CN103509819B - 一种提高植物对多环芳烃的耐受性和降解能力的方法 - Google Patents

一种提高植物对多环芳烃的耐受性和降解能力的方法 Download PDF

Info

Publication number
CN103509819B
CN103509819B CN201310410523.9A CN201310410523A CN103509819B CN 103509819 B CN103509819 B CN 103509819B CN 201310410523 A CN201310410523 A CN 201310410523A CN 103509819 B CN103509819 B CN 103509819B
Authority
CN
China
Prior art keywords
plant
gene
aromatic hydrocarbons
polycyclic aromatic
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310410523.9A
Other languages
English (en)
Other versions
CN103509819A (zh
Inventor
彭日荷
姚泉洪
王荣谈
付晓燕
田永生
赵伟
严培兰
丁卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruifeng Agricultural Technology Co ltd
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Ruifeng Agricultural Technology Co ltd
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ruifeng Agricultural Technology Co ltd, Shanghai Academy of Agricultural Sciences filed Critical Shanghai Ruifeng Agricultural Technology Co ltd
Priority to CN201310410523.9A priority Critical patent/CN103509819B/zh
Publication of CN103509819A publication Critical patent/CN103509819A/zh
Application granted granted Critical
Publication of CN103509819B publication Critical patent/CN103509819B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高植物对多环芳烃的耐受性和降解能力的方法,具体过程是:利用改造的P450单加氧酶基因和合成的杨树UDP-葡萄糖苷糖基转移酶(UGT)基因来构建二价基因植物表达载体,然后将二价基因表达载体通过农杆菌介导转化到植物中。利用本发明,使获得的转基因植物对多环芳烃的耐受性和降解能力提高,种植这种转基因植物有利于修复被多环芳烃污染的土壤环境。

