地在变量BM的值发生改变时进行,尤其朝着这样的改变进行。
在此,如果高压超过第二压力极值pG2,则尤其切换到保护运行的第二运行类型中,其中,在保护运行的第二运行类型中压力调节阀19和抽吸节流件9持久地打开。
此时图6尤其示出基于所述方法的用于在不同的运行模式之间进行转换的逻辑。在此,所述方法在开始步骤S0中开始。在第一步骤S1中访问,变量BM是否具有值2。如果这是这种情况,程序流程在第十二步骤S12中结束。
优选地,在图6中示出的程序流程不断地迭代;这意味着,如果所述程序在第十二步骤S12中已经结束,而内燃机1在运转,则所述程序始终重新又在开始步骤S0中开始。
如果在第一步骤S1中确定,变量BM不具有值2,则程序流程在第二步骤S2中继续,在所述第二步骤S2中检查,动态的轨道压力pdyn是否大于第二压力极值pG2。如果这是这种情况,则在第三步骤S3中将变量BM的值设定到2。由此,切换到保护运行的第二运行类型中。接着,程序流程在第十二步骤S12中结束。在此,根据图6的程序流程示出,只要内燃机1运转,就不再能够从保护运行的第二运行类型返回。更确切地说,对于变量BM,当其一旦已经被设定就保留值2。在起动内燃机1时和/或在证实喷入系统3的错误或故障功能已经被消除之后,变量BM以值0初始化。
反之,如果在第二步骤S2中确定,动态的轨道压力pdyn不大于第二压力极值pG2,则在第四步骤S4中访问,变量BM是否具有值1。如果这是这种情况,则在第五步骤S5中检查,抽吸节流件9是否有错误。如果这是这种情况,则程序流程又在第十二步骤S12中结束。反之,如果在第五步骤S5中确定抽吸节流件9没有错误,则程序流程在第六步骤S6中继续,在所述第六步骤中检查,动态的轨道压力pdyn是小于还是等于压力理论值(或同义的理论高压pS)。如果这不是这种情况,则程序流程在第十二步骤S12中结束。反之,如果这是这种情况,则程序流程在第七步骤S7中继续,其中,变量BM被分配有值0,由此喷入系统3的运行切换回到正常运行中。也就是说,尤其在从保护区域的第一运行类型转换到正常运行之前检查,抽吸节流件9是否有错误,其中,仅仅在抽吸节流件9没有错误时,才切换到正常运行中。
在第八步骤S8中,用于高压调节器73的积分份额以积分初始值Iinit初始化,如关于图10更详细地进行阐释的那样。积分初始值Iinit尤其取决于内燃机1的当前的运行点被求得为喷入系统3的泄漏特征值,这针对图7更详细地进行阐释。在第八步骤S8之后,方法在第十二步骤S12中结束。
如果在第四步骤S4中确定,变量BM的值不等于1,则程序流程在第九步骤S9中继续,在其中检查,动态的轨道压力pdyn是大于还是等于第一压力极值pG1。如果这是这种情况,则在第十一步骤S11中变量BM的值被设定到1并且由此切换到保护运行的第一运行类型中。反之,如果在第九步骤S9中的访问的结果为“否”,则变量BM的值在第十步骤S10中被设定到0。在此,第十步骤S10根据其它的实施方式还能够被省略,因为在第一步骤S1中和在第四步骤S4中进行访问之后就此而言总归仅仅还将用于变量BM的值0此外被留下为设定好的并且由此如有可能不需要重新设定所述值。尽管如此,第十步骤S10尤其能够出于安全或冗余原因进行设置。在第十一步骤S11或第十步骤S10之后,程序流程又相应地在第十二步骤S12中结束。
