CN113871302B - N型二硒化钨负电容场效应晶体管及其制备方法 - Google Patents

N型二硒化钨负电容场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN113871302B
CN113871302B CN202111456128.5A CN202111456128A CN113871302B CN 113871302 B CN113871302 B CN 113871302B CN 202111456128 A CN202111456128 A CN 202111456128A CN 113871302 B CN113871302 B CN 113871302B
Authority
CN
China
Prior art keywords
tungsten diselenide
effect transistor
field effect
hafnium
matching layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111456128.5A
Other languages
English (en)
Other versions
CN113871302A (zh
Inventor
张增星
董建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC Manufacturing Innovation Center Co Ltd
Original Assignee
Shanghai IC Manufacturing Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai IC Manufacturing Innovation Center Co Ltd filed Critical Shanghai IC Manufacturing Innovation Center Co Ltd
Priority to CN202111456128.5A priority Critical patent/CN113871302B/zh
Publication of CN113871302A publication Critical patent/CN113871302A/zh
Application granted granted Critical
Publication of CN113871302B publication Critical patent/CN113871302B/zh
Priority to PCT/CN2022/101200 priority patent/WO2023098047A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/443Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种N型二硒化钨负电容场效应晶体管的制备方法,包括在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜,在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层,控制氧化铪锆铁电薄膜和氧化铝电容匹配层的厚度,提高了铁电负电容性能,对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理,以提高铁电性,将所述二硒化钨半导体转移至所述氧化铝电容匹配层上,在所述二硒化钨半导体上形成金属铟源电极和金属铟漏电极,通过匹配二硒化钨半导体和金属铟的功参数,提高了N型接触性能,进而降低了N型二硒化钨负电容场效应晶体管的亚阈值摆幅。本发明还提供了一种N型二硒化钨负电容场效应晶体管。