Description

一种提高植物对多环芳烃的耐受性和降解能力的方法
技术领域
本发明属于环境科学领域,具体涉及一种提高植物对多环芳烃的耐受性和降解能力的方法。
背景技术
多环芳烃(PAHs)大多是石油、煤等化石燃料以及木材、天然气、汽油、重油、有机高分子化合物、纸张、作物秸秆和烟草等含碳氢化合物的物质经不完全燃烧或在还原性气氛中经热分解而生成的。高分子量PAHs在环境中比较稳定,能以其为唯一碳源和能源进行代谢的降解菌的研究报道甚少。大多数微生物对四环及以上多环芳烃的矿化作用一般是以共代谢方式开始的。共代谢过程中微生物优先利用一种较易摄取的基质获取能量,进而完成另一种基质的代谢,只有在初级碳源和能源存在的条件下,微生物才能进行有机物降解。Mahaffey等的实验表明,在有联苯、水杨酸作为共代谢底物时,拜叶林克氏菌(Beijerinckia,现在归属鞘氨醇单孢菌Sphingomonas yanoikuyae)可以分解原本不被其作为碳源和能源的苯并蒽。共代谢作用可以提高微生物降解多环芳烃的效率,增大微生物对碳源和能源的利用范围(Mahaffey等Applied and EnvironmentalMicrobiology1988,54,2415-2423)。
细胞色素P450是一类以血红素为辅基的B族细胞色素超家族蛋白酶。P450是一种末端加氧酶,从NAD(P)H获得电子后,催化单加氧反应。P450能够在生物体内催化多种内源性物质的生物合成,还参与许多外源性难降解有机物的生物氧化和降解。
P450在原核和真核生物中广泛存在。真核生物中的P450为膜结合状态,原核生物中的P450为游离状态,为一种可溶性蛋白。不同物种间P450具有同源性。如不同P450形成螺旋倾向的位置十分匹配,疏水性状也极为相似,对P450编码蛋白的分子结构的对比分析发现,在C末端的血红素结合区,存在高度保守的FXXGXXXCXG结构,螺旋K区存在保守的EXXR结构,螺旋I区有一高度保守的苏氨酸。根据氨基酸序列相似性,P450蛋白质分类并命名为家族(CYP1,2…)、亚家族(A,B…)、单个基因(A1,2…),它们的氨基酸序列同源性分别为:>40%、>55%、>97%。截至2005年1月,已发现并命名4504条来自动物(1581条)、植物(1740条)和微生物(1180条)的P450基因序列。
Poulos等首次报导了P450CAM的X-晶体衍射结构(Journal ofMolecular Biology1987,195,687-700)。该分子为三角形,其中血红素平面与三角平面近似平行,血红素辅基深埋于疏水腔内,晶体结构显示Cys-357是血红素中Fe(III)的结合部位。氨基酸序列对比显示P450分子中有两段相似的核心序列存在活性中心区域。第一段含有Cys-357血红素中Fe(III)的结合部位,第二段含有Thr-252,与O2结合密切相关。酶的活性中心为六配位,加入底物后,六配位变为五配位,Fe(III)由低自旋变为高自旋并引起条件电位的显著增加,最后还原为F(II)并与O2结合。不同P450底物结合区域的序列存在较大差异,P450底物结合部位的细微变化可以改变P450的底物特异性和催化效率,因此通过对P450酶底物结合部位进行重新设计,一方面可以使P450结合和作用于非天然底物,从而用于特定的环境污染物的生物净化;另一方面可以提高环境污染物的净化效率。
Fowler(Journal of the Chemical Society,Chemical Communications.1994,2761–2762)和Stevenson(Journal of the American Chemical Society,1996,118,12846-12847)发现P450cam的底物结合部位中酪氨酸Y96突变可以改变其底物的特异性。Y96A突变体能够氧化不被天然P450酶氧化的物质二苯基甲烷,Y96A突变体的底物结合部位具有更大的空间,表示它对底物的要求可能具有更大的可塑性。Y96F突变体使原来底物樟脑的氧化区域和立体选择性发生了变化,但是提高了多环芳烃萘和芘氧化区域专一性,1位和2位萘酚的比例达到93:3。另一个位点F87参与了蛋白质与底物的结合,F87A(L)与Y96F双突变体提高了P450cam对多环芳烃菲、芘和苯并芘的氧化效率。P450BM-3在ω1和ω3位催化C12-C20饱和或不饱和脂肪酸的氧化。对枯草杆菌(Bacillus megaterium)的P450BM-3中底物结合位点R47L/Y51F进行双突变,使该区域疏水性加强后,对多环芳烃的氧化活性提高了40倍;将3个位点A74G/F87V/L188Q进行突变,对多环芳烃萘、芴、二氢苊和苊的氧化活性分别提高到160、53、109和287/min,底物的氧化速率比野生型P450BM-3提高了数百倍(Li等AppliedBiochemistry and Biotechnology2008,144,27-36)。P450BM-3能在大肠杆菌中高效表达,并具有结构稳定性,因此,该基因被认为最适合用于构建多环芳烃氧化的工程菌株。最近,Brezna等又从分枝杆菌(Mycobacteriumvanbaalenii PYR-1)中克隆获得了3个P450基因cyp151(pipA)、cyp150和cyp51,将这些基因在大肠杆菌中表达后,能够有效地分解二苯并噻吩、7-甲基苯并[α]蒽和芘。表明P450在很多细菌中参与了多环芳烃的代谢(Applied Microbiology and Biotechnology2006,71,522-532)。