根据图6的程序流程尤其还示出,仅仅从保护运行的第一运行类型又切换回到正常运行中。尤其如已经阐释的那样,只要内燃机1在运转,就不从第二运行类型切换回到正常运行中。
图7示出用于在根据图6的程序流程的第八步骤S8中求得用于高压调节器73的积分初始值Iinit的处理方法的示意性的图示。因为高压调节器73在优选的设计方案中涉及PI(DT1)算法,所以其输出参量VSD在静态运行中与高压调节器73的积分份额等同。为了获得在从保护运行的第一运行类型过渡到正常运行中时的用于所述输出参量VSD的近似值,优选地合适的值(如在下面还阐释的那样)在泄漏特征区95中取决于内燃机1的当前的运行点来储存。当前的运行点在在此示出的实施例中一方面通过当前的转速nI以及另一方面通过理论喷入量QS进行表征。代替理论喷入量QS,还能够考虑其它的确定功率的参量,例如理论转矩或理论功率。从物理学上来看,高压调节器73的积分份额大约相应于喷入系统3的当前的取决于运行点的泄漏。因此,优选地从泄漏特征区95取决于运行点地读出初始的泄漏体积流VL,i作为泄漏值。根据一设计方案,所述初始的泄漏体积流能够直接用作泄漏特征值并且由此用作积分初始值Iinit。然而,在此示出的实施例中设置成,泄漏值以至少一个调节因数fL来结算,以便获得泄漏特征值。在此,调节因数fL优选地选为小于1,尤其为0.8,以便在从保护运行的第一运行类型过渡到正常运行中时实现高压到压力理论值pS之下的下冲并且由此实现到正常运行中的鲁棒性的过渡。在此示出的实施例中,此外还有刻度因数fSkal应用于泄漏特征值,以便然后最后获得积分初始值Iinit。尤其当高压调节器73为了积分初始值Iinit需要与其为了泄漏特征区95而应用的不同的单位时,所述刻度因数fSkal能够例如用于,对不同的物理单位彼此进行换算。
泄漏特征区95能够一次性地填充数据并且然后用作恒定的特征区。尤其可行的是,泄漏特征区95以来自在优选地像新的一样的在静态运行中的马达处关于整个运行范围的台架试验的、用于高压调节器73的积分份额的测量值进行填充数据。备选地,可行的是,泄漏特征区95在喷入系统3的运行中进行更新,其中,其优选地以高压调节器73的积分份额的当前的、优选地经过滤的值(如有可能在考虑因数、尤其单位换算因数的情况下)作为泄漏值来填充数据。由此,泄漏特征区95能够始终保持在当前的状态下并且尤其还考虑喷入系统3和/或内燃机1的老化效应。
图8示出用于运行喷入系统3的方法的实施方式的另外的细节图示,在此,具体地示出压力调节阀19的操控。在此,根据图8的图示基于图3a)的图示,具有如下变型(其中,其余部分参考关于图3a)的实施方案):第一切换元件27在此通过第一运行模式切换元件97来代替。此时,也就是说,压力调节阀19的操控不再取决于第一逻辑信号SIG1来进行,而是更确切地说取决于变量BM的当前的值。如果其具有值1,则也就是说,设定保护运行的第一运行类型,因此第一运行模式切换元件97占据在图8中示出的上方的切换位置,其中,在这种情况下,高压借助于压力调节阀19进行调节,如结合图3a)进行阐释的那样。