Description

N型二硒化钨负电容场效应晶体管及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种N型二硒化钨负电容场效应晶体管及其制备方法。
背景技术
信息技术的快速发展,特别是物联网的出现,带来了对高性能电子设备的迫切需求。例如,便携式设备和处理海量数据对超低功耗逻辑单元的要求很高。然而,当传统的硅基场效应晶体管进入亚5 nm工艺节点时,沟道长度和栅极电介质厚度仅为数纳米,使半导体沟道的载流子迁移率急剧下降,静电栅极控制能力减弱,短沟道效应突出。在这种情况下,器件的亚阈值摆幅(Subthreshold swing,SS)将增加,栅极漏电流变得显著,导致不可忽略的静态功耗。到目前为止,制备低亚阈值摆幅的N型WSe2负电容场效应晶体管的亚阈值摆幅较高。
因此,有必要提供一种新型的N型二硒化钨负电容场效应晶体管及其制备方法以解决现有技术中存在的上述问题。
发明内容
本发明的目的在于提供一种N型二硒化钨负电容场效应晶体管及其制备方法,降低了亚阈值摆幅。
为实现上述目的,本发明的所述N型二硒化钨负电容场效应晶体管的制备方法,包括:
提供栅电极层和二硒化钨半导体;
通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜;
通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层;
对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理,以提高铁电性;
将所述二硒化钨半导体转移至所述氧化铝电容匹配层上;
在所述二硒化钨半导体上形成金属铟源电极和金属铟漏电极。
所述N型二硒化钨负电容场效应晶体管的制备方法的有益效果在于:通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜,通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层,通过控制氧化铪锆铁电薄膜和氧化铝电容匹配层的厚度,提高了N型二硒化钨负电容场效应晶体管的铁电负电容性能,在所述二硒化钨半导体上形成金属铟源电极和金属铟漏电极,通过匹配二硒化钨半导体和金属铟的功参数,提高了N型接触性能,铁电负电容性能和N型接触性能的提高,降低了N型二硒化钨负电容场效应晶体管的亚阈值摆幅,提高了N型二硒化钨负电容场效应晶体管的性能。
可选地,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜,包括:
通过四(二甲氨基)铪提供铪原子,通过四(二甲氨基)锆提供锆原子,通过水提供氧原子。
可选地,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜的温度条件为225~275摄氏度。
可选地,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层,包括:
通过三甲基铝提供铝原子,通过水提供氧原子。
可选地,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层的温度条件为275~325摄氏度。
可选地,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的温度条件为475~525摄氏度。其有益效果在于:合理的温度控制,能够进一步提高铁电性能。
可选地,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的时间条件为55~65秒。
可选地,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的环境条件为氮气。
可选地,所述栅电极层为P型深掺杂硅基底,所述N型二硒化钨负电容场效应晶体管的制备方法还包括对所述栅电极层进行清洗。
本发明还提供了一种N型二硒化钨负电容场效应晶体管,包括:
栅电极层;
氧化铪锆铁电薄膜,厚度为19~21nm,设置于所述栅电极层的一面;
氧化铝电容匹配层,厚度为1~3nm,设置于所述氧化铪锆铁电薄膜背向所述栅电极层的一面;
二硒化钨半导体,设置于所述氧化铝电容匹配层背向所述氧化铪锆铁电薄膜的一面;
金属铟源电极,设置于所述二硒化钨半导体背向所述氧化铝电容匹配层的一面;
金属铟漏电极,设置于所述二硒化钨半导体背向所述氧化铝电容匹配层的一面。
所述N型二硒化钨负电容场效应晶体管的有益效果在于:所述氧化铪锆铁电薄膜的厚度为19~21nm,所述氧化铝电容匹配层的厚度为1~3nm。
可选地,所述栅电极层为P型深掺杂硅基底。
可选地,所述金属铟源电极和所述金属铟漏电极的厚度均为39~41nm。
附图说明
图1为本发明N型二硒化钨负电容场效应晶体管的制备方法的流程图;
图2为本发明N型二硒化钨负电容场效应晶体管的结构示意图;
图3为本发明N型二硒化钨负电容场效应晶体管的转移特性曲线图;
图4为本发明N型二硒化钨负电容场效应晶体管的亚阈值摆幅示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本发明的实施例提供了一种N型二硒化钨负电容场效应晶体管的制备方法。参照图1,所述N型二硒化钨负电容场效应晶体管的制备方法包括以下步骤:
S0:提供栅电极层和二硒化钨半导体;
S1:通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜;
S2:通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层;
S3:对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理,以提高铁电性;
S4:将所述二硒化钨半导体转移至所述氧化铝电容匹配层上;
S5:在所述二硒化钨半导体上形成金属铟源电极和金属铟漏电极。
一些实施例中,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜,包括:通过四(二甲氨基)铪提供铪原子,通过四(二甲氨基)锆提供锆原子,通过水提供氧原子。
一些实施例中,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜的温度条件为225~275摄氏度。
一些实施例中,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层,包括:通过三甲基铝提供铝原子,通过水提供氧原子。
一些实施例中,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层的温度条件为275~325摄氏度。
一些实施例中,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的温度条件为475~525摄氏度。
一些实施例中,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的时间条件为55~65秒。
一些实施例中,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的环境条件为氮气。
一些实施例中,所述栅电极层为P型深掺杂硅基底,所述N型二硒化钨负电容场效应晶体管的制备方法还包括对所述栅电极层进行清洗。
一些具体实施例中,所述N型二硒化钨负电容场效应晶体管的制备方法包括以下步骤:
S11:利用RCA标准清洗法对P型掺杂硅基底进行清洗,并作为N型二硒化钨负电容场效应晶体管的栅电极层;
S12:以四(二甲氨基)铪([(CH3)2N]4Hf)提供铪原子(Hf),以四(二甲氨基)锆([(CH3)2N]4Zr)提供锆原子(Zr),以水(H2O)提供氧原子(O),在250摄氏度的温度条件下,通过原子沉积工艺在所述栅电极层上沉积厚度为20nm的氧化铪锆(HfZrO2)铁电薄膜;
S13:以三甲基铝(Al(CH3)3)提供铝原子(Al),以水(H2O)提供氧原子(O),在300摄氏度的温度条件下,通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为2nm的氧化铝电容匹配层,使得所述氧化铝电容匹配层具有良好的绝缘性;
S14:在环境为氮气(N2)和温度为500摄氏度的条件下,对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行60秒的热处理,以提高铁电性;
S15:将预先制备好的二硒化钨(Wse2)半导体转移至所述氧化铝电容匹配层上;
S16:利用电子束曝光技术和电子束蒸发方法在所述二硒化钨半导体上生成厚度为40nm的金属铟源电极和厚度为40nm的金属铟漏电极。
图2为本发明N型二硒化钨负电容场效应晶体管的结构示意图。参照图2,所述二硒化钨负电容场效应晶体管100包括栅电极层101、氧化铪锆铁电薄膜102、氧化铝电容匹配层103、二硒化钨半导体104、金属铟源电极105和金属铟漏电极106,所述氧化铪锆铁电薄膜102的厚度为19~21nm,所述氧化铝电容匹配层103厚度为1~3nm,所述氧化铪锆铁电薄膜102设置于所述栅电极层101的一面,所述氧化铝电容匹配层103设置于所述氧化铪锆铁电薄膜102背向所述栅电极层101的一面,所述二硒化钨半导体104设置于所述氧化铝电容匹103配层背向所述氧化铪锆铁电薄膜102的一面,所述金属铟源电极105和所述金属铟漏电极106均设置于所述二硒化钨半导体104背向所述氧化铝电容匹配层103的一面。
一些实施例中,所述二硒化钨半导体为二维半导体,所述N型二硒化钨负电容场效应晶体管的二维沟道层。
一些具体实施例中,所述栅电极层为P型深掺杂硅基底。
一些具体实施例中,所述氧化铪锆铁电薄膜的厚度为20nm,所述氧化铝电容匹配层厚度为2nm。
一些实施例中,所述金属铟源电极和所述金属铟漏电极的厚度均为39~41nm。
一些具体实施例中,所述金属铟源电极和所述金属铟漏电极的厚度均为40nm。
图3为本发明N型二硒化钨负电容场效应晶体管的转移特性曲线图。参照图3,可以看出本发明的N型二硒化钨负电容场效应晶体管表现出明显的N型特征,本发明的N型二硒化钨负电容场效应晶体管的开关电流比达到109,具有优异的器件性能。
图4为本发明N型二硒化钨负电容场效应晶体管的亚阈值摆幅示意图。参照图4,本发明的N型二硒化钨负电容场效应晶体管的亚阈值摆幅能够达到12.7mV/dec,远低于传统的场效应晶体管的亚阈值摆幅只能达到60mV/dec的限制。
虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (12)

