CN113862288B - 三叶青ThF3’5’H基因及其应用 - Google Patents

三叶青ThF3’5’H基因及其应用 Download PDF

Info

Publication number
CN113862288B
CN113862288B CN202111238809.4A CN202111238809A CN113862288B CN 113862288 B CN113862288 B CN 113862288B CN 202111238809 A CN202111238809 A CN 202111238809A CN 113862288 B CN113862288 B CN 113862288B
Authority
CN
China
Prior art keywords
gene
genes
radix tetrastigme
leu
thf3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111238809.4A
Other languages
English (en)
Other versions
CN113862288A (zh
Inventor
黄雨晴
严建立
阮松林
钱丽华
应武
陆秋君
裘劼人
王贤波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Institute of Agricultural Sciences
Original Assignee
Hangzhou Institute of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Institute of Agricultural Sciences filed Critical Hangzhou Institute of Agricultural Sciences
Priority to CN202111238809.4A priority Critical patent/CN113862288B/zh
Publication of CN113862288A publication Critical patent/CN113862288A/zh
Application granted granted Critical
Publication of CN113862288B publication Critical patent/CN113862288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13088Flavonoid 3',5'-hydroxylase (1.14.13.88)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了三叶青ThF3’5’H基因及其应用,该基因的核苷酸序列如SEQ ID NO.1所示。本发明利用转录组测序技术先检测不同功能状态下三叶青基因的差异表达,确定候选基因,然后通过3’‑RACE和5’‑RACE技术克隆该基因全长,再通过基因和氨基酸序列公用数据库中来同源比对发现基因功能分类,最后通过基因转化拟南芥,检测转基因拟南芥代谢物的变化确定该基因的功能,发现三叶青ThF3’5’H基因能够提高拟南芥植株的黄酮类代谢物山奈酚‑3‑O‑芸香苷和异鼠李素‑3‑O‑β‑D‑芸香糖苷的含量,为后续提高拟南芥植株抗菌性的研究提供了依据。