哺乳动物细胞色素P450单加氧酶在肝脏解毒中作用巨大,将这些基因转化到植物中能降解很多有机污染物。研究发现人P450单加氧酶CYP1A1能够有效地氧化苯并[a]芘等高分子量PAHs,因此根据Gleba等人的方法,用分泌性信号肽使该基因在植物中大量表达后,分泌到根表面及土壤中,使根系周围PAHs羟化,从而提高植物对高分子量PAHs吸收效率(Proceedings of the National Academy of Sciences1999,96,5973-5977)。此外,羟化的多环芳烃一般都会通过与葡萄糖醛酸、葡萄糖或甲基结合转移到细胞器中进一步代谢,其中依赖UDP-葡萄糖苷糖基转移酶(UGT)是酚类化合物转移的重要酶类。拟南芥中存在118个不同的UGT,三氯苯酚和四氯苯酚等酚类化合物都能通过UGT催化糖基化后转移分解。本实验室通过基因芯片和表达谱分析,确证3个UGT基因受到萘的诱导,表明这些基因可能参与萘在植物细胞中的转运。
发明内容
本发明的目的在于提供一种提高植物对多环芳烃耐受性和降解能力的方法,通过该方法能够拓宽植物修复多环芳烃污染土壤的范围,加快吸收效率。
为达到上述目的,本发明的技术方案是:
一种提高植物对多环芳烃的耐受性和降解能力的方法:将改造的P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶(UGT)基因构建二价基因植物表达载体;将所述构建的二价基因植物表达载体通过农杆菌介导转化到植物中。
优选地,所述P450单加氧酶基因来自于人肝。
优选地,所述P450单加氧酶基因的改造方法是:通过定点突变方法消除P450单加氧酶(cyp1A1)基因的129位NcoI切点和1436位EcoRI切点。
优选地,所述杨树UDP-葡萄糖苷糖基转移酶(UGT)基因按植物偏爱密码通过合成方法获得,所合成的杨树UDP-葡萄糖苷糖基转移酶(UGT)中的388和1104位EcoRI,460位HindIII,428位NcoI酶切位点全部消除。
所述P450单加氧酶基因和UDP-葡萄糖苷糖基转移酶基因构建二价基因植物表达载体的方法为:通过T4DNA连接酶将两个基因与含有双35S启动子和NOS终止子的pYPX245(Genbank AY178049.1)质粒连接;酶切鉴定和序列测定表明获得了P450单加氧酶基因和UDP-葡萄糖苷糖基转移酶基因植物表达单元;将两个表达单元酶切后依次插入pCAMBIA1301植物表达载体,构建二价基因植物表达载体pCYPUGT。
所述构建的二价基因植物表达载体pCYPUGT通过电击法导入到根癌农杆菌中,所述根癌农杆菌优选为EHA105或LBA4404或GV3101。
优选地,通过所述根癌农杆菌将构建的二价基因植物表达载体pCYPUGT转化到拟南芥和水稻中。
本发明的有益效果如下:
1,当植物中转化了P450单加氧酶基因(cyp1A1)和UDP-葡萄糖苷糖基转移酶(UGT)基因的表达载体后,通过表达产生的P450单加氧酶将多环芳烃氧化,然后再通过表达产生的UDP-葡萄糖苷糖基转移酶将其和葡萄糖连接,转移到植物细胞器中进一步分解。因此利用本发明构建的体系可以提高植物对菲或芘的耐受性和降解能力。
2,该套体系能在植物中安全高效表达,对环境影响较小。
3,利用该套体系获得的转基因植物能够有效修复被多环芳烃污染的土壤环境。
附图说明
图1为本发明实施例中构建的P450单加氧酶基因(cyp1A1)和UDP-葡萄糖苷糖基转移酶(UGT)基因双价基因植物表达载体。
具体实施方式
以下实施例中涉及的构建二价基因植物表达载体pCYPUGT,其具体的构建方法如下:
1、构建改造的P450单加氧酶基因(cyp1A1)
从人肝中克隆P450单加氧酶基因并利用定点突变方法将129位NcoI切点,1436位EcoRI切点消除。
129位NcoI切点突变引物:129Z:AGGGCCTTGGGGCTGGCCTCTGATTGG(SEQ ID NO.1所示);129F:CCAATCAGAGGCCAGCCCCAAGGCCCT(SEQ ID NO.2所示)。
1436位EcoRI切点突变引物:1436Z:ACGGGTGGAGTTCAGCGTGCCACTGG(SEQ ID NO.3所示);1436F:CCAGTGGCACGCTGAACTCCACCCGT(SEQ ID NO.4所示)。
人肝总RNA,cDNA合成试剂盒为Clontech公司产品;DNA柱回收试剂盒购置Amersham公司;试剂RNA抽提试剂盒RNeasy Plant Mini Kit为QIAGEN公司产品;各种限制性内切酶和T4DNA Ligase均购自上海Takara公司。总RNA采用QIAGEN公司的RNeasy Plant Mini Kit提取。
取约50μl人肝总RNA进行cDNA合成,cDNA的合成按Clontech公司SMART cDNA Library Construction Kit说明书操作进行第一链合成。
以合成的cDNA第一链为模板,以此cyp101Z:AAGGATCCATGCTTTTCCCAATCTCCATG(SEQ ID NO.5所示)和cyp101F:AAGAGCTCCTAAGAGCGC AGCTGCATTTGGAAGTG(SEQ ID NO.6所示)为引物,利用PCR进行cDNA扩增,扩增条件为:94℃,预热1min;94℃,30s,60℃,30s,72℃,3min。共25个循环。PCR结束后,采用酚:氯仿抽提,再加入2倍体积的无水乙醇进行沉淀。沉淀用30μl水溶解,取1μl为模板,以引物cyp101Z和129F;129Z和1436F;1436Z和cyp101F进行PCR扩增,扩增条件为:94℃预热1min;94℃,30s,60℃,30s,72℃,1min。共25个循环,PCR结束后,DNA片断用10%丙烯酰胺胶回收,将上述3个回收的DNA片断取10-100ng为模板混合,以cyp101Z和cyp101F为引物将上述片断拼接,扩增条件为:94℃,预热1min;94℃,30s,60℃,30s,72℃,4min。共25个循环。
PCR结束后,酚:氯仿抽提,再加入2倍体积的无水乙醇进行沉淀。各加入SacI和BamHI酶切消化,DNA柱回收酶切片断。将酶切处理好片段进行定向克隆,获得质粒T1,并将质粒T1高效转化到大肠杆菌DH5α感受态细胞中。
2、合成杨树UDP-葡萄糖苷糖基转移酶基因