反之,如果变量BM的值不等于1(也就是说要么等于0要么等于2,其中,因此要么设定正常运行要么设定保护运行的第二运行类型),那么第一运行模式切换元件97占据在图8中示出的下方的切换位置,其中,要么通过压力调节阀19(在正常运行中)来产生高压扰动参量,要么(在保护运行的第二运行类型中)不对压力调节阀19进行操控并且由此由于所存在的高压被持久地打开。这又取决于第二逻辑信号SIG2的值,通过所述第二逻辑信号来决定,是为压力调节阀19设定正常功能还是停止功能,如结合图3a)和4进行阐释的那样,其中,尤其根据图4的状态过渡线图说明,以何种方式为第二逻辑信号SIG2选择值。所述值尤其在停止功能中等于1并且在压力调节阀19的正常功能中等于2。
由此,根据图8还变得清楚的是,如果即变量BM的值从1设定回到0并且相应地第一运行模式切换元件97的切换位置发生改变,则根据在此公开的技术教导能够在内燃机1的运行期间从保护运行的第一运行类型回到正常运行中。
图9示出用于运行喷入系统3的方法的实施方式的另外的细节图示。在此,根据图9的图示基于根据图5b)的图示并且涉及抽吸节流件9的操控,其(除了在下面阐释的变型以外)与结合图5b)进行阐释的处理方法保持一致,从而参考:如在下面结合图10还更详细地阐释的那样,在此高压调节器73根据在此公开的技术教导作为附加的输入参量一方面获得变量BM的值并且另一方面获得积分初始值Iinit。此外,在此第三切换元件71通过第二运行模式切换元件99来代替,从而从现在起抽吸节流件9在特征线抽吸节流件电流IKL,SD与抽吸节流件紧急电流IN之间的操控不再取决于第三逻辑信号SIG3、而是更确切地说取决于变量BM的值进行转换。在此,如果变量BM具有值0,因此当设定正常运行时,抽吸节流件9以特征线抽吸节流件电流IKL,SD来操控,其中,如果变量BM的值不同于0(也就是说,尤其等于1或等于2),因此当要么设定保护运行的第一运行类型要么设定保护运行的第二运行类型时,所述抽吸节流件以抽吸节流件紧急电流IN来操控。
图10示出高压调节器73的示意性的图示,其在此实施为PI(DT1)压力调节器。在此示出,高压调节器73的输出参量VSD由三个求和的调节器份额构成,即比例份额AP、积分份额AI、和微分份额ADT1。所述三个份额在求和部位101中与彼此相加成输出参量VSD。比例份额AP在此呈现为调节偏差ep与比例系数kpSD的乘积。积分份额AI取决于第三运行模式切换元件103的切换位置并且由此取决于变量BM的值。如果其等于零,也就是说,喷入系统3在正常运行中,则积分份额AI由两个加数的和产生。第一加数在此为当前的以扫描步Ta延迟的积分份额AI。第二加数为增强因数r2p与当前的和以扫描步延迟的调节偏差ep的和的乘积。所述两个加数的和在此在第三限制元件105中取决于当前的转速nI和如有可能另外的参数向上进行限制。增强因数r2p根据如下公式来计算,其中tnp为再调整时间:
Figure 976849DEST_PATH_IMAGE002