Description

三叶青ThF3’5’H基因及其应用
技术领域
本发明涉及功能基因组学技术领域,尤其涉及一种三叶青ThF3’5’H基因及其应用。
背景技术
黄酮类化合物是一类由苯丙素起始的植物次生代谢产物,其研究十分广泛。从结构上来说,黄酮类化合物包括2-苯基苯并吡喃类(2-phenylchromans)和3-苯基苯并吡喃类(3-phenylchromans)。2-苯基苯并吡喃类即黄酮类(flavonoids),包含黄烷酮(flavanones)、黄酮(flavones)、黄酮醇(flavonols)、黄烷醇(flavanol)以及花青素(anthocyanidins);3-苯基苯并吡喃类即异黄酮类(isoflavonoids),包含异黄酮素(isoflavones)、异黄烷类(isoflavans)以及紫檀素类(pterocarpans)。
黄酮类化合物合成代谢途径中的相关基因可以分为2类:一类是编码酶的结构基因,另一类是调控基因。黄烷酮3羟化酶(flavanone 3-β-hydroxyalse,F3H)将CHI催化合成的(2S)-黄烷酮或(2S)-5-脱氧黄烷酮的C-3位羟基化,生成二氢黄酮醇。而二氢黄酮醇是黄酮类化合物生物合成中生成黄酮、花色素和异黄酮等黄酮类化合物的重要中间产物(Tmothy A,Edwina C.Genetics and biochemistry of anthocyan inbiosynthesis.Plant Cell,1995,7:1071-1083)。到目前为止,GeneBank数据库中收录了800多条植物的F3H的核苷酸序列。
类黄酮-3',5'-羟基化酶(flavonoid-3',5'-hydroxylase,F3'5'H)是合成飞燕草色素苷的关键酶基因,属于细胞色素p450家族,它主要催化无色的二氢黄酮醇B环3’端,5’端羟化,形成蓝紫色翠雀素的直接前体二氢杨梅黄酮,从而最终决定了花卉的颜色。大多数天然蓝色花是由于F3'5'H基因的有效表达所致,缺乏F3'5'H基因的植物不能形成蓝色花,故被称为“蓝色基因”。
三叶青(Tetrastigma hemsleyanum Diels et Gilg)是我国特有的珍稀药用植物,为葡萄科崖爬藤属多年生蔓生藤本植物,主要以块根或全草入药,含有黄酮类、多糖类等多种有效成分,具有清热解毒、祛风化痰、活血止痛、抗肿瘤等功效。黄酮类化合物为三叶青中含量最丰富的成分,共含有山柰酚、槲皮素、山柰酚-3-O-新橙皮糖苷等21种。目前尚未见与这类活性成分相关的基因研究报道。
代谢组学技术(Metabolomics)是后基因时代发展起来的系统生物学新技术,以生物体内所有代谢产物为研究对象,其主要目标是定性定量研究代谢物与机体生理病理变化之间的关系。代谢物的变化与细胞所处内外环境密切相关。与基因组学和蛋白质组学相比,代谢组学提供了一种更加直接的生理状态检测方式。就研究方法而言,代谢组学主要包括靶向(Targeted)代谢组学和非靶向(Untargeted)代谢组学两部分。非靶向代谢组学是针对一定生理状态下的全代谢组学,一目了然地发现差异性代谢物,其优势在于全面性。而靶向代谢组学则是针对具体代谢物,以标准品为参照,进行相对或绝对的定量分析,具有更好的灵敏度和准确度。
发明内容
本发明提供了一种三叶青ThF3’5’H基因以及其在上调拟南芥植株中黄酮类化合物(山奈酚-3-O-芸香苷和异鼠李素-3-O-β-D-芸香糖苷)含量中的应用。
具体技术方案如下:
本发明提供了一种三叶青ThF3’5’H基因,其核苷酸序列如SEQ ID NO.1所示,该基因的开放阅读框(ORF)为1533bp,mRNA长度为1780bp。
本发明提供了一种包含所述的三叶青ThF3’5’H基因的重组表达载体。
本发明还提供了一种包含所述的三叶青ThF3’5’H基因的转化子。
本发明还提供了一种所述的三叶青ThF3’5’H基因编码的蛋白,所述蛋白的氨基酸序列如SEQ ID NO.2所示。
本发明还提供了所述的三叶青ThF3’5’H基因在提高拟南芥植株的黄酮类代谢物含量中的应用,所述黄酮类代谢物为山奈酚-3-O-芸香苷和异鼠李素-3-O-β-D-芸香糖苷。
本发明还提供了所述的三叶青ThF3’5’H基因在提高拟南芥植株抗菌性中的应用。
本发明还提供了所述的三叶青ThF3’5’H基因在下调拟南芥植株柚皮素-7-O-葡萄糖苷(李子素)、5,7,4'-三羟基-8-甲氧基黄酮-6-C-[木糖基-(1-2)]-葡萄糖苷和槲皮素-3-O-鼠李糖基阿拉伯糖苷含量中的应用。其中,柚皮素-7-O-葡萄糖苷具抗糖尿病或抗肥胖的作用;槲皮素-3-O-鼠李糖基阿拉伯糖苷降压作用。
本发明还提供了所述的三叶青ThF3’5’H基因在提高拟南芥植株的L-天门冬酰胺和3-甲基-2-氧基戊酸含量中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明利用转录组测序技术先检测不同功能状态下三叶青基因的差异表达,确定候选基因,然后通过3’-RACE和5’-RACE技术克隆该基因全长,再通过基因和氨基酸序列公用数据库中来同源比对发现基因功能分类,最后通过基因转化拟南芥,检测转基因拟南芥代谢物的变化确定该基因的功能,发现三叶青ThF3’5’H基因能够提高拟南芥植株的黄酮类代谢物山奈酚-3-O-芸香苷和异鼠李素-3-O-β-D-芸香糖苷的含量,为后续提高拟南芥植株抗菌性的研究提供了依据。
附图说明
图1为实施例1中转ThF3’5’H基因株系和col-0株系之间差异代谢物数量的火山图。
具体实施方式
下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。
实施例1
一、基因的获得
1、代谢组分析获得差异基因
将三叶青叶片样品冷冻、干燥,并粉碎成粉末,用于代谢物分离。
取100mg样品粉末用1.0ml 70%甲醇水溶液在4℃下浸取过夜。吸取提取物(CNWBOND Carbon GCB SPE Cartridge,250mg,3ml;中国上海安培尔,www.ANPEL.com.cn/cnw)并过滤(SCAA-104,0.22μm孔径;中国上海安培尔,http://www.anpel.com.cn/),然后进行LC-MS分析。