1.一种N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,包括:
提供栅电极层和二硒化钨半导体;
通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜;
通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层;
对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理,以提高铁电性;
将所述二硒化钨半导体转移至所述氧化铝电容匹配层上;
在所述二硒化钨半导体上形成金属铟源电极和金属铟漏电极。
2.根据权利要求1所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜,包括:
通过四(二甲氨基)铪提供铪原子,通过四(二甲氨基)锆提供锆原子,通过水提供氧原子。
3.根据权利要求1或2所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述通过原子沉积工艺在所述栅电极层上沉积厚度为19~21nm的氧化铪锆铁电薄膜的温度条件为225~275摄氏度。
4.根据权利要求1所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层,包括:
通过三甲基铝提供铝原子,通过水提供氧原子。
5.根据权利要求1或4所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述通过原子沉积工艺在所述氧化铪锆铁电薄膜上沉积厚度为1~3nm的氧化铝电容匹配层的温度条件为275~325摄氏度。
6.根据权利要求1所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的温度条件为475~525摄氏度。
7.根据权利要求6所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的时间条件为55~65秒。
8.根据权利要求6或7所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述对所述氧化铪锆铁电薄膜和所述氧化铝电容匹配层进行热处理的环境条件为氮气。
9.根据权利要求1所述的N型二硒化钨负电容场效应晶体管的制备方法,其特征在于,所述栅电极层为P型深掺杂硅基底,所述N型二硒化钨负电容场效应晶体管的制备方法还包括对所述栅电极层进行清洗。
10.一种N型二硒化钨负电容场效应晶体管,其特征在于,包括:
栅电极层;
氧化铪锆铁电薄膜,厚度为19~21nm,设置于所述栅电极层的一面;
氧化铝电容匹配层,厚度为1~3nm,设置于所述氧化铪锆铁电薄膜背向所述栅电极层的一面;
二硒化钨半导体,设置于所述氧化铝电容匹配层背向所述氧化铪锆铁电薄膜的一面;
金属铟源电极,设置于所述二硒化钨半导体背向所述氧化铝电容匹配层的一面;
金属铟漏电极,设置于所述二硒化钨半导体背向所述氧化铝电容匹配层的一面。
11.根据权利要求10所述的N型二硒化钨负电容场效应晶体管,其特征在于,所述栅电极层为P型深掺杂硅基底。
12.根据权利要求10所述的N型二硒化钨负电容场效应晶体管,其特征在于,所述金属铟源电极和所述金属铟漏电极的厚度均为39~41nm。
CN202111456128.5A 2021-12-02 2021-12-02 N型二硒化钨负电容场效应晶体管及其制备方法 Active CN113871302B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111456128.5A CN113871302B (zh) 2021-12-02 2021-12-02 N型二硒化钨负电容场效应晶体管及其制备方法
PCT/CN2022/101200 WO2023098047A1 (zh) 2021-12-02 2022-06-24 N型二硒化钨负电容场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111456128.5A CN113871302B (zh) 2021-12-02 2021-12-02 N型二硒化钨负电容场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN113871302A CN113871302A (zh) 2021-12-31
CN113871302B true CN113871302B (zh) 2022-03-11