以基因合成方法(Nucleic Acids Research,2004,32,e98)获取杨树UDP-葡萄糖苷糖基转移酶基因。合成的杨树UDP-葡萄糖苷糖基转移酶基因中388和1104位EcoRI,460位HindIII,428位NcoI酶切位点全部消除。
设计的引物为:
PtUGT1:
GGATCCATGGCAGAGACTGACTCTCCACCACATGTTGCCATCTTGCCATCTCCAGGTATG(SEQ ID NO.7所示)
PtUGT2:
CAAGTCTCTTAGCCAACTCAACCAGTGGGATCAGATGACCCATACCTGGAGATGGCAAGA(SEQ ID NO.8所示)
PtUGT3:
TGAGTTGGCTAAGAGACTTGTTCACCAACACAACCTGTCCGTCACCTTCATCATTCCAAC(SEQ ID NO.9所示)
PtUGT4:
TCCAAGAACGCTTCTTTGAGCTTTGGATGGAGAGCCATCGGTTGGAATGATGAAGGTGAC(SEQ ID NO.10所示)
PtUGT5:
CTCAAAGAAGCGTTCTTGGATCTCTTCCATCTACCATTCACTCCGTCTTTCTTCCACCAG(SEQ ID NO.11所示)
PtUGT6:
GTCTCGATCTTGACATCTTCTGGAAGATCAGACAAGTTGACTGGTGGAAGAAAGACGGAG(SEQ ID NO.12所示)
PtUGT7:
GAAGATGTCAAGATCGAGACCCTGATCTCTCTGACTGTTGCTAGATCCCTTCCTTCTCTC(SEQ ID NO.13所示)
PtUGT8:
CTCTGGTTCCAGAGGCGACAAGAGAAGACAGAACATCTCTGAGAGAAGGAAGGGATCTAG(SEQ ID NO.14所示)
PtUGT9:
TGTCGCCTCTGGAACCAGAGTTGTTGCCTTGGTTGTTGATCTGTTTGGCACTGATGCATT(SEQ ID NO.15所示)
PtUGT10:
GAAGATGTATGGAGAGGCTTTGAACTCTCTGGCAACGTCGAATGCATCAGTGCCAAACAG(SEQ ID NO.16所示)
PtUGT11:
AAGCCTCTCCATACATCTTCTATCCAGCTCCAGCTATGGCCTTGTCTCTCTTCTTCTATC(SEQ ID NO.17所示)
PtUGT12:
TCAGAGTACTCGCAAGAGACCATCTCATCCAGCTTTGGCAGATAGAAGAAGAGAGACAAG(SEQ ID NO.18所示)
PtUGT13:
GTCTCTTGCGAGTACTCTGAGATGCAAGAGCCAGTTGAGATTCCAGGCTGCCTTCCAATT(SEQ ID NO.19所示)
PtUGT14:
TCTTTCTGTCTCTGGTTGGATCAAGCAGCTCACCACCATGAATTGGAAGGCAGCCTGGAA(SEQ ID NO.20所示)
PtUGT15:
TCCAACCAGAGACAGAAAGAACGATGCCTACAAGTGGCTTCTTCACCATTCCAAGAGATA(SEQ ID NO.21所示)
PtUGT16:
GTCAATGAAGGAGTTGACCATGACACCTTCTGCCAGTCTGTATCTCTTGGAATGGTGAAG(SEQ ID NO.22所示)
PtUGT17:
TGGTCAACTCCTTCATTGACCTGGAGAGAGGTGCTCTGAAGGCTCTGCAAGAGGTTGAAC(SEQ ID NO.23所示)
PtUGT18:
TTGACCAGTGGACCGACTGGGTAGACTGGTGGCTTGCCTGGTTCAACCTCTTGCAGAGCC(SEQ ID NO.24所示)
PtUGT19:
CCAGTCGGTCCACTGGTCAACATGGACTCCAACACTTCTGGTGTTGAAGGTTCTGAGTGT(SEQ ID NO.25所示)
PtUGT20:
ACAGAACAGAGCCAAGTGGTTGGTCATCCAGCCACTTCAGACACTCAGAACCTTCAACAC(SEQ ID NO.26所示)
PtUGT21:
ACCACTTGGCTCTGTTCTGTTTGTCTCTTTCGGCTCTGGTGGAACCCTGTCCTTCGATCA(SEQ ID NO.27所示)
PtUGT22:
CTGCTCAGACATCTCCAGACCCAGAGCCAGTTCAGTGATCTGATCGAAGGACAGGGTTCC(SEQ ID NO.28所示)
PtUGT23:
GTCTGGAGATGTCTGAGCAGAGATTTCTGTGGGTTGCCAGAGTTCCAAACGACAAAGTCG(SEQ ID NO.29所示)
PtUGT24:
GGGTCCTTGTGATTGTCAACAGAGAAGTAGGTGGCATTAGCGACTTTGTCGTTTGGAACT(SEQ ID NO.30所示)
PtUGT25:
GTTGACAATCACAAGGACCCATTCGACTTCTTGCCAAAGGGCTTTCTGGACAGAACCAAA(SEQ ID NO.31所示)
PtUGT26:
GTGCTTGTGGTGCCCAGGATGGAACAACAAGACCTCTGCCTTTGGTTCTGTCCAGAAAGC(SEQ ID NO.32所示)
PtUGT27:
ATCCTGGGCACCACAAGCACAAGTCCTGTCTCATGGCTCCACTGGTGGCTTCTTGACTCA(SEQ ID NO.33所示)
PtUGT28:
AGCGTTGACAACAGACTCAAGAGTGGAGTTCCAACCACAGTGAGTCAAGAAGCCACCAGT(SEQ ID NO.34所示)
PtUGT29:
TTGAGTCTGTTGTCAACGCTGTTCCTCTGATCGTCTGGCCACTGTATGCTGAGCAGAAGA(SEQ ID NO.35所示)
PtUGT30:
AAGGCAACTTCAACGTCCTTGGTCAGCATCCATGCGTTCATCTTCTGCTCAGCATACAGT(SEQ ID NO.36所示)
PtUGT31:
AAGGACGTTGAAGTTGCCTTGAGACCAAAGGCATCTGAGAATGGTCTGATTGGCAGAGAG(SEQ ID NO.37所示)
PtUGT32:
CCTCACCTTCCATCAGACCTCTGACAATGTTGGCAATCTCCTCTCTGCCAATCAGACCAT(SEQ ID NO.38所示)
PtUGT33:
AGGTCTGATGGAAGGTGAGGAAGGCAAGAGAGTCAGAAACAGAATGAAGGACCTGAAAGA(SEQ ID NO.39所示)
PtUGT34:
GGTAGAAGAGCCAGCTTCAGACAGGACCTCAGCAGCTGCGTCTTTCAGGTCCTTCATTCT(SEQ ID NO.40所示)
PtUGT35:
CTGAAGCTGGCTCTTCTACCAAGGCACTGTCTGAAGTTGCCAGAAAGTGGAAGAACCACA(SEQ ID NO.41所示)
PtUGT36:
GAGCTCTTAGTTGCAGTCCTGAGTGCACTTGTGGTTCTTCCACTTTCTG(SEQ ID NO.42所示)
利用PCR进行UDP-葡萄糖苷糖基转移酶基因的扩增,在100μl反应体系中,PtUGT2-PtUGT35共34个引物的添加量为2ng,外侧引物PtUGT1和PtUGT36添加量为30ng,扩增条件为:94℃,预热1min;94℃,30s,50℃,30s,72℃,10min,使用的Taq DNA聚合酶为KOD FX taq酶(Toyobo公司,日本),共25个循环。
PCR结束后,1%琼脂糖胶回收,取10μl直接与T/A克隆载体相连(大连宝生物公司)。4℃连接过夜,获得质粒T2,将质粒T2高效转化到大肠杆菌DH5α感受态细胞中。获得阳性克隆,测定UDP-葡萄糖苷糖基转移酶的基因序列(SEQ ID NO.43所示)。
3、构建P450单加氧酶基因和UDP-葡萄糖苷糖基转移酶基因二价基因植物表达载体
将含有改造过的人P450单加氧酶基因片段的质粒T1和杨树UDP-葡萄糖苷糖基转移酶基因的质粒T2,分别用BamHI和SacI进行双酶切,回收目的DNA片段,通过T4DNA连接酶将两个目的片段与含有双35S启动子和NOS终止子的pYPX245(Genbank AY178049.1)质粒连接,酶切鉴定和序列测定表明获得了P450单加氧酶基因和UDP-葡萄糖苷糖基转移酶基因植物表达单元。将两个表达单元酶切后依次插入pCAMBIA1301植物表达载体,构建二价基因植物表达载体pCYPUGT。该表达载体还包含GUS报告基因和带内含子卡那霉素抗性标记基因。
实施例1,转基因的拟南芥对菲和芘耐受性和降解能力的影响
1)农杆菌感受态细胞制备
农杆菌菌株为根癌农杆菌EHA105,或LBA4404,或GV3101菌株(Biovector Co.,LTD)。挑取单菌在25ml YEB培养基(添加50mg/l利福平)培养过夜,取5ml菌液转接到100ml YEB培养基(添加50mg/l利福平),培养至OD600=0.7-0.8,菌液冰上放置10分钟,5000rpm离心10min,4℃,收集菌体,加入100ml无菌双蒸水清洗两次。加入4ml10%甘油悬浮菌体,转到50ml离心管。5500rpm离心10min,4℃。收集菌体,加入500μl10%甘油悬浮菌体,转到1.5ml离心管。
2)二价基因植物表达载体pCYPUGT经电击法导人农杆菌中
取70μl农杆菌感受态细胞,加入1μl表达载体pCYPUGT。混匀,转到0.1cm电击杯中。电击参数:200Ω,1.7KV,2.5F,电击后立即加入800μlSOC培养液。培养1小时后,取100μl涂50μg/L卡那霉素抗性板筛选转化子,28℃培养。
3)拟南芥粘花法转化
将前述步骤2)获得的含有表达载体pCYPUGT的农杆菌菌株单菌落接菌在5毫升含对应卡那霉素抗生素的LB培养基中28℃培养2天。将5毫升菌液转到500毫升的液体LB培养基中28℃培养16-24小时(OD=1.5-2.0)。液体可以在4℃保存30天。室温下离心收集菌体,4000g离心10分钟。用等体积5%的新鲜蔗糖溶液悬浮。加入0.02%的Silwet-77混匀后转移到烧杯中。每个菌株用300毫升转化,转2-3钵。隔7天后再转化1次。转化操作中将拟南芥倒置后浸入菌液中10秒钟。莲座和花序都要侵染。侵染后将转化植株菌液空干3-5秒。用保鲜膜将转化植株圈好,平放16-24小时。转化后不要放置在高温和强光下。揭开保鲜膜,保持一定湿度,再生长1个月后收种子。利用50μg/mL潮霉素进行转化植株筛选。
4)验证转基因拟南芥具有P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶(UGT)基因的表达产物。
抽提转基因拟南芥总RNA,将拟南芥幼苗液氮冷冻后抽提总RNA,RNA抽提试剂盒RNeasy Plant Mini Kit为QIAGEN公司产品;利用Clontech公司cDNA合成试剂盒合成cDNA第一链;DNA柱回收试剂盒购置Amersham公司;各种限制性内切酶和T4DNA Ligase均购自上海Takara公司。总RNA采用QIAGEN公司的RNeasy Plant Mini Kit提取。
取约50μl拟南芥总RNA进行cDNA合成,按Clontech公司cDNA合成说明书操作进行第一链合成。