利用LC-ESI-MS/MS系统(HPLC,垫片组)分析样品提取物UFLC岛津CBM30A系统,www.SHIMADZU.com.cn;MS,应用生物系统6500QTRAP,www.appliedbiosystems.com.cn)。Waters ACQUITY UPLC HSS T3 C18(1.8μm,2.1mm*100mm)用于化合物分离。
分析条件如下:溶剂体系,水(0.04%乙酸):乙腈(0.04%乙酸);梯度程序,0分钟时为95:5V/V,11.0分钟时为5:95V/V,12.0分钟时为5:95V/V,12.1分钟时为95:5V/V,15.0分钟时为95:5V/V;流速,0.40毫升/分钟;温度,40℃;注射量,2μl。
使用以下参数在正模式和负模式下进行大量数据采集:离子源、涡轮喷雾;源温度,500℃;离子喷涂电压(IS),5500V;离子源气体I(GSI)、气体II(GSII)和幕气(CUR)分别为55、60和25.0psi;碰撞气体(CAD)较高。
将质量碎片与HMDB进行比较(http://www.hmdb.ca),METLIN(http://metlin.scrippps.edu)还有KEGG(http://kegg.jp)数据库。获得的数据由SIMCA-PV12.0.0演示(Umetric,Umea,瑞典)用于主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)。
2、基于RACE技术获得基因全长
(一)GeneRacer 5 RACE合成方案
(1)RNA脱磷酸化
反应体系10ul,在用DEPC处理过的1.5ml离心管中依次加入总RNA(1.5ug)7ul、10×CIP Buffer 1ul、RNase OUT(10U/ul)1ul和CIP(10U/ul)1ul,用枪头轻轻混匀,瞬时离心,在50℃1h,瞬时离心,冰置。
(2)RNA沉淀
反应结束后,加入90ul DEPC水和100ul酚:氯仿,上下混匀;室温最大转速离心5min,转移上层至新的离心管;加入2ul 10mg/ml糖原,10ul 3M醋酸钠,pH 5.2混匀,再加入220ul 95﹪乙醇,上下混匀,-20℃过夜保存;在4℃下离心,最大转速离心20min,弃去上清;加入500ul 70%酒精,颠倒几次,上下混匀,在4℃下离心,最大转速离心2min,去酒精,再次离心去除残余酒精,室温干燥1-2min;加入7ul DEPC水重悬RNA。
(3)去除mRNA帽子结构和RNA沉淀
将去磷酸化的RNA反应液装入1.5ml离心管,反应体系10ul,依次加入去磷酸化RNA7ul、10×TAP Buffer 1ul、RNase OUT(10U/ul)1ul和TAP(0.5U/ul)1ul,然后用枪头轻轻吸打混匀,瞬时离心,在37℃1h,瞬时离心,冰置,然后沉淀RNA沉淀(方法同上)。
(4)去帽子mRNA与RNA Oligo连接
将7ul去磷酸化,去帽子结构的RNA加入分装好RNA Oligo(0.25ug)的试剂管(先离心),吸打混匀,瞬时离心;65℃5min,冰上放置约2min,瞬时离心;依次加入10×LigaseBuffer 1ul、10mM ATP 1ul、RNase Out(10U/uL)1ul和T4 RNA ligase(5U/uL)1ul,反应体系10ul,混匀,且瞬时离心;在37℃1h,瞬时离心,置冰上,然后沉淀RNA沉淀(方法同上)。
(5)反转录反应
反应液体系13uL,依次加入RNA连接液10ul、GeneRace oligodT 1ul、dNTP Mix1ul和DEPC water 1ul;在65℃5min,冰上放置至2min,瞬时离心;在上述13uL反应液中依次加入5×First Strand Buffer 4ul、0.1M DTT 1ul、RNaseOut(10U/uL)1ul和SuperSeriptⅢRT 1uL,形成反应体系20ul;枪头吸打混匀,瞬时离心,在50℃50min;在70℃15min,冰上放置2min,最大离心力瞬时离心;加入1ul RNase H(2U),在37℃20min;瞬时离心,立即PCR或-80℃保存。
(二)GeneRacer 3RACE合成方案
反应体系13ul,依次加入总RNA(1.5ug)10ul、3'GeneRacer Adaptor 1ul、dNTPMix 1ul和DEPC水1ul,在65℃5min,冰上放置至2min,瞬时离心;在上述13uL反应液中依次加入5×First Strand Buffer 4ul、0.1M DTT 1ul、RNaseOut(10U/uL)1ul和SuperSeriptⅢRT 1uL,形成20ul反应体系,用枪头吸打混匀,瞬时离心,在50℃50min;在70℃15min,冰上放置2min,最大离心力瞬时离心;加入1ul RNase H(2U),在37℃20min;瞬时离心,立即PCR或-80℃保存。
二、基因克隆与转化
以三叶青幼苗叶片总mRNA为模板,利用RT-PCR方法扩增到ThF3’5’H基因的编码序列,碱基序列如SEQ ID NO.1所示,编码的氨基酸序列如SEQ ID NO.2所示。
具体操作如下:
首先,将mRNA反转录成第一链cDNA,所用反转录试剂盒为TaKaRa公司的HighFidelity PrimerScriptTM RT-PCR Kit,反应体系20μl,依次加入1μl 20M随机引物(Random6mers)、1μl 10mM dNTP、2μl总RNA和DEPC水至10μl,在65℃变性5分钟,迅速在冰上冷却2分钟,稍微离心,然后依次加入4μl 5×PrimerScript RT buffer、0.5μl RNase inhibitor、0.5μl PrimerScript RTase和5μl DEPC水。轻微混合均匀,30℃反应10分钟,42℃反应30分钟,95℃5分钟使酶失活。为了去掉与cDNA互补的RNA链,加入1μl RNase H在37℃温育20min,-20℃保存。然后以第一链cDNA为摸板扩增目的基因ThF3’5’H,所用扩增配对引物:
ThF3’5’H-F,5’-TGAAAATGGGGACTAACAGCATG-3’,
ThF3’5’H-R,5’-GCTTCGTCCATGTTTATCTCAACTC-3’,
PCR反应体系为50μl,依次加入2×PCR buffer 25μl、2.5mM dNTPs 4μl、反转录产物2μl、20μM正向引物(ThF3’5’H-F)1μl、20μM反向引物(ThF3’5’H-R)1μl、2.5U/μl Tag DNA聚合酶0.5μl,最后加水至50μl。PCR反应条件:预变性94℃3min,变性98℃10s,退火55℃15s,延伸72℃30s,30个循环,最后延伸72℃10min,4℃保存。
扩增后将ThF3’5’H基因装入pMD19-T载体中:pMD19-T载体由TakaRa公司生产。将回收纯化的ThF3’5’H基因的DNA与pMD19-T载体进行连接反应,连接体系10μl,各组分分别为0.5μl pMD19-T载体、4.5μl纯化的ThF3’5’H基因的DNA、5μl Solution I。在14℃-16℃下连接8-12小时,然后将连接产物转化到大肠杆菌DH5α感受态细胞中。将ThF3’5’H基因装入pMD19-T载体后经测序正确,用TakaRa公司生产的EcoRI和HindIII酶切,操作如下:酶切体系40μl,包括4μl 10×buffer、8μl已插入ThF3’5’H基因的pMD19-T载体、1μl XbaI、1μlKpnI和26μl水,在37℃水浴中温育6h。
用TakaRa公司生产Agarose Gel Extraction Kit回收基因片段,操作如下:上述混合DNA经凝胶电泳以后,从凝胶上切下所需DNA片段,放在1.5ml的Eppendorf管中。加入3倍体积的Buffer QG-A,55℃水浴5-10min,期间轻摇Eppendorf管几次使胶完全溶化。加入2/3回收胶体积的Buffer QG-B。在空的DNA纯化柱中加入250μl Buffer BL,10000g离心1min,倒掉残夜。将溶解后的DNA胶液倒入DNA纯化柱,10000g离心1min,倒掉残液。在纯化柱中加入500μl Buffer W2,10000g离心1min,倒掉残液。再在纯化柱中加入700μl BufferW2,,100g离心1min,倒掉残液。将空的纯化柱在15000g下离心2min使其干燥后加入10-15μl70℃预热的无菌水溶解DNA,10000g离心1min,所得的溶液即为纯化的基因ThF3’5’H。
将回收的基因片段连入Super1300载体中,操作如下:连接体系10μl,包括2μlSuper1300载体、6μl纯化的基因的DNA、1μl 10×T4连接酶buffer和1μl T4连接酶,在4-10℃下连接12h,然后将连接产物转化到大肠杆菌DH5α感受态细胞中,提取质粒进行鉴定。
基因片段连入Super1300载体后再转入EHA105农杆菌中,操作如下:取200μl农杆菌感受态细胞,加入5-10μl构建好的质粒DNA,30℃冰浴30min,液氮中速冻1min,37℃水浴5min,然后加入1ml YEB培养基(1升YEB培养基含1g酵母提取物、5g牛肉浸膏、5g蛋白胨、5g蔗糖和0.5g MgSO4·7H2O,pH 7.0),28℃恢复培养4h;10000g离心30s,弃上清,加入0.1mlYEB培养基重新悬浮细胞,涂布于含有100μg/ml卡那霉素和125μg/ml利福平的YEB平板(1升YEB培养基含1g酵母提取物、5g牛肉浸膏、5g蛋白胨、5g蔗糖、0.5g MgSO4·7H2O和12g琼脂,pH 7.0)上,28℃培养约48h。
经鉴定正确后(挑取阳性克隆作为模板,用菌落PCR方法进行鉴定),通过农杆菌介导转化模式植物拟南芥,操作如下:
接种含有目的质粒的农杆菌菌落于10ml YEB培养基(含0.1%酵母提取物、0.5%牛肉浸膏、0.5%蛋白胨、0.5%蔗糖、0.05%MgSO4·7H2O、1.2%琼脂、100μg/ml卡那霉素和125μg/ml利福平)中28℃、200rpm震荡培养过夜,转化前一天按1:50接种于200ml含相同抗生素的YEB培养液中扩大培养至OD600为0.6-0.8。取菌液,按1%~2%的比例,转入新配制的无抗生素的YEB液体培养基中,6小时后,菌液OD600为0.2~0.5时即可用于转化。
通过农杆菌介导浸花法转化模式植物拟南芥,操作如下:接种含有目的基因质粒的农杆菌菌落于10ml YEB培养基(含0.1%酵母提取物、0.5%牛肉浸膏、0.5%蛋白胨、0.5%蔗糖、0.05%MgSO4·7H2O、1.2%琼脂、100μg/ml卡那霉素和125μg/ml利福平)中28℃、200rpm震荡培养过夜,转化前一天按1:50接种于200ml含相同抗生素的YEB培养液中扩大培养至OD600为1.2~1.6,约6h,5000g离心15min集菌,重悬于渗透缓冲液,使OD600为0.8,200ml重悬液可使用3次。转化所用浸泡液含有0.5×MS大量元素、0.5×MS微量元素、0.5mg/L VB5、5%蔗糖、44nM 6-BA(Sigma公司,美国)和0.03%Silwet L-77(LEHLE SEEDS公司,美国)。将200ml含目的农杆菌的渗透转化液置于一容器中,翻转种有拟南芥的花盆,使植株浸入含有待转化农杆菌的渗透缓冲液中,浸5分钟,缓慢取出花盆,侧放于托盘中,盖上黑塑料布避光24小时,第二天取下塑料布,直立放置花盆。
制备MS筛选平板(MS培养基外加80g/ml潮霉素和50g/ml氨苄青霉素),转化收获的T1代种子经消毒后播种于筛选平板,每15cm的平板上可以筛选100μg左右的拟南芥种子。4℃春化3天,平放在生长箱中培养(22℃恒温,24h光照),7-10天后挑选在筛选培养基上根系和地上部生长正常的阳性植株,移入正常MS培养基缓苗3-5天后移植入土壤,单株收获T2代种子。繁种并鉴定至T3代,获得纯合的转基因48个株系。