如果变量BM的值不等于0,则积分份额AI设定为等于积分初始值Iinit。结果,这意味着,如果从正常运行尤其变换到保护运行的第一运行类型中,则第三运行模式切换元件103转换到积分初始值Iinit。因为抽吸节流件9在这种情况下不被操控(对比于图9),这首先没有影响。但是,如果然后又变换回到正常运行中,则在由于第三运行模式切换元件103的转换能够生成新的、其它的值用于积分份额AI之前,第一用于积分份额AI的值为积分初始值Iinit。由此,如果从保护运行的第一运行类型转换到正常运行中,结果将积分份额AI以积分初始值Iinit初始化。
在图10中还示出,积分份额AI被分支,以便尤其能够将其取决于运行点地储存在泄漏特征区95中,从而能够更新所述泄漏特征区。
微分份额ADT1的计算在图10的下方的部分中示出。所述份额被得出为两个乘积的和。第一乘积通过因数r4p与以扫描步延迟的微分份额ADT1相乘产生。第二乘积通过因数r3p和调节偏差ep与相应地以扫描步延迟的调节偏差ep的差相乘得出。
在此,因数r3p根据如下方程式来计算,其中tvp为提前时间并且t1p为延迟时间:
Figure DEST_PATH_IMAGE003
因数r4p根据如下方程式来计算:
Figure 97252DEST_PATH_IMAGE004
由此示出,增强因数r2p和r3p取决于比例系数kpSD。增强因数r2p附加地取决于再调整时间tnp,增强因数r3p取决于提前时间tvp并且取决于延迟时间t1p。增强因数r4p同样取决于延迟时间t1p
图11根据两个时间线图示出在此公开的技术教导的图表式的阐释。在此,在上方的时间线图中动态的轨道压力pdyn取决于时间t示出。尤其在此示出对于如下情况的动态的轨道压力pdyn的走向,即已经在低压范围中收集的空气借助于高压泵11到达到高压存储器13中。在此,在高压中构造波动,所述波动从理论高压pS出发缓慢地建立。在第一时间点t1时,动态的轨道压力pdyn最终达到第一压力极值pG1,这导致,高压此时借助于压力调节阀19并且不再如之前那样借助于抽吸节流件9进行调节。在下方的图表中,为此示出变量BM的值的时间上的走向,其在第一时间点t1时从0变换到1,从而由正常运行转换到保护运行的第一运行类型中。
在保护运行的所述第一运行类型中,高压通过燃料的经由压力调节阀19的调控影响并且优选地被调节到理论高压pS。通过从高压存储器13调控燃料,引起高压沿朝着理论高压pS的方向下降,直至最终在第二时间点t2时达到所述理论高压并且因此还低于所述理论高压。通过从上方(也就是说,从第一压力极值pG1)达到理论高压pS,变量BM的值又被设定到0,并且由此转换到正常运行中,如能够从下方的图表中识别出的那样。由此,此时高压也又借助于抽吸节流件9进行调节。因为与燃料一起同时还有空气被从高压存储器13中调控出来,因此引起高压到其理论值的稳定的起振过程,其中,在此示出的情况下,高压在第三时间点t3时又完全起振到理论高压pS
由此,有利地实现,内燃机1在高压波动的情况下(所述高压波动通过在喷入系统3中的空气决定)仅仅暂时被变换到保护运行的第一运行类型中并且接着,当空气通过压力调节阀19的调控从高压存储器13中漏出时,又返回到正常运行中,其中,高压重新通过抽吸节流件9进行调节。由此,避免燃料的不必要的加热以及压力调节阀19的不必要的负荷,由此延长内燃机1的耐久性并且改善其效率。