取1μl cDNA合成产物检测P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶(UGT)基因的表达。P450单加氧酶基因表达检测引物为:CYP1:ACCAGTGGCAGATCAACCATG(SEQ ID NO.44所示);CYP2:CTAAGAGCG CAGCTGCATTTG(SEQ ID NO.45所示)。杨树UDP-葡萄糖苷糖基转移酶检测引物为:UGT1:TCCTCTGATCGTCTGGCCAC(SEQID NO.46所示);UGT2:GTTGCAGTCCTGAGTGCACT(SEQ ID NO.47所示)。PCR扩增条件为:94℃,预热1min;94℃,30s,50℃,30s,72℃,30s,扩增25循环,能在转基因植物中检测到约300bp条带,而野生型拟南芥没有,表明两个基因能够转录表达。
5)转基因拟南芥对多环芳烃的耐受性和降解
将转基因拟南芥自交纯合3代,获得纯合转化株,收取种子。播种后,移栽到含有0.2mM芘或0.5mM菲的基本培养基中,培养3周,观察植物的生长情况。收集所有的培养基,用60mL1:1的丙酮和正己烷溶液分3次萃取,每次20mL并在超声水浴中超声萃取30分钟,然后将萃取液收集,利用旋转蒸发仪浓缩至干,加入2mL甲醇溶解。将抽提液进行HPLC分析,流动相为甲醇-水,流速为1mL/min,柱温30℃,进样量为40μL,在此条件下所得菲和芘的色谱图清晰。
色谱图结果表明:转基因拟南芥培养3周后降解培养基中的菲为38-48%,而野生型拟南芥对照只有12.3%,转基因拟南芥培养3周后降解培养基中的芘为30-44%,而野生型拟南芥对照只有18.8%。因此,转基因拟南芥对菲和芘的降解能力有显著提高。
实施例2,转基因水稻对菲和芘降解能力的影响
1)农杆菌介导转化水稻
利用实施例1中步骤2)获得的含有表达载体pCYPUGT的农杆菌菌株对水稻愈伤组织进行转化。N6培养基为基本培养基,去壳的水稻种子,授粉后12-15天的幼胚,经表面消毒后接种到N6D2培养基中诱导愈伤组织(N6培养基,水解乳蛋白500mg/L,蔗糖30g/L,2,4-D2mg/L,植物凝胶2.5g/L,pH5.8);培养4-7天后取愈伤组织进行转化。含有表达载体pCYPUGT的农杆菌培养OD0.8-1.0后,5000g离心8分钟,重蒸水清洗一次,等体积MS培养液悬浮侵染8分钟后,吸干放置在MSO+NAA1+BA2的培养基中,22℃共培养3天。然后转入筛选培养基(加入头孢Cb(500ug/ml)和潮霉素HAT(50ug/ml),转化后的愈伤组织在含有潮霉素HAT(50ug/ml)抗性培养基上培养3~4代,转入分化培养基中(2mg/L KT);幼芽长至2mm转移到生根培养基(1/2MS+0.5mg/L IBA)。以上培养基中分别加入500mg/L酶水解乳蛋白(CH),0~700mg/L谷氨酰胺或精氨酸,蔗糖30~80g/L,琼脂6g/L,pH5.8。继代周期为25d。将淡黄色的胚性愈伤组织转入分化培养基中,30d左右分化出芽。光照强度1500~2000lx,12~14h/d。
从获得的抗性水稻中取一部分叶子,侵入含有X-GLUC的染色液中,筛选叶片变蓝的转基因植株进行分子检测,提取叶片总DNA,参照《分子克隆》的方法,以人单加氧酶基因CYP1A1和UDP-葡萄糖苷糖基转移酶基因为模板设计专有引物对转基因植株进行PCR检测,扩增条件为:94℃预热1min;94℃,30s,60℃,30s,72℃,4min。共25个循环。从分子水平上证明目的基因是否导入。
2)验证转基因水稻具有P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶(UGT)基因的表达产物。
抽提转基因水稻总RNA,将水稻幼苗液氮冷冻后抽提总RNA,RNA抽提试剂盒RNeasy Plant Mini Kit为QIAGEN公司产品;利用Clontech公司cDNA合成试剂盒合成cDNA第一链;DNA柱回收试剂盒购置Amersham公司;各种限制性内切酶和T4DNA Ligase均购自上海Takara公司。总RNA采用QIAGEN公司的RNeasy Plant Mini Kit提取。
取约50μl拟南芥总RNA进行cDNA合成,按Clontech公司cDNA合成说明书操作进行第一链合成。
取1μl cDNA合成产物检测P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶(UGT)基因的表达。P450单加氧酶基因表达检测引物为:CYP1:ACCAGTGGCAGATCAACCATG(SEQ ID NO.44所示);CYP2:CTAAGAGCGCAGCTGCATTTG(SEQ ID NO.45所示)。杨树UDP-葡萄糖苷糖基转移酶检测引物为:UGT1:TCCTCTGATCGTCTGGCCAC(SEQID NO.46所示);UGT2:GTTGCAGTCCTGAGTGCACT(SEQ ID NO.47所示)。PCR扩增条件为:94℃,预热1min;94℃,30s,50℃,30s,72℃,30s,扩增25循环,能在转基因植物中检测到约300bp条带,而原始水稻品种材料中没有,表明两个基因能够转录表达。
3)转基因水稻对多环芳烃的耐受性和降解
将基因水稻自交纯合3代,获得纯合转化株,收取种子。播种后,移栽到含有0.2mM芘或0.5mM菲的基本培养基中,培养3周,观察水稻的生长情况。收集所有的培养基,用60mL1:1的丙酮和正己烷溶液分3次萃取,每次20mL并在超声水浴中超声萃取30分钟,然后将萃取液收集,利用旋转蒸发仪浓缩至干,加入2mL甲醇溶解。将抽提液进行HPLC分析,流动相为甲醇-水,流速为1mL/min,柱温30℃,进样量为40μL,在此条件下所得菲和芘的色谱图清晰。
色谱图结果表明:转基因水稻培养3周后降解培养基中的菲为44.2-58.5%,而水稻初始对照品种只有22.6%,转基因水稻培养3周后降解培养基中的芘为41.3-47.5%,而水稻初始对照品种只有14.6%。因此转基因水稻对菲和芘的降解能力有显著提高。