三、基因功能鉴定
将三叶青基因F3’5’H基因转入拟南芥中,筛选得到2个纯合株系。进行qPCR验证可知,F3’5’H在转基因株系中有较高表达量。对转F3’5’H基因株系和col-0进行代谢组分析,结果如下:
(1)差异代谢物数量的火山图(如图1),上调的代谢物有68种,下调的代谢物有116种,在col-0和F3’5’H转基因株系中无差异的代谢物有481种。
(2)在col-0和F3’5’H转基因株系中含量差异较大的20种代谢物,其中山奈酚-3-O-芸香苷(烟花苷)和异鼠李素-3-O-β-D-芸香糖苷(水仙苷)是前两位的上调代谢物,而柚皮素-7-O-葡萄糖苷(李子素)、5,7,4'-三羟基-8-甲氧基黄酮-6-C-[木糖基-(1-2)]-葡萄糖苷和槲皮素-3-O-鼠李糖基阿拉伯糖苷为前三位的下调代谢物,这些均为黄酮类化合物。L-天门冬酰胺、3-甲基-2-氧基戊酸等多种氨基酸和有机酸也有差异变化(如表1)。
表1
Figure BDA0003318527570000071
Figure BDA0003318527570000081
序列表
<110> 杭州市农业科学研究院
<120> 三叶青ThF3'5'H基因及其应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1533
<212> DNA
<213> 三叶青(Tetrastigma hemsleyanum Diels et Gilg)
<400> 1
atggcaatat tagacacaaa cttgatgatt gagctagctg cagcaactct tattttcttc 60
atcaccagtt tcttcattcg ttctttcctc ccaaatcctt cccggaagct cccgccgggg 120
ccgaaagggt ggccgctcgt cggcgttctt cctcttctag gcaacatgcc tcatgttgca 180
ttagcaaaaa tgtccaaaag atacggccct gtcatgtttt tgaaaatggg gactaacagc 240
atggtggtgg cctccactcc ggaggcggcc caggctttcc ttaaaacact cgacattaat 300
ttctccaatc gcccggctaa cgccggcgcc acacacttgg cctatgatgc gcaagacatg 360
gtttttgcgg attatgggtc gaggtggaag ttactgagaa agctaagtaa cctacacatg 420
cttggcggga aggctcttca ggactgctct caggtccgaa ccgttgagct gggttacatg 480
cttcgagcca tggttgagtc gagccagcga ggggagccag tggtggtgcc cgagatgtta 540
actttttcca tggctaacat gatagggcaa gtgatactga gccgccgtgt gtttgaaacg 600
aaagggtcgg agtcaaatga gtttaaggac atggtggtgg agctcatgac gtgcgcaggg 660
tacttcaaca tcggcgattt tattccgtcc attgcatgga tggacatcca agggatcgag 720
cgggggatga aggctttaca taaaaagttc gacaagttat tgacaaggat gatagaggag 780
cacactgcat cagcccatga gcgcaaggaa aaccctgatt ttcttgacgt aatgatggca 840
cacaatggaa attctgcagg gcatgagaag ctcaccatga ccaacattaa ggcactcctc 900
ctgaatttat ttacggctgg gacagacact tcatccagca taatcgagtg gtcgctttct 960
gagatgctga aaaaccctac catactcaaa cgagctcatg aagaaatgga ccaagtgatt 1020
ggaaggaacc gacggctggt agagtctgac ataccgaagc ttccatacct gcaagccata 1080
tgcaaggaaa gcttccggaa gcacccatca acgccgttga atcttccacg tgtctcaacc 1140
caggcatgtg aagtgaacgg ctactacatt cccaagaata ccagactgag tgtgaacata 1200
tgggcaatcg ggcgagaccc tgatgtctgg gaaagcccgg aagaattcag gccggaaaga 1260
tttttgagcg gaagaaatgc gaaaattgat cctcgtggga atgattttga actgattccg 1320
ttcggggcgg gacgaaggat ctgcgccggc acaagaatgg gaatagtgct ggttgagtac 1380
attttaggaa cgttggtaca ttcattcgac tggaaaatgc cggacggagt tgagataaac 1440
atggacgaag cttttgggct tgcgctgcag aaggcagtat ctctttcggc tatggtgaca 1500
cctagacttg accataatgc gtatgcagtt tga 1533
<210> 2
<211> 510
<212> PRT
<213> 三叶青(Tetrastigma hemsleyanum Diels et Gilg)
<400> 2