Claims (10)

1.用于运行内燃机(1)的喷入系统(3)的方法,其中,所述喷入系统(3)具有高压存储器(13),其中,在所述高压存储器(13)中的高压在正常运行中通过低压侧的抽吸节流件(9)的操控进行调节,其中,所述高压在保护运行的第一运行类型中通过至少一个高压侧的压力调节阀(19)的操控进行调节,其中,如果所述高压达到或超过第一压力极值,则从所述正常运行切换到所述保护运行的第一运行类型中,并且其中,如果所述高压从压力理论值之上出发达到或低于所述压力理论值,则从所述保护运行的第一运行类型切换到所述正常运行中,其中,所述压力理论值小于所述第一压力极值。
2.根据权利要求1所述的方法,其特征在于,如果从所述保护运行的第一运行类型转换到所述正常运行中,则用于高压调节器(73)的积分份额为了操控所述抽吸节流件(9)以积分初始值初始化,其中,所述积分初始值作为所述喷入系统(3)的泄漏特征值取决于所述内燃机(1)的当前的运行点来求得。
3.根据前述权利要求中任一项所述的方法,其特征在于,所述积分初始值通过如下方式来求得,即从泄漏特征区(95)中取决于所述当前的运行点地读出泄漏值,其中,
a) 所述泄漏值用作泄漏特征值,或
b) 所述泄漏值以至少一个调节因数进行结算,以便获得所述泄漏特征值。
4.根据前述权利要求中任一项所述的方法,其特征在于,所述泄漏特征区(95)
a) 应用为恒定的特征区,或
b) 在所述喷入系统(3)的运行中进行更新,尤其以所述高压调节器(73)的积分份额的当前的值作为泄漏值。
5.根据前述权利要求中任一项所述的方法,其特征在于,在从所述保护运行的第一运行类型转换到所述正常运行中之前检查,所述抽吸节流件(9)是否有错误,其中,仅仅在所述抽吸节流件(9)没有错误时才切换到所述正常运行中。
6.根据前述权利要求中任一项所述的方法,其特征在于,如果所述高压超过第二压力极值,则切换到所述保护运行的第二运行类型中,其中,在所述保护运行的第二运行类型中所述至少一个压力调节阀(19)和所述抽吸节流件(9)持久地打开。
7.根据前述权利要求中任一项所述的方法,其特征在于,仅仅从所述保护运行的第一运行类型切换回到所述正常运行中。
8.用于内燃机(1)的喷入系统(3),具有
- 至少一个喷射器(15),
- 高压存储器(13),所述高压存储器一方面与所述至少一个喷射器(15)并且另一方面通过高压泵(11)与燃料贮存器(7)处于流体连接中,其中,
- 所述高压泵(11)配属有抽吸节流件(9)作为第一压力调整环节,并且具有
- 至少一个压力调节阀(19),通过所述压力调节阀将所述高压存储器(13)与所述燃料贮存器(7)流动技术地连接,并且具有
- 控制仪器(21),所述控制仪器与所述至少一个喷射器(15)、所述抽吸节流件(9)和所述至少一个压力调节阀(19)有效连接,其中,所述控制仪器(21)设立成用于执行根据权利要求1至7中任一项所述的方法。
9.根据权利要求8所述的喷入系统(3),其特征在于,所述喷入系统(3)没有机械的过压阀。
10.内燃机(1),具有根据权利要求8或9中任一项所述的喷入系统(3)。
CN202080028598.9A 2019-02-14 2020-02-13 用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统以及具有这样的喷入系统的内燃机 Pending CN113874615A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019202004.6 2019-02-14
DE102019202004.6A DE102019202004A1 (de) 2019-02-14 2019-02-14 Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
PCT/EP2020/053741 WO2020165333A1 (de) 2019-02-14 2020-02-13 Verfahren zum betreiben eines einspritzsystems einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem

Publications (1)

Publication Number Publication Date
CN113874615A true CN113874615A (zh) 2021-12-31

Family

ID=69593670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080028598.9A Pending CN113874615A (zh) 2019-02-14 2020-02-13 用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统以及具有这样的喷入系统的内燃机

Country Status (4)

Country Link
US (1) US11408365B2 (zh)
CN (1) CN113874615A (zh)
DE (1) DE102019202004A1 (zh)
WO (1) WO2020165333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019202004A1 (de) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088981A2 (de) * 1999-09-30 2001-04-04 Robert Bosch Gmbh Verfahren zum Abbau des Raildrucks in einem Common-Rail-System für Brennkraftmaschinen
DE102008000513A1 (de) * 2007-03-05 2008-10-09 Denso Corp., Kariya-shi Kraftstoffeinspritzdruckregelungsvorrichtung zum Kompensieren Individueller Schwankungen der Regeldruckkennlinie
DE102013000060B3 (de) * 2013-01-02 2014-05-22 Mtu Friedrichshafen Gmbh Verfahren und Regeleinrichtung zum Betreiben einer Brennkraftmaschine
CN106489022A (zh) * 2014-07-14 2017-03-08 Mtu 腓特烈港有限责任公司 用于运行内燃机的方法、用于内燃机的喷入系统以及内燃机
US20180023502A1 (en) * 2015-05-21 2018-01-25 Mtu Friedrichshafen Gmbh Injection system for an internal combustion engine and internal combustion engine having such an injection system
DE102017214001B3 (de) * 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802583C2 (de) * 1998-01-23 2002-01-31 Siemens Ag Vorrichtung und Verfahren zum Druckregeln in Speichereinspritzsystemen mit einem elektromagnetisch betätigten Druckstellglied
DE10323874A1 (de) * 2003-05-26 2004-12-30 Siemens Ag Verfahren zum Betreiben eines Verbrennungsmotors, Kraftstoffsystem und ein Volumenstromregelventil
DE102005029138B3 (de) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031529B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031528B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050467B4 (de) 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051390B4 (de) * 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102013202266A1 (de) * 2013-02-12 2014-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Hochdruck-Einspritzsystems insbesondere einer selbstzündenden Brennkraftmaschine eines Kraftfahrzeugs
DE102015207961B4 (de) * 2015-04-29 2017-05-11 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen einer Dauereinspritzung im Betrieb einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine
DE102019202004A1 (de) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
DE102019203740B4 (de) * 2019-03-19 2020-12-10 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine mit einem Einspritzsystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088981A2 (de) * 1999-09-30 2001-04-04 Robert Bosch Gmbh Verfahren zum Abbau des Raildrucks in einem Common-Rail-System für Brennkraftmaschinen
DE102008000513A1 (de) * 2007-03-05 2008-10-09 Denso Corp., Kariya-shi Kraftstoffeinspritzdruckregelungsvorrichtung zum Kompensieren Individueller Schwankungen der Regeldruckkennlinie
DE102013000060B3 (de) * 2013-01-02 2014-05-22 Mtu Friedrichshafen Gmbh Verfahren und Regeleinrichtung zum Betreiben einer Brennkraftmaschine
CN106489022A (zh) * 2014-07-14 2017-03-08 Mtu 腓特烈港有限责任公司 用于运行内燃机的方法、用于内燃机的喷入系统以及内燃机
US20180023502A1 (en) * 2015-05-21 2018-01-25 Mtu Friedrichshafen Gmbh Injection system for an internal combustion engine and internal combustion engine having such an injection system
CN107864661A (zh) * 2015-05-21 2018-03-30 Mtu 腓特烈港有限责任公司 用于内燃机的喷射系统以及具有这种喷射系统的内燃机
DE102017214001B3 (de) * 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem

Also Published As

Publication number Publication date
DE102019202004A1 (de) 2020-08-20
WO2020165333A1 (de) 2020-08-20
US20210372343A1 (en) 2021-12-02
US11408365B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
CN107448315B (zh) 用于控制和调节内燃机的方法
US7503313B2 (en) Method and device for controlling an internal combustion engine
CN107864661B (zh) 用于内燃机的喷射系统以及具有这种喷射系统的内燃机
US7240667B2 (en) Method and apparatus for controlling the pressure in a common rail system
US7610901B2 (en) Method for detecting the opening of a passive pressure control valve
US9328689B2 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
US9611800B2 (en) Method for operating a fuel system of an internal combustion engine
US8347863B2 (en) Method for controlling a fuel delivery device on an internal combustion engine
JPH09195880A (ja) 内燃機関を制御する方法および装置
JP4780137B2 (ja) 高圧燃料制御装置
US10253718B2 (en) Method and apparatus for controlling fuel pressure
US8886439B2 (en) Method for the control and regulation of an internal combustion engine
EP2235352A1 (en) System and method for preventing overheating of a fuel pump
US8950380B2 (en) Diagnostic method for a fuel pressure sensor in the common rail of an internal combustion engine
US20120226428A1 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
CN112513446A (zh) 用于运行具有共轨喷射系统的燃烧马达的方法和装置
US9863358B2 (en) Method for operating a common-rail system of a motor vehicle having a redundant common-rail-pressure sensor
CN113874615A (zh) 用于运行内燃机的喷入系统的方法、用于内燃机的喷入系统以及具有这样的喷入系统的内燃机
CN111051673B (zh) 用于运行内燃机的方法、用于内燃机的喷入系统和内燃机
CN109072795B (zh) 用于运行内燃机的方法、用于控制和/或调节内燃机的装置、喷射系统和内燃机
US9624860B2 (en) Method for the control and regulation of a V-type internal combustion engine
CN110753786B (zh) 用于符合需求地维护喷射器的方法
JP3719641B2 (ja) 筒内噴射エンジンの燃圧制御装置
JP2010038143A (ja) 内燃機関の制御装置
JP4650458B2 (ja) サプライポンプの制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40066548

Country of ref document: HK