Family

ID=78985516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111456128.5A Active CN113871302B (zh) 2021-12-02 2021-12-02 N型二硒化钨负电容场效应晶体管及其制备方法

Country Status (2)

Country Link
CN (1) CN113871302B (zh)
WO (1) WO2023098047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871302B (zh) * 2021-12-02 2022-03-11 上海集成电路制造创新中心有限公司 N型二硒化钨负电容场效应晶体管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195681A (zh) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管及制备方法
CN206789549U (zh) * 2017-05-27 2017-12-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管
CN108231901A (zh) * 2018-01-04 2018-06-29 中国科学院上海微系统与信息技术研究所 基于负电容的场效应晶体管、生物传感器及其制备方法
CN208507681U (zh) * 2018-04-02 2019-02-15 云南师范大学 一种基于二硫化钼与二硒化钨垂直异质结的铁电存储器
CN111312829A (zh) * 2019-11-11 2020-06-19 中国科学院上海技术物理研究所 一种高灵敏的负电容场效应管光电探测器及制备方法
CN111430354A (zh) * 2020-03-12 2020-07-17 复旦大学 一种低功耗半浮栅存储器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109146A (ja) * 2007-11-08 2008-05-08 Mitsubishi Electric Corp 半導体装置
US11349008B2 (en) * 2018-09-27 2022-05-31 Taiwan Semiconductor Manufacturing Co., Ltd. Negative capacitance transistor having a multilayer ferroelectric structure or a ferroelectric layer with a gradient doping profile
KR20210124844A (ko) * 2020-04-07 2021-10-15 삼성전자주식회사 강유전층을 포함하는 전자 소자 및 그 제조 방법
CN111554737B (zh) * 2020-04-20 2021-12-07 清华大学 超低功耗的薄膜晶体管及其制备方法
CN113871302B (zh) * 2021-12-02 2022-03-11 上海集成电路制造创新中心有限公司 N型二硒化钨负电容场效应晶体管及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195681A (zh) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管及制备方法
CN206789549U (zh) * 2017-05-27 2017-12-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管
CN108231901A (zh) * 2018-01-04 2018-06-29 中国科学院上海微系统与信息技术研究所 基于负电容的场效应晶体管、生物传感器及其制备方法
CN208507681U (zh) * 2018-04-02 2019-02-15 云南师范大学 一种基于二硫化钼与二硒化钨垂直异质结的铁电存储器
CN111312829A (zh) * 2019-11-11 2020-06-19 中国科学院上海技术物理研究所 一种高灵敏的负电容场效应管光电探测器及制备方法
CN111430354A (zh) * 2020-03-12 2020-07-17 复旦大学 一种低功耗半浮栅存储器及其制备方法