Met Ala Ile Leu Asp Thr Asn Leu Met Ile Glu Leu Ala Ala Ala Thr
1 5 10 15
Leu Ile Phe Phe Ile Thr Ser Phe Phe Ile Arg Ser Phe Leu Pro Asn
20 25 30
Pro Ser Arg Lys Leu Pro Pro Gly Pro Lys Gly Trp Pro Leu Val Gly
35 40 45
Val Leu Pro Leu Leu Gly Asn Met Pro His Val Ala Leu Ala Lys Met
50 55 60
Ser Lys Arg Tyr Gly Pro Val Met Phe Leu Lys Met Gly Thr Asn Ser
65 70 75 80
Met Val Val Ala Ser Thr Pro Glu Ala Ala Gln Ala Phe Leu Lys Thr
85 90 95
Leu Asp Ile Asn Phe Ser Asn Arg Pro Ala Asn Ala Gly Ala Thr His
100 105 110
Leu Ala Tyr Asp Ala Gln Asp Met Val Phe Ala Asp Tyr Gly Ser Arg
115 120 125
Trp Lys Leu Leu Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys
130 135 140
Ala Leu Gln Asp Cys Ser Gln Val Arg Thr Val Glu Leu Gly Tyr Met
145 150 155 160
Leu Arg Ala Met Val Glu Ser Ser Gln Arg Gly Glu Pro Val Val Val
165 170 175
Pro Glu Met Leu Thr Phe Ser Met Ala Asn Met Ile Gly Gln Val Ile
180 185 190
Leu Ser Arg Arg Val Phe Glu Thr Lys Gly Ser Glu Ser Asn Glu Phe
195 200 205
Lys Asp Met Val Val Glu Leu Met Thr Cys Ala Gly Tyr Phe Asn Ile
210 215 220
Gly Asp Phe Ile Pro Ser Ile Ala Trp Met Asp Ile Gln Gly Ile Glu
225 230 235 240
Arg Gly Met Lys Ala Leu His Lys Lys Phe Asp Lys Leu Leu Thr Arg
245 250 255
Met Ile Glu Glu His Thr Ala Ser Ala His Glu Arg Lys Glu Asn Pro
260 265 270
Asp Phe Leu Asp Val Met Met Ala His Asn Gly Asn Ser Ala Gly His
275 280 285
Glu Lys Leu Thr Met Thr Asn Ile Lys Ala Leu Leu Leu Asn Leu Phe
290 295 300
Thr Ala Gly Thr Asp Thr Ser Ser Ser Ile Ile Glu Trp Ser Leu Ser
305 310 315 320
Glu Met Leu Lys Asn Pro Thr Ile Leu Lys Arg Ala His Glu Glu Met
325 330 335
Asp Gln Val Ile Gly Arg Asn Arg Arg Leu Val Glu Ser Asp Ile Pro
340 345 350
Lys Leu Pro Tyr Leu Gln Ala Ile Cys Lys Glu Ser Phe Arg Lys His
355 360 365
Pro Ser Thr Pro Leu Asn Leu Pro Arg Val Ser Thr Gln Ala Cys Glu
370 375 380
Val Asn Gly Tyr Tyr Ile Pro Lys Asn Thr Arg Leu Ser Val Asn Ile
385 390 395 400
Trp Ala Ile Gly Arg Asp Pro Asp Val Trp Glu Ser Pro Glu Glu Phe
405 410 415
Arg Pro Glu Arg Phe Leu Ser Gly Arg Asn Ala Lys Ile Asp Pro Arg
420 425 430
Gly Asn Asp Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys
435 440 445
Ala Gly Thr Arg Met Gly Ile Val Leu Val Glu Tyr Ile Leu Gly Thr
450 455 460
Leu Val His Ser Phe Asp Trp Lys Met Pro Asp Gly Val Glu Ile Asn
465 470 475 480
Met Asp Glu Ala Phe Gly Leu Ala Leu Gln Lys Ala Val Ser Leu Ser
485 490 495
Ala Met Val Thr Pro Arg Leu Asp His Asn Ala Tyr Ala Val
500 505 510
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tgaaaatggg gactaacagc atg 23
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gcttcgtcca tgtttatctc aactc 25