Claims (5)

1.一种提高植物对多环芳烃的耐受性和降解能力的方法,包括如下步骤:
步骤1,将改造的P450单加氧酶基因和杨树UDP-葡萄糖苷糖基转移酶基因构建二价基因植物表达载体;
步骤2,将所述构建的二价基因植物表达载体通过农杆菌介导转化到植物中;
其中,所述P450单加氧酶基因为cyp1A1基因,所述杨树UDP-葡萄糖苷糖基转移酶基因序列如SEQ ID NO.43所示;
所述多环芳烃为菲、芘,所述植物为拟南芥、水稻。
2.如权利要求1所述的提高植物对多环芳烃的耐受性和降解能力的方法,其特征在于:所述P450单加氧酶基因来源于人肝。
3.如权利要求1或2所述的提高植物对多环芳烃的耐受性和降解能力的方法,其特征在于:所述P450单加氧酶基因的改造方法是,消除P450单加氧酶基因的129位NcoI酶切位点和1436位EcoRI酶切位点。
4.如权利要求1所述的提高植物对多环芳烃的耐受性和降解能力的方法,其特征在于:所述杨树UDP-葡萄糖苷糖基转移酶基因按植物偏爱密码子通过合成方法获得,其中388和1104位EcoRI,460位HindIII,428位NcoI酶切位点全部消除。
5.如权利要求1所述的提高植物对多环芳烃的耐受性和降解能力的方法,其特征在于:所述农杆菌为根癌农杆菌EHA105或根癌农杆菌LBA4404或根癌农杆菌GV3101。
CN201310410523.9A 2013-09-10 2013-09-10 一种提高植物对多环芳烃的耐受性和降解能力的方法 Expired - Fee Related CN103509819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310410523.9A CN103509819B (zh) 2013-09-10 2013-09-10 一种提高植物对多环芳烃的耐受性和降解能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310410523.9A CN103509819B (zh) 2013-09-10 2013-09-10 一种提高植物对多环芳烃的耐受性和降解能力的方法

Publications (2)

Publication Number Publication Date
CN103509819A CN103509819A (zh) 2014-01-15
CN103509819B true CN103509819B (zh) 2015-08-19

Family

ID=49893251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310410523.9A Expired - Fee Related CN103509819B (zh) 2013-09-10 2013-09-10 一种提高植物对多环芳烃的耐受性和降解能力的方法

Country Status (1)

Country Link
CN (1) CN103509819B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3265577A1 (en) 2015-03-03 2018-01-10 The Regents of the University of California Protecting group chemistry for clean, reductant-free dyeing
CN105921510A (zh) * 2016-05-06 2016-09-07 南京师范大学 一种多环芳烃菲污染水稻专用修复方法
CN114703222B (zh) * 2022-03-15 2024-02-02 上海市农业科学院 一种可完全降解多环芳烃植物的培育方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270364A (zh) * 2008-04-30 2008-09-24 昆明理工大学 提高植物吸收和耐受甲醛的方法及其植物表达载体与应用
CN102154234A (zh) * 2011-01-18 2011-08-17 浙江大学 具有多环芳烃羟化酶活性的细胞色素p450单加氧酶
CN102373228A (zh) * 2010-08-12 2012-03-14 上海市农业科学院 一种密码子偏爱优化的二羟基联苯双加氧酶基因rrbphci降解多氯联苯的的生物学方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270364A (zh) * 2008-04-30 2008-09-24 昆明理工大学 提高植物吸收和耐受甲醛的方法及其植物表达载体与应用
CN102373228A (zh) * 2010-08-12 2012-03-14 上海市农业科学院 一种密码子偏爱优化的二羟基联苯双加氧酶基因rrbphci降解多氯联苯的的生物学方法
CN102154234A (zh) * 2011-01-18 2011-08-17 浙江大学 具有多环芳烃羟化酶活性的细胞色素p450单加氧酶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics";P.C. Abhilash等;《Biotechnology Advances》;20090414;第27卷(第4期);摘要,第477页左栏第3段第9-11行,第480页右栏最后1段倒数4行-第481页左栏1段,第482页左栏第1段,表3 *

Also Published As

Publication number Publication date
CN103509819A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN109055399B (zh) 一种与黄芩中黄酮合成物相关的基因序列及其应用
Chen et al. Root‐specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum
US20090031457A1 (en) Protection against herbivores
CN103509819B (zh) 一种提高植物对多环芳烃的耐受性和降解能力的方法
CN103468738B (zh) 一种利用转基因植物提高对多环芳烃降解能力的方法
CN114703222B (zh) 一种可完全降解多环芳烃植物的培育方法
KR102054567B1 (ko) 제초제 내성 단백질, 그 코딩 유전자 및 용도
Feng et al. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation
Nagaraju et al. Agrobacterium-mediated genetic transformation in Gerbera hybrida
CN112322648A (zh) 一种abc转运蛋白基因mrp1s及其制备方法和应用
CN117143892A (zh) 一种促进银杏褪黑素合成且增强植物耐热性的关键基因GbSNAT及其应用
CN102108362B (zh) 一种优化的三苯甲烷还原酶基因及其表达和应用
JP2007312635A (ja) クエン酸分泌能が強化された樹木およびその作出方法
Sobańska et al. Optimised expression cassettes of hpt marker gene for biolistic transformation of Miscanthus sacchariflorus
Zhang et al. Agrobacterium-mediated genetic transformation system of Amorpha fruticosa using callus from the cotyledonary node.
CN114106120B (zh) 一种重金属转运蛋白PhHMA5II-1及其相关产品和用途
JP3905607B2 (ja) プロモーター配列およびその利用法
CN114672513B (zh) 一种基因编辑系统及其应用
CN113862288B (zh) 三叶青ThF3’5’H基因及其应用
CN108018307B (zh) AtNIA1基因在提高杭白菊苗抗重金属污染和抗氧化活性中的应用
Raveendar et al. Improved Agrobacterium Mediated Transformation in Cowpea Vigna unguiculata L. Walp.
JP5871222B2 (ja) 植物に耐塩性を付与するabcトランスポーター遺伝子
CN118792323A (zh) 一种在植物中串联表达的基因组合及其在提高植物耐镉性能中的应用
CN118581141A (zh) 水稻OsPIN9基因在调控耐盐性中的应用
Pavlichenko et al. Obtaining and Primary Phenotypic Characterization of Berlin Poplar Transformed by AtGA20ox1 Gene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20160910

CF01 Termination of patent right due to non-payment of annual fee