Also Published As

Publication number Publication date
CN113871302A (zh) 2021-12-31
WO2023098047A1 (zh) 2023-06-08

Similar Documents

Publication Publication Date Title
US9607826B2 (en) Semiconductor device manufacturing methods and methods of forming insulating material layers
US7361538B2 (en) Transistors and methods of manufacture thereof
US20160308021A1 (en) Tunnel MOSFET with Ferroelectric Gate Stack
Tang et al. Low power flexible monolayer MoS2 integrated circuits
US20110260255A1 (en) Semiconductor device and method of manufacturing the same
CN108091693B (zh) 铁电场效应晶体管及其制备方法
US20120012939A1 (en) Semiconductor device and method of manufacturing the same
US20130105901A1 (en) Semiconductor device with metal gate electrode and high-k dielectric material and method for fabricating the same
CN113871302B (zh) N型二硒化钨负电容场效应晶体管及其制备方法
Ke et al. Impact of atomic layer deposition high k films on slow trap density in Ge MOS interfaces with GeO x interfacial layers formed by plasma pre-oxidation
CN102299077B (zh) 一种半导体器件及其制造方法
Han et al. Indium-Tin-Oxide Thin-Film Transistors with High Field-Effect Mobility (129.5 cm 2/V· s) and Low Thermal Budget (150° C)
Ragnarsson et al. High performing 8 A EOT HfO/sub 2//TaN low thermal-budget n-channel FETs with solid-phase epitaxially regrown (SPER) junctions
TW201839997A (zh) 半導體裝置及其製造方法
Zhao et al. Multilayer MoS2 Back‐Gate Transistors with ZrO2 Dielectric Layer Optimization for Low‐Power Electronics
JP2012080055A (ja) 酸化プラセオジムを備えた誘電体、酸化プラセオジムを備えたトランジスタ及びその製造方法
Pidin et al. Low standby power CMOS with HfO/sub 2/gate oxide for 100-nm generation
US20240154035A1 (en) Semiconductor apparatus and forming method for ferroelectric thin film
US20240047564A1 (en) Semiconductor device including two-dimensional material and electronic apparatus including the semiconductor device
TWI691078B (zh) 半導體裝置
KR20110062545A (ko) 반도체 소자 및 그 제조 방법
CN117976544A (zh) 一种基于Cu掺杂的SnO薄膜晶体管、互补型逻辑电路及其制备方法
엄수근 Development and characterization of high-k/III-V MOS devices for low power electronics
Kuan et al. Study of the Long-Term Electrical Stability of InGaZnO 3-D Film-Profile-Engineered Inverters
Ono et al. A multi-gate dielectric technology using hydrogen pre-treatment for 100 nm generation system-on-a-chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: N-type tungsten diselenide negative capacitance field effect transistor and its preparation method

Effective date of registration: 20220713

Granted publication date: 20220311

Pledgee: Shanghai Pudong Development Bank Co.,Ltd. Hongqiao sub branch

Pledgor: Shanghai integrated circuit manufacturing Innovation Center Co.,Ltd.

Registration number: Y2022310000124

PE01 Entry into force of the registration of the contract for pledge of patent right