Claims (7)

1.一种三叶青ThF3’5’H基因,其特征在于,其核苷酸序列如SEQ ID NO.1所示。
2.一种包含权利要求1所述的三叶青ThF3’5’H基因的重组表达载体。
3.一种包含权利要求1所述的三叶青ThF3’5’H基因的转化子。
4.一种由权利要求1所述的三叶青ThF3’5’H基因编码的蛋白,其特征在于,所述蛋白的氨基酸序列如SEQ ID NO.2所示。
5.如权利要求1所述的三叶青ThF3’5’H基因在提高拟南芥植株的黄酮类代谢物含量中的应用,其特征在于,所述黄酮类代谢物为山奈酚-3-O-芸香苷和异鼠李素-3-O-β-D-芸香糖苷。
6.如权利要求1所述的三叶青ThF3’5’H基因在下调拟南芥植株柚皮素-7-O-葡萄糖苷、5,7,4'-三羟基-8-甲氧基黄酮-6-C-[木糖基-(1-2)]-葡萄糖苷和槲皮素-3-O-鼠李糖基阿拉伯糖苷含量中的应用。
7.如权利要求1所述的三叶青ThF3’5’H基因在提高拟南芥植株的L-天门冬酰胺和3-甲基-2-氧基戊酸含量中的应用。
CN202111238809.4A 2021-10-25 2021-10-25 三叶青ThF3’5’H基因及其应用 Active CN113862288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111238809.4A CN113862288B (zh) 2021-10-25 2021-10-25 三叶青ThF3’5’H基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111238809.4A CN113862288B (zh) 2021-10-25 2021-10-25 三叶青ThF3’5’H基因及其应用

Publications (2)

Publication Number Publication Date
CN113862288A CN113862288A (zh) 2021-12-31
CN113862288B true CN113862288B (zh) 2023-06-20

Family

ID=78997522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111238809.4A Active CN113862288B (zh) 2021-10-25 2021-10-25 三叶青ThF3’5’H基因及其应用

Country Status (1)

Country Link
CN (1) CN113862288B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292765B1 (en) * 2002-08-30 2013-06-19 Suntory Holdings Limited Flavonoid 3',5' Hydroxylase gene sequences and uses therefor
CN101165186A (zh) * 2007-09-27 2008-04-23 复旦大学 从蝴蝶兰克隆出的类黄酮-3'5'-羟化酶基因,其编码序列和应用
CN102304533A (zh) * 2011-08-22 2012-01-04 云南省农业科学院花卉研究所 黄烷酮3’,5’-羟化酶基因及其所编码的蛋白质
WO2013157502A1 (ja) * 2012-04-16 2013-10-24 サントリーホールディングス株式会社 新規カンパニュラフラボノイド3',5'-水酸化酵素遺伝子及びその使用
CN111286508B (zh) * 2019-08-29 2022-04-22 南京林业大学 银杏类黄酮3′,5′-羟化酶GbF3′5′H1基因及其蛋白和应用
CN110592111B (zh) * 2019-09-23 2022-04-12 南京林业大学 一种银杏类黄酮3′-羟化酶基因GbF3′H1及其应用
CN111518818B (zh) * 2020-03-26 2021-11-30 浙江大学 一个参与杨梅素生物合成的羟化酶基因及其应用

Also Published As

Publication number Publication date
CN113862288A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Deng et al. Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis
CN108048415B (zh) 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用
US9567600B2 (en) Modification of flavonoid biosynthesis in plants
CN109055399B (zh) 一种与黄芩中黄酮合成物相关的基因序列及其应用
CN110452291B (zh) 铁皮石斛胚胎发育晚期丰富蛋白DoLEA43在促进植物愈伤组织形成中的应用
CN112724217B (zh) 一种青蒿MYB类转录因子AaMYB108及其应用
EP0905242A1 (en) Method for controlling water content of plant
WO2021190632A1 (zh) 一种羟化酶基因及其应用
US20220372526A1 (en) Method for production of novel diterpene scaffolds
CN106148357B (zh) 一种青蒿wrky类转录因子编码序列及应用
CN112079911B (zh) 一种促进银杏类黄酮合成的关键基因GbMYB6及其表达的蛋白、载体和应用
CN113862288B (zh) 三叶青ThF3’5’H基因及其应用
CN106086039B (zh) 一种青蒿wrky类转录因子编码序列及应用
CN103509819B (zh) 一种提高植物对多环芳烃的耐受性和降解能力的方法
CN114507674A (zh) 茶树昼夜节律基因lux在提高植物抗寒性上的应用
CN110128517B (zh) 小报春花香相关基因PfLIS/NES及其用途
CN105936914A (zh) 芦笋查尔酮合成酶基因及其编码的蛋白与应用
CN112430260A (zh) 胚胎发育晚期丰富蛋白DoLEA36或其编码基因在调控植物愈伤组织形成中的应用
CN105950644A (zh) 芦笋查尔酮异构酶基因及其编码的蛋白与应用
Zhao et al. expression analysis of C4H gene from Lepidium apetalum [J]
CN106755060B (zh) 共转fps和dbr2基因提高青蒿素含量的方法及制备的青蒿
CN116732060B (zh) 喜树中的cyp716c氧化酶基因、载体、微粒体蛋白及应用
CN114540379B (zh) 一个参与桃果实果香型芳香物质合成的基因及其应用
CN114480448B (zh) 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用
WO2011121456A2 (en) Nucleic acids and protein sequences of costunolide synthase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant