KR101229885B1 - 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물 - Google Patents

아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물 Download PDF

Info

Publication number
KR101229885B1
KR101229885B1 KR1020110097049A KR20110097049A KR101229885B1 KR 101229885 B1 KR101229885 B1 KR 101229885B1 KR 1020110097049 A KR1020110097049 A KR 1020110097049A KR 20110097049 A KR20110097049 A KR 20110097049A KR 101229885 B1 KR101229885 B1 KR 101229885B1
Authority
KR
South Korea
Prior art keywords
pac
rice
gene
vector
bac
Prior art date
Application number
KR1020110097049A
Other languages
English (en)
Inventor
하선화
김재광
정예솔
임선형
이연희
구본성
김영미
이종렬
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020110097049A priority Critical patent/KR101229885B1/ko
Application granted granted Critical
Publication of KR101229885B1 publication Critical patent/KR101229885B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Birds (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 아스탁산틴과 같은 케토-카로티노이드 생성능력이 우수한 신규 폴리뉴클레오티드, 상기 뉴클레오티드를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질전환된 세포 및 식물에 관한 것이다.
본 발명의 신규한 폴리뉴클레오티드와 이를 포함한 재조합 벡터를 이용하면 대부분의 식물에서는 거의 생성되지 않는 적색의 기능성 카로티노이드인 2종의 케토-카로티노이드(아스탁산틴과 칸탁산틴)를 생성할 수 있는 형질전환 식물을 제조할 수 있다. 이를 통해 생명공학 기술을 통한 항산화성 천연색소 컬러작물을 제공할 수 있으며, 새로운 기능성 컬러 GM 작물 소재 개발을 위한 고유 유전자 및 운반체 IP를 확보할 수 있다. 또한 자연계에 없는 새로운 특수 컬러작물 개발로 장기적으로 기능성 쌀의 다양성 확대 및 소비 촉진이 기대되며, 아스탁산틴 쌀을 이용한 미백, 노화방지 화장품 재료화 등의 개발을 통해 농업의 신규한 산업 소재 개발도 기대된다.

Description

아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물 {Polynucleotide for biosynthesis of astaxanthin and transformed plant using the same}
본 발명은 아스탁산틴 같은 케토-카로티노이드 생성능력이 우수한 신규 폴리뉴클레오티드, 상기 뉴클레오티드를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질전환된 세포 및 식물에 관한 것이다.
분자생물학적 기법이 발전함에 따라 유전공학적 방법에 의해 유용 대사 물질을 생성하거나 더 유용한 물질로 변경코자 하는 방법들이 발전해 왔다. 그 중, 식물을 매개체로 활용하는 식물 대사공학(plant metabolic engineering) 연구 또는 비 식물유래 고부가 경구용 백신(edible vaccine) 및 의료용 단백질 등을 식물체에서 생산하는 식물 분자농업(plant molecular farming) 관련 연구가 많이 이루어지고 있으나, 여러 가지 기술적인 어려움으로 인해 구체적인 결과는 그다지 많지 않은 실정이다.
그러한 어려움 중 하나가 대사 과정을 조절하기 위하여 가능한 한 여러 개의 유전자를 동일한 조건에서 동시에 발현시킬 수 있는 기술의 적용인데, 이러한 점에 있어서는 현재까지 담배 등에서 리포터 유전자를 이용한 모델 연구 수준의 보고만 있을 뿐이며, 하나의 프로모터에 의해서는 하나의 유전자만이 발현되는 모노-시스트로닉 mRNA(mono-cistronic mRNA) 생성 기작을 가진 진핵생물(식물, 동물 등)의 특성상 원핵생물과는 달리 다중 유전자의 발현을 동시에 조절하기가 어려운 실정이다.
특히 식물의 경우, 일반적으로 아그로박테리아 매개 T-DNA 삽입 방법에 의한 형질전환이 많이 이루어지는데, 이 경우 다중의 유전자를 동시에 도입하여 발현 시키고자 할 때 사용되는 기술들은 일반적으로 1) 다중 카세트 도입, 2) 아그로박테리아 공동 형질전환, 3) 형질전환체의 교배, 4) 단일 카세트 내에 다중 유전자 도입 방법 등이 있다.
다중 카세트 도입방법은 가장 보편적으로 사용되고 있는 방법이지만, 도입할 수 있는 전체 카세트 수가 일반적으로 3 내지 4개 카세트를 넘지 않아, 결국 선발 마커를 제외하면 두 개의 목적 유전자 그 이상을 하나의 T-DNA 운반체에서 발현시키는 것은 어렵다고 할 수 있다. 아그로박테리아 공동 형질전환(cotransformation)의 경우 두 개의 T-DNA 도입을 동시에 선발하기 위해서 각 T-DNA는 다른 종류의 선발마커 보유가 필수적인데, 식물에 따라 형질전환 조건이 특정 선발마커에 국한되어 확립되어 있다고 볼 때, 이 방법은 적용대상 선정 시 제한이 큰 단점이 있다. 아울러, 형질전환체의 교배(sexual crossing)에 의한 유전자 집적(gene stacking)의 방법은 개개의 목적으로 이미 도입된 형질전환체의 유용 형질을 교배를 통해 한 식물체로 모을 수 있으나, 장기간이 소요되며 그 결과를 구체적으로 조절하기 어려운 단점이 있다.
이에 단일 카세트 내에 다중 단백질 발현 유전자를 도입하여, 다중 유전자 발현이 불가피한 대사공학 연구, 스트레스나 병 등에 대한 복합내성 형질을 얻고자 하는 시도가 있어왔다. 이러한 방법은 진핵생물의 단백질 발현 기작상 주로 목적으로 하는 도입 유전자 사이에 특수 인식부위를 삽입하는 방법을 사용하고 있다.
선행 기술에서는 유전자 다중 발현 기술을 적용하여 카로티노이드가 전혀 생산되지 않는 벼 종자에서 영양학적으로 의미가 있는 베타카로틴을 생성할 수 있는 융합 폴리뉴클레오티드 및 이를 포함하는 재조합 발현 벡터를 개발하고, 이를 이용하여 베타카로틴을 생성하는 형질전환 식물체를 개발한 바 있다.
본 발명자들은 유전공학적으로 개량된 식물 형질전환체를 개발하기 위하여 연구하여 오던 중, 유전자 다중 발현 기술을 적용하여 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈가 동시에 발현되는 융합 폴리뉴클레오티드 및 이를 포함하는 재조합 발현 벡터를 개발하고, 이를 이용하여 아스탁산틴 같은 케토-카로티노이드를 생성하는 형질전환 식물체를 개발함으로써 본 발명을 완성하였다.
자가 절단 2A배열을 포함하는 베타카로틴 생합성용 융합폴리뉴클레오티드 및 이를 이용한 형질전환 식물체, KR 10-0905219, 2009.06.23, 3-4쪽
본 발명은 케토-카로티노이드가 생성되지 않는 식물체에서 아스탁산틴 같은 케토-카로티노이드를 효과적으로 생합성 할 수 있는 신규한 폴리뉴클레오티드, 재조합 벡터 및 이를 이용한 케토-카로티노이드 합성 능력이 있는 형질전환 세포 및 식물을 제공하고자 한다.
본 발명은 서열번호 1 또는 2의 핵산서열로 이루어진 폴리뉴클레오티드를 제공한다.
또한 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공한다.
또한 본 발명은 재조합 벡터를 형질전환하여 아스탁산틴 같은 케토-카로티노이드를 생산하는 형질전환 세포 및 식물을 제공한다.
본 발명의 신규한 폴리뉴클레오티드와 이를 포함한 재조합 벡터를 이용하면 대부분의 식물에서는 거의 생성되지 않는 적색의 기능성 카로티노이드인 2종의 케토-카로티노이드(아스탁산틴과 칸탁산틴)를 생성할 수 있는 형질전환 식물을 제조할 수 있다. 이를 통해 생명공학 기술을 통한 항산화성 천연색소 컬러작물을 제공할 수 있으며, 새로운 기능성 컬러 GM 작물 소재 개발을 위한 고유 유전자 및 운반체 IP를 확보할 수 있다. 또한 자연계에 없는 새로운 특수 컬러작물 개발로 장기적으로 기능성 쌀의 다양성 확대 및 소비 촉진이 기대되며, 아스탁산틴 쌀을 이용한 미백, 노화방지 화장품 재료화 등의 개발을 통해 농업의 신규한 산업 소재 개발도 기대된다.
도 1 은 케토-카로티노이드 생산용 복합다중유전자 탑재된 벼 형질전환용 운반체 제작 모식도이다.
도 2 는 벼 형질전환 과정이다.
도 3 은 Mar 프로브를 이용한 케토-카로티노이드 생성 벼 2종의 개체별 Southern blot 분석 결과를 보여준다.
도 4 는 4개 유전자 동시 도입·발현에 의한 아스탁산틴 등 케토카로티노이드 생성 기능성 컬러쌀의 사진이다.
도 5 는 형질전환 벼 종자의 카로티노이드 성분 분석 그래프이다.
도 6 은 케토-카로티노이드 합성 과정을 나타낸다.
본 발명은 서열번호 1 또는 2의 핵산서열로 이루어진 폴리뉴클레오티드를 제공한다.
상기 서열번호 1 및 2의 폴리뉴클레오티드는 베타카로틴 하이드록실레이즈(β-carotene hydroxylase) 유전자 및 베타카로틴 케톨레이즈(β-carotene ketolase) 유전자의 융합 폴리뉴클레오티드이다. 상기 폴리뉴클레오티드는 베타카로틴으로부터 아스탁산틴과 칸탁산틴을 생합성 할 수 있도록 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈를 동시에 발현한다.
구체적으로, 상기 서열번호 1의 폴리뉴클레오티드는 고추 유래의 베타카로틴 하이드록실레이즈 유전자 Bch (서열번호 5)와 미세조류 헤마토코커스 유래의 베타카로틴 케톨레이즈 유전자 Bkt (서열번호 6)를 동시에 발현하는 융합 폴리뉴클레오티드이며, 상기 서열번호 2의 폴리뉴클레오티드는 상기 Bch 및 Bkt 유전자를 각각 벼에 최적화시킨 신규 유전자 stBch (서열번호 7) 및 stBkt (서열번호 8)를 동시에 발현하는 융합 폴리뉴클레오티드이다.
본 발명의 폴리뉴클레오티드는 서열번호 1 또는 2의 핵산서열로 이루어진 DNA 또는 RNA일 수 있다. 이 때, 본 발명의 폴리뉴클레오티드가 RNA인 경우 서열번호 1 또는 2의 티민(T)은 우라실(U)로 대체하는 것으로 이해될 수 있다. 상기 폴리뉴클레오티드는 공지된 생물학적 또는 화학적 합성법에 의해서 제조될 수 있다.
상기 서열번호 1 또는 2의 핵산서열로 이루어진 폴리뉴클레오티드 외에도 상기 서열들의 변이체가 본 발명의 범위 내에 포함되는 것으로 본다. 변이체는, 핵산서열은 변화되지만 서열번호 1 또는 2의 핵산서열과 유사한 기능적 특성, 즉 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈를 발현하는 특성을 갖는 핵산서열로 이루어진 폴리뉴클레오티드를 의미한다. 구체적으로, 본 발명에 따른 폴리뉴클레오티드는 서열번호 1 또는 2의 핵산서열과 각각 70% 이상, 80% 이상, 90% 이상 또는 95% 이상의 서열 상동성을 갖는 핵산서열을 포함할 수 있다.
또한 본 발명은 상기 서열번호 1 또는 2의 핵산서열로 이루어진 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공한다. 상기 재조합 벡터로 형질전환된 형질전환체는 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈를 동시에 발현하므로, 베타카로틴의 존재 하에서 아스탁산틴 같은 케토카로티노이드를 합성할 수 있다.
본 발명의 한 구체예에서, 상기 재조합 벡터는 서열번호 3 또는 4의 핵산서열로 이루어진 폴리뉴클레오티드를 추가로 포함할 수 있다.
상기 서열번호 3 또는 4의 폴리뉴클레오티드는 베타카로틴 합성용 재조합 유전자로서, 베타카로틴을 생합성 할 수 있도록 파이토엔 합성효소 및 카로틴 불포화 효소를 암호화하는 재조합 유전자이다. 구체적으로, 상기 서열번호 3의 유전자는 대한민국 등록특허 제10-0905219에 개시된 PAC 유전자로서, 고추 파이토엔 합성 효소(phytoene synthase), 벼 최적화 FMDV 유래 2A 서열 및 박테리아 카로틴 불포화 효소(carotene desaturase)를 암호화하는 융합 폴리뉴클레오티드이며, 식물에 도입되었을 때 베타카로틴 합성 능력이 우수한 재조합 유전자이다. 상기 서열번호 4의 유전자는 상기 서열번호 3의 PAC 유전자의 변이체 stPAC로서, 벼 최적화 고추 파이토엔 합성 효소(phytoene synthase), 벼 최적화 FMDV 유래 2A 서열 및 벼 최적화 박테리아 카로틴 불포화 효소(carotene desaturase)를 암호화하는 융합 폴리뉴클레오티드이며, 식물에 도입되었을 때 베타카로틴 합성 능력이 PAC보다 훨씬 우수한 재조합 유전자이다.
상기 서열번호 3 또는 4로 표시되는 폴리뉴클레오티드 외에도 상기 서열들의 변이체가 본 발명의 범위 내에 포함되는 것으로 본다. 변이체는, 핵산서열은 변화되지만 서열번호 3 또는 4의 핵산서열와 유사한 기능적 특성, 즉 베타카로틴 합성 능력을 갖는 핵산서열로 이루어진 유전자를 의미한다. 구체적으로, 본 발명에 따른 유전자는 서열번호 3 또는 4의 핵산서열과 각각 70% 이상, 80% 이상, 90% 이상 또는 95% 이상의 서열 상동성을 갖는 핵산서열을 포함할 수 있다.
일반적으로 케토-카로티노이드는 도 6의 과정을 통해서 합성된다. 식물체내 본격적인 카로티노이드 생합성 경로는 두 분자의 GGPP (geranylgeranyl pyrophosphate)가 파이토엔 합성효소(phytoene synthase, PSY)에 의해 촉매되는 중합반응을 통해 탄소 40개의 파이토엔(phytoene) 물질을 합성하면서 시작된다. 파이토엔 불포화 효소(phytoene desaturase, PDS)에 의한 두 단계의 불포화 반응 후에 ζ-카로틴(ζ- carotene)이 만들어지고 ζ-카로틴 불포화 효소(ζ-carotene desaturase, ZDS)에 의해 두 단계의 불포화 반응이 더 진행되면 그 결과 뉴로스포렌(neurosporene)를 거쳐 라이코펜(lycopene)이 생성된다. 비환형 카로티노이드로서 최종물질인 라이코펜은 두 종류의 환형 카로틴 물질로 전환되는데, 하나는 라이코펜-β-사이클라제(lycopene-β-cyclase, β-LCY)의 두 단계 작용에 의해 γ-카로틴(γ-carotene)를 거쳐 만들어지는 β-카로틴(β-carotene)이고, 다른 하나는 β-LCY와 라이코펜-ε-사이클라제(lycopene-ε-cyclase, ε-LCY)의 공동작용에 의해 각각 γ-카로틴과 δ-카로틴(δ-carotene)을 거쳐 만들어지는 α-카로틴(α-carotene)이다. β-카로틴의 β-이오논 링 구조의 4,4’ 위치에 케톤기를 부가하는 베타카로틴 케톨레이즈에 의하여 칸탁산틴이 생성되며, β-카로틴의 β-이오논 링 구조의 3,3’ 위치에 하이드록실기를 부가하는 베타카로틴 하이드록실레이즈에 의하여 지아산틴이 생성된다. 그리고 상기 베타카로틴 케톨레이즈와 베타카로틴 하이드록실레이즈가 동시에 작용하면 β-카로틴으로부터 아스탁산틴이 생성된다.
따라서 본 발명에 따르면, 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈를 암호화하는 서열번호 1 또는 2의 재조합 유전자, 그리고 파이토엔 합성효소 및 카로틴 불포화 효소를 암호화하는 서열번호 3 또는 4의 재조합 유전자를 포함하는 재조합 벡터를 이용하여 형질전환 식물 내에서 베타카로틴 하이드록실레이즈, 베타카로틴 케톨레이즈, 파이토엔 합성효소, 카로틴 불포화 효소 등 총 4종의 유전자를 동시에 발현시킴으로써, 베타카로틴 뿐만 아니라 이로부터 아스탁산틴 같은 케토카로티노이드를 생합성 할 수 있는 형질전환 세포 및 식물을 제조할 수 있다.
특히 쌀의 배유조직에는 카로티노이드 생합성의 첫 단계인 파이토엔 합성효소(PSY) 유전자가 발현되지 않음으로써 어떤 종류의 카로티노이드 성분도 생성되지 않는데, 본 발명에 따른 재조합 벡터를 이용하면 벼에서 파이토엔 합성효소, 카로틴 불포화 효소, 베타카로틴 하이드록실레이즈 및 베타카로틴 케톨레이즈를 발현시킴으로써 아스탁산틴 같은 케토카로티노이드 성분이 합성되어 적색을 띄는 쌀이 생성되는 것을 확인하였다.
본 발명에 따른 재조합 벡터는 공지의 식물 형질전환용 벡터를 기본 벡터로 하여 제조될 수 있으며, 일반적인 이원 벡터(binary vector) 또는 코인테그레이션 벡터(cointegration vector)가 사용될 수 있다. 식물 형질전환시 널리 사용되는 바이너리 벡터의 종류는 매우 다양하며, CAMBIA(Center for the Application of Molecular Biology to International Agriculture, GPO Box 3200, Canberra ACT2601, Australia)와 같은 국제센터 및 대학연구소에서 입수 가능하다. 기본적인 바이너리 벡터의 골격은 Ti 플라스미드를 모체로 하여 유전자가 전달되는 좌측 및 우측 경계 부위에 형질전환체 선별 표지 유전자, 프로모터, 전사종결부위 유전자 등을 다양하게 변형시켜 사용할 수 있다.
본 발명의 다른 구체예에서, 상기 벡터는 도 1에 기재된 개열 지도를 가지는 pGlb:BAC, pGlb:stBAC, pGlb:BAC-PAC 또는 pGlb:stBAC-PAC 벡터일 수 있다.
상기 '벡터(vector)'란 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동 가능하게 연결된 DNA 서열을 보유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환 되면 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다.
본 발명에 따른 벡터는 식물 형질전환용 벡터이므로, 당업계에 알려진 다양한 식물체-기능적 프로모터가 사용될 수 있다. 상기 아스탁산틴 같은 케토카로티노이드의 생성을 위하여, 상기 고추 파이토엔 합성 효소, 벼 최적화 FMDV 유래 2A 서열 및 박테리아 카로틴 불포화 효소를 암호화하는 융합 폴리뉴클레오티드, 그리고 베타카로틴 하이드록실레이즈, 벼 최적화 FMDV 유래 2A 서열 및 베타카로틴 케톨레이즈를 암호화하는 융합 폴리뉴클레오티드와 벼 최적화 베타카로틴 하이드록실레이즈, 벼 최적화 FMDV 유래 2A 서열 및 벼 최적화 베타카로틴 케톨레이즈를 암호화하는 융합 폴리뉴클레오티드를 각각 프로모터와 작동가능하게 연결된다.
상기 ‘프로모터’란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미하며, ‘작동 가능하게 연결된다(operably linked)’는 것은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 아울러, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 추가로 포함할 수 있다. 상기 프로모터로는 벼 배유특이발현 글로블린(globulin, Glb), 글루테린(glutelin, GT1, GluA1~3, GluB1~5, GluC 등) 등이 바람직한 프로모터이다.
또한, 상기 선별 표지 유전자는 항생제 저항성 유전자, 제초제 저항성 유전자, 대사관련 유전자, 발광 유전자, GFP(green fluorescence protein) 유전자, GUS(β-glucuronidase) 유전자 등을 포함하지만 그것에 한정되는 것은 아니다. 구체적으로 제초제 바스타 저항성 유전자인 포스피노트리신 아세틸트랜스퍼라제 (PAT 또는 Bar), 항생제 카나마이신 저항성 유전자인 네오마이신 포스포트랜스퍼라제 Ⅱ (NPT Ⅱ) 유전자, 항생제 하이그로마이신 포스포트랜스퍼라제 (HPT) 유전자 등이 사용될 수 있지만, 제초제 저항성 Bar유전자가 바람직하다. 상기의 당 분야에 공지된 분자생물학적 기법인 표준 재조합 DNA 및 분자 클로닝 기술은 다음 문헌에 기재되어 있다(Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed.,Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1989; by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1984; and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience, 1987).
한편, 본 발명의 일 실시예에서는 본 발명의 재조합 벡터를 아그로박테리움 투메파시언스 LBA4404에 형질전환시킨 다음 상기 형질전환된 아그로박테리움에 의해 식물 세포 내로 본 발명의 유전자가 도입되도록 하였다.
따라서, 본 발명은 본 발명의 재조합 벡터로 형질전환된 형질전환 세포를 제공한다.
상기 형질전환 세포는 아그로박테리움속 미생물(Agrobacterium spp.), 대장균(Escherichia coli) 등과 같은 하등 진핵세포, 곤충 세포, 식물 세포, 동물 세포 등을 포함하는 고등 진핵생물 유래의 세포일 수 있으나 이에 제한되지는 않으며, 바람직하게는 아그로박테리움속 미생물 또는 식물세포일 수 있다. 상기 아그로박테리움속 미생물은 예를 들어, 아그로박테리움 투메파시엔스 (Agrobacterium tumefacience) 또는 아그로박테리움 라이조게네스(Agrobacterium rhizogenes) 일 수 있다.
형질전환 식물 세포의 제조는 벡터를 식물에 도입하는 당분야에 공지된 형질전환 방법을 사용할 수 있다. 예를 들면, 이에 한정되지는 않으나 아그로박테리움 속(Agrobacterium spp.) 미생물을 이용한 형질전환, 입자 총 충격법 (particle gun bombardment), 실리콘 탄화물 위스커(Silicon carbide whiskers), 초음파 처리(sonication), 전기천공법(electroporation) 및 PEG(Polyethylenglyco l)에 의한 침전법을 사용할 수 있다. 아그로박테리움-매개 형질전환법을 이용할 수 있으며, 문헌에 예시된 방법을 사용할 수 있다(Horsch et al., Science 227:1229-1231, 1985). 예를 들면 벼에 대한 아그로박테리움-매개 형질전환법은 당업계의 문헌 등에 공지되어 있다(An et al. EMBO J., 4:227-288, 1985). 상기 형질전환 식물 세포는 통상적인 방법에 따라 배양되어 액체 배양물, 캘러스, 원형질 배양물이 될 수 있으며, 분화되어 식물의 조직 또는 식물이 될 수 있다. 즉, 본 발명의 재조합 벡터가 도입된 형질전환 식물 세포들은 당업계에 공지된 표준 기술을 사용하여 캘러스 유도, 발근 및 토양 순화와 같은 과정을 거쳐 식물체로 재분화시킬 수 있으며, 꺾꽂이, 접붙이기 등과 같은 무성번식방법 및 종자를 이용하여 유성번식방법에 의해 생산할 수 있다. 식물 세포의 배양은 식물의 일부를 모체로부터 분리하여 적당한 조건 아래에서 무균적으로 배양하여 생육시키는 것으로 조직 절편의 액체 배양, 조직 절편의 캘러스 배양, 원형질체 배양 등 당업자에게 공지된 어떠한 방식의 것에 의할 수 있으며, 그 배양 조건 및 방법은 당업자에게 공지된 조건 및 방법에 의해 수행될 수 있다. 상기 배양된 식물 세포를 식물로 분화시키는 것은 캘러스, 원형질체 형태의 배양된 식물 세포를 적당한 조건 아래에서 분화를 유도하여 식물의 조직 또는 식물로 분화시키는 것으로 그 분화 조건 및 방법은 당업자에게 공지된 조건 및 방법에 의해 수행될 수 있다.
따라서, 본 발명은 또한, 상기 벡터가 도입되고 아스탁산틴 같은 케토카로티노이드 성분을 합성하는 형질전환 식물을 제공한다.
본 발명의 한 구체예에서, 상기 형질전환 식물은 벼, 옥수수 또는 보리 등을 포함하는 단자엽 식물일 수 있으며, 그 중에서도 특히 벼 글로불린 프로모터에 의해 종자 특이 발현이 되는 단자엽 식물일 수 있다. 본 발명의 일 실시예에서는 각각 서열번호 1과 3의 폴리뉴클레오티드 또는 서열번호 2와 3의 폴리뉴클레오티드를 포함하는 재조합 벡터 pGlb:BAC-PAC 또는 pGlb:stBAC-PAC를 아그로박테리움에 형질전환시킨 뒤 이를 이용하여 벼를 형질전환시키고, 형질전환된 세포를 선별하여 이를 개체로 분화시켜 형질전환 벼를 얻었다. 형질전환 벼에서 수확된 쌀은 배유색이 핑크색을 나타내었으며, 아스탁산틴 같은 케토카로티노이드가 함유된 것을 확인하였다. 따라서 본 발명은 또한 상기 벡터가 도입되어 아스탁산틴 같은 케토카로티노이드를 합성하는 형질전환 쌀을 제공한다. 일반쌀의 경우 호분층을 제거한 도정미는 카로티노이드 성분을 전혀 함유하지 않지만, 본 발명에 따르면 호분층을 제거한 후에도 아스탁산틴 같은 케토카로티노이드 생성에 의해 분홍색을 띄는 도정미를 생산할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1〉베타카로틴을 아스탁산틴 성분으로 변경시키는데 필요한 Bch Bkt 유전자 분리 및 다중발현 유전자 BAC 재조합
한국산 고추 녹광 품종(Capsicum annuum cv. NocKwang)에서 베타카로틴 하이드록실레이즈 (beta-carotene hydroxylase, BCH) 유전자의 클로닝을 위해 고추의 적색 과실(red fruit)로부터 total RNA를 분리하여 mRNA를 합성한 후, 고추 Bch 유전자 특이 프라이머 세트, 즉 5'-ATGGCTGCTGAAATTTCAAT-3' 염기서열의 Bch-Fw 프라이머와 5'-TCATAATCTCAACAAACTTT-3' 염기서열의 Bch-Rv 프라이머를 사용하여 역전사 효소 유전자 증폭 반응 (RT-PCR; reverse transcriptase-polymerase chain reaction) 으로 증폭하여 고추 Bch 유전자(서열번호5)를 분리하였다. 증폭된 PCR 산물을 PCR 클로닝 전용 벡터인 pGEM-T easy (Promega)에 클로닝하였으며, 이를 pGEM-CaBch1 벡터라고 하였다.
아스타잔틴을 생성하는 미세조류로부터 Bkt 유전자의 클로닝을 위해 인하대(이철균 교수)로부터 제공받은 미세조류 (Haematococcus pluvialis strain UTEX 16) 배양 시료 약 1g을 액체질소를 이용하여 막자사발로 분쇄하여 2 ml 튜브에 옮긴 다음 각 튜브에 500 ㎕의 RNA 추출 완충액 (50mM sodium acetate pH 5.5, 150mM LiCl, 5mM EDTA, 0.5% SDS)과 500㎕ 페놀을 넣고 혼합하였다. 혼합액을 65℃에서 10분 동안 처리한 후 상온에서 15분 동안 교반기 (rotary shaker)를 이용해 섞어주었다. 4℃ 에서 원심분리(10000rpm, 10분)한 후 상등액 층을 조심스럽게 새 튜브에 옮기고, 클로로포름 500㎕를 첨가하여 잘 섞어준 후 다시 원심분리 하여 상등액을 취하였다. 여기에 0.6배 부피의 8M 리튬 크로라이드 (LiCl)를 첨가한 후 -20℃에 2시간 이상 보관하였다. 4℃, 12,000rpm에서 20분간 원심분리 후 RNA 침전물을 4M LiCl와 80% 에탄올로 각각 한차례씩 씻어준 후 수득한 최종 RNA 침전물을 50㎕의 증류수에 녹였다. RNA 용출액은 자외선 흡광도 분석기 (UV spectrophotometer)를 이용하여 A260/A280를 측정하여 정량한 후 이용하였다.
이를 주형으로 이미 보고된 베타카로틴 C-4 oxygenase cDNA (NCBI accession number X86782) 염기서열에 근거하여 제작된 프라이머 세트 (5‘-ATGCAGCTAGCAGCGAC-3’)와 (5‘-CTAGGCAGGAACCAGAC-3’)를 사용하여 RT-PCR(reverse transcriptase-polymerase chain reaction)의 방법으로 본 특허에 사용된 Bkt 유전자(서열번호 6)를 분리하였다. 이 때 RT-PCR 반응은 추출한 전체 RNA 약 2㎍ 주형으로 50uM 올리고 dT(oligo dT) 프라이머를 이용해 55℃에서 20분, 99℃에서 5분 처리 후 얼음에서 식힌 후 여기에 다시 RNase H 를 1㎕를 첨가하고 37℃에서 20분간 처리하여 cDNA를 합성(10X RT buffer, 25mM MgCl2 , 0.1M DTT, RNase OUT, SuperScriptTM RT)하였다. 합성된 cDNA를 주형으로 상기 프라이머 각각 10pmol를 사용하여 10x Taq 중합효소 버퍼, 250uM MgCl2 , 100uM dNTP, 1 unit Ex-Taq 중합효소(Takara)를 총 20㎕가 되도록 섞은 후, 94℃ 3분; 94℃ 30초, 60℃ 30초, 72℃ 1분의 30 사이클; 75℃ 5분의 조건으로 수행하였다.
증폭된 PCR 산물을 PCR 클로닝 전용 벡터인 pGEM-T easy (Promega)에 클로닝하였으며, 이를 pGEM-HpBkt 벡터라고 하였다. 벡터에 삽입한 후 플라스미드 DNA를 추출하여 염기서열을 결정한 후 분석하였다. 클로닝된 Bkt cDNA는 총 990 bp로서 번역 개시 코돈인 메티오닌부터 번역 stop 코돈까지 총 330개의 아미노산으로 이루어진 ORF를 encoding하고 있었다. Bkt cDNA의 염기서열은 이미 보고된 베타카로틴 C-4 oxygenase (NCBI accession number X86782) cDNA의 염기서열과 97.5%, 그리고 그 아미노산 서열과 97.6% 상동성을 보였다. 한편, 또 다른 베타카로틴 C-4 oxygenase (NCBI accession number DQ086233)의 염기서열과는 1 bp를 제외한 모든 염기서열이 일치하였으며, 아미노산 서열은 100% 일치하였다.
실시예 2〉베타카로틴을 아스탁산틴 성분으로 전환시키는데 필요한 다중발현 유전자 BAC 재조합
베타카로틴을 기질로 사용하여 아스탁산틴 성분 생성을 유도하는데 필요한 Bch와 Bkt 유전자의 다중발현 유전자(BAC)의 재조합을 위해 우선적으로 Bch 유전자 말단에 특정 제한효소인 HindIII와 EcoRI 인식부위를 부가하기 위하여 pGEM-CaBch1 벡터를 주형으로 프라이머 세트, 즉 5'-ccgaagcttATGGCTGCTGAAATTTC-3' 염기서열의 5H-Bch 프라이머와 5'-ccggaattcTAATCTCTTCAAACTTT-3' 염기서열의 3RI-Bch 프라이머를 이용한 PCR을 실시한 후 증폭된 DNA 단편을 제한효소 HindIII와 EcoRI로 절단하고 동일한 제한효소로 처리된 플라스미드 pBS-st2A의 st2A 배열 5' 상위에 클로닝하여 pBS-Bch-st2A를 제작하였다.
이 때 식물 유래 Bch 유전자는 카로티노이드 생합성 장소(엽록체 및 전분체를 포함하는 plastid 등)로 BCH 효소 단백질을 이동시키는데 필요한 이동 신호인 transit peptide(Tp)를 내재하고 있지만 미세조류 유래 Bkt 유전자는 부가적인 transit peptide 연결이 필요하다. 그러므로 벼 알비씨에스(ribulose biphophate carboxylase/oxygenase small subunit: rbcS) 유전자의 transit peptide 150bp 부위(rbcS-Tp)를 Bkt 유전자의 5' 상위에 연결시키기 위해 벼 rbcS 유전자를 보유한 플라스미드 pSK-RTG 벡터를 주형으로 Tp 배열 양쪽말단에 특정 제한효소인 PstI와 NcoI 인식부위가 부가된 프라이머 세트, 즉 5'-ccgctgcagATGGCCCCCTCCGTGAT-3' 염기서열의 5P-Tp 프라이머와 5'-ccgccatggCCTGCATGCACCTGAT-3' 염기서열의 3Nc-Tp 프라이머를 이용한 PCR을 실시한 후 증폭된 160bp 크기의 DNA 단편을 제한효소 PstI와 NcoI로 절단하고 동일한 제한효소로 처리된 플라스미드 pGEM-T easy 벡터에 연결하여 pGEM-Tp를 제작하였다. Tp 배열 하위에 Bkt 유전자 연결을 위해 Bkt 유전자 양 말단에 특정 제한효소인 NcoI과 ApaI 인식부위를 부가하기 위하여 pGEM-HpBkt 벡터를 주형으로 프라이머 세트, 즉 5'-cttccATGGAGCTAGCAGCGACA-3' 염기서열의 5Nc-Bkt 프라이머와 5'-CTTgggccCTAGGCAGGAACCA-3' 염기서열의 3Ap-bKT 프라이머를 이용한 PCR을 실시한 후 증폭된 1kb DNA 단편을 제한효소 NcoI과 ApaI로 절단하고 동일한 제한효소로 처리된 플라스미드 pGEM-Tp의 Tp 배열 3' 하위에 클로닝하여 pGEM-Tp-Bkt를 제작하였다. Tp-Bkt 유전자를 Bch-st2A 유전자의 3' 하위에 coding frame이 맞도록 삽입하기 위하여 TpBktI 유전자 양 말단에 특정 제한효소인 SmaI과 XbaI 인식부위를 부가하기 위한 프라이머 세트, 즉 5'-ccgcccgggcATGCAGCTAGCAGCGAC-3' 염기서열의 5Sm-TpBkt 프라이머와 5'-ccgtctagaCTAGGCAGGAACCAGAC-3' 염기서열의 3Xb-TpBkt 프라이머를 이용하고 pGEM-Tp-Bkt 벡터를 주형으로 PCR을 실시한 후 증폭된1.14 kb DNA 단편을 제한효소 SmaI과 XbaI로 절단하고 동일한 제한효소로 처리된 플라스미드 pBS-Bch-st2A의 Bch-st2A 배열 3' 하위에 클로닝하여 pBS-Bsy-st2A-Tp-Bkt, 즉 pBS-BAC을 제작하였다. 이 때 최종 연결된 BAC 유전자의 전체 염기서열은 2,157bp(서열번호1)였다.
실시예 3〉벼 codon usage 를 고려하여 최적화시킨 신규 유전자( stBAC ) 합성
Bch와 Bkt 유전자의 다중발현 재조합 유전자(BAC)의 염기서열을 public domain(http://www.kazusa.or.jp/)에 공개되어 있는 벼 유전자 코돈 선호표 (codon usage table) 정보를 참고로 변경시켰다. 그 과정에서 향후 벼 형질전환용 운반체에 추가 도입 되어서는 안 되는 제한효소인 XhoI, ClaI이 생성되지 않도록 하고, 염기서열 상동성이 Bch와 76.6%인 신규한 유전자 stBch (948bp), 염기서열 상동성이 Bkt와 78%인 신규한 유전자 stBkt (990bp)가 포함되도록 핵산서열을 디자인하여, 2,151bp(서열번호 2)의 stBAC 유전자를 얻었다. 또한, 운반체 제작 과정에 사용될 게이트웨이 방법의 클로닝을 용이하게 하기 위하여 stBAC 유전자 염기서열 양 말단에 각각 attL1 (100bp)과 attL2 (100bp)을 추가한 attL-stBAC (2,351bp) 염기서열을 최종 디자인한 후 유전자 합성 회사 (독일의 Entelechon사)에 의뢰하여 DNA 단편으로 합성하여 구매하였다. 최종 합성된 유전자 attL-stBAC은 pCR4TOPO 운반체에 서브클로닝하여 pCR4TOPO-stBAC을 제작하였다.)
실시예 4〉재조합 벡터 pGlb : BAC pGlb : stBAC 제작
다중발현 유전자 BAC을 포함하는 벼 배유 특이적 발현을 유도하는 벼 형질전환용 플라스미드 제작을 위해 우선, BAC 유전자의 양 말단에 박테리오파지가 박테리아에 감염될 때 박테리아 측 특이적 재조합 핵산서열 부위(attB1과 attB2)의 일부(각 12bp 씩)를 포함하면서 BAC 유전자를 특이적으로 증폭할 수 있도록 설계된 프라이머 세트, 즉 5'- AAAAAGCAGGCTATGGCTGCTGAAATTTC-3' 염기서열의 BAC-B1 프라이머와 5'-AGAAAGCTGGGTCTAGGCAGGAACCAGAC-3' 염기서열의 BAC-B2 프라이머를 제작하고, 이를 사용한 유전자 증폭 PCR 반응을 수행하여 2,157bp의 BAC 유전자를 증폭하였다.
상기 준비된 BAC PCR 산물내의 BAC유전자(2,157bp)를 최종 벼 형질전환 운반체로 이동시키기 위해 박테리오파지가 박테리아에 감염될 때 박테리아 측 특이 재조합 핵산서열 부위 전체(각 29bp씩)를 포함하는 프라이머 세트, 즉 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3' 염기서열의 attB1 프라이머와 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3' 염기서열의 attB2 프라이머를 사용하여 재 PCR 하였다. 재 PCR된 산물로부터 박테리오파지가 박테리아에 감염될 때 박테리오파지 측 특이 재조합 핵산서열 부위(attP1과 attP2)를 포함하는 pDONR221(Invitrogen 제품) 벡터와 BP 재조합 반응을 거쳐 각각 pENTR-BAC 벡터를 제작하였다.
상기 pENTR-BAC과 pCR4TOPO-stBAC 벡터 내의BAC 및 stBAC 유전자를 최종 벼 형질전환 운반체로 이동시키기 위해 미생물 선발을 위한 스펙티노마이신(spectinomycin) 저항성 유전자를 포함하고 있는 super-binary 플라스미드 pSB11 벡터를 백본으로 벼 배유특이발현 글로블린(globulin, Glb) 프로모터와 감자 프로테아제 인히비터(protease inhibitor II, PinII)의 터미네이터가 내재되어 있는 일종의 게이트웨이 운반체인 pMJ-103 벡터와 다시 LR 재조합 반응을 거쳐 최종 벼 형질전환용 발현벡터 pGlb:BAC과pGlb:stBAC (도 1 참조)을 제작하였다. 이 때 pMJ-103 벡터는 식물체 선발인자로 35S 프로모터와 연결된 제초제 저항성 Bar유전자를 포함하였다.
실시예 5〉재조합 벡터 pGlb : BAC - PAC pGlb : stBAC - PAC 제작
벼 배유 특이적 발현이 유도되도록 프로모터-유전자-터미네이터로 연결된 카세트를 포함하는 벡터 2종(pGlb:BAC과 pGlb:stBAC)으로부터 카세트 부분만 증폭, 분리하여 베타카로틴 생성이 기 확인된 재조합유전자 PAC 발현 운반체(pGlb:PAC)에 삽입시키기 위해 우선, pGlb:PAC 운반체를 제한효소 XhoI과 ClaI으로 절단하여 준비해두고, 삽입될 BAC과 stBAC 발현 카세트는 pGlb:BAC과pGlb:stBAC 으로부터 글로블린 프로모터부터 PinII 터미네이터 부분 전체를 증폭할 수 있도록 카세트 양 말단에 제한효소 XhoI과 ClaI 사이트가 추가된 PCR 프라이머를 제작하여 증폭한 후, XhoI과 ClaI으로 절단하고 준비된 벡터와 연결효소반응(ligation)으로 연결하여 최종적으로 2개의 카세트가 하나의 T-DNA 벡터에 연결된 복합다중 유전자 운반체 2종(pGlb:BAC-PAC 및 pGlb:stBAC-PAC)을 제작하였다(도 1).
상기 벡터 2종을 벼 형질전환을 위한 아그로박테리움에 도입하기 위하여 통상적인 tri-parental mating 방법을 이용하였다. 우선, vir gene을 포함하는 super-binary 플라스미드 pSB1이 기 내재 되어있는 Agrobacterium tumefaciens LBA4404 균주를 테트라사이크린(tetracyclin, 10mg/L)이 함유된 고체 AB배지(AB-t)에서 2~3일 동안 배양(28℃)하고, 2일 후 conjugal helper palsmid pRK2013을 포함하는 대장균 HB101 균주와 pGlb:PAC을 포함하는 대장균 DH-5α 균주를 각각 카나마이신(kanamycin, 50mg/L)과 스펙티노마이신(50mg/L)이 함유된 고체 LB배지에서 하룻밤 배양(37℃)하여 총 3종의 미생물 콜로니(colony)를 준비하였다. 상기 3종의 콜로니를 Nutrient Agar plate(Difco 제품)에서 미생물 접종용 루프를 이용하여 섞어 하룻밤 배양(28℃)한 후 혼합 배양된 미생물을 스펙티노마이신(50mg/L)과 테트라사이크린(10mg/L)이 포함된 고체 AB배지(AB-st)에 액체배지(또는 물)로 10배 희석하여 단일 세포 분리(single cell isolation)를 위한 streak 접종하여 3일 동안 배양(28℃)하였다. AB-st에서 생성된 단일 콜로니를 한 번 더 고체 AB-st에 streak 하여 3일 동안 배양(28℃)하여 재 생성된 단일 콜로니를 최종 선발한다. 선발된 Agrobacterium을 스펙티노마이신(50mg/L)과 테트라사이크린(10mg/L)이 포함된 액체 YEP배지(YEP-st)에 접종하여 2일 동안 진탕배양(28℃)한 후 플라스미드를 분리하고 제한효소 패턴을 분석함으로써 pGlb:B-PAC 및 pGlb:stB-PAC 벡터의 Agrobacterium내로의 형질전환을 재확인한 후 형질전환된 아그로박테리움 투메파시언스 LBA4404 pGlb:BAC-PAC 및 pGlb:stBAC-PAC 을 벼 형질전환에 사용하였다.
실시예 6〉 아그로박테리움을 이용한 벼( 화영 품종) 형질전환체 확보
벼 형질전환을 위하여 완숙종자를 이용하였다. 먼저 벼 종자의 종피를 제거하여 70% 에탄올에 1분간 침지한 후 멸균수로 2~3회 세척하고 2% 소듐 하이포클로라이드(시판 ‘락스’) 용액에 20분간 교반하면서 종자 표면을 살균하였다. 이 후 종자를 멸균수로 4~5회 세척하고 멸균 종이 필터로 건조시켜 캘러스 유도배지(N6 기본배지, 500mg/L 프롤린, 500mg/L 글루타민, 3% 수크로오즈, 2mg/L 2,4-D, 0.25% 파이타겔, pH5.8)에 종자를 치상하였다. 치상한 종자를 28℃ 암조건에서 4~5주 배양시키고 생성된 캘러스에서 식물체로 재 분화 할 수 있는 캘러스(부정배 캘러스, embryogenic callus) 만을 선별하여 형질전환 캘러스로 사용하였다. pGlb:stPAC으로 형질전환된 아그로박테리움 투메파시언스 LBA4404를 30시간 배양 후 균액의 농도를 AAM 배지(100 mM 아세토시린곤 포함)로 OD600=1.0~1.2로 희석하여 상기 부정배 캘러스와 15분간 방치하였다. 캘러스를 멸균된 filter paper로 건조시킨 후 공동배양배지(N6 기본배지, 500mg/L 프롤린, 500mg/L 글루타민, 3% 수크로오즈, 2mg/L 2,4-D, 100 mM 아세토시린곤, 0.25% 파이타겔(phytagel))에서 24℃ 암조건, 2~3일간 공동배양(co-culture)하였다.
표면에 잔류하는 아그로박테리움을 제거하기 위하여, 공동배양한 캘러스를 세포탁심(cefotaxime) 250 mg/L가 첨가된 AAM 배지로 세척한 후 멸균된 여지에 올려 표면의 수분을 제거한 뒤 선별배지(N6 기본배지, 500mg/L 프롤린, 500mg/L 글루타민, 3% 수크로오즈, 2mg/L 2,4-D, 0.25% 파이타겔, 6mg/L 포스피노드리신, 250mg/L 세포탁심, pH5.8)에 옮겨서 형질전환된 캘러스만을 유도되도록 하였다. 2주마다 새로운 선별배지로 계대배양하고 5주 경과 후 선발된 캘러스를 식물체 재분화배지(MS 기본배지, 3% 수크로오즈, 0.5mg/L NAA, 2mg/L 키네틴, 250mg/L 세포탁심, 3mg/L 포스피노드리신(PPT), 0.3% 파이타겔, pH5.8)에서 배양·식물체 유도 후에 MS 기본배지에서 기내 순화하였다.
각 단계에서 사용된 배지의 조건을 정리하면 표1과 같다.
품종 캘러스유도 전배양 아그로박테리움
공동배양
캘러스선별 식물체유도 기내순화
종자 N6
기본배지
2,4-D
2mg/L
N6
기본배지
2,4-D
2mg/L
N6기본배지
2,4-D 2mg/L
아세토시린곤
100mM
N6기본배지
2,4-D
2mg/L
PPT 6mg/L
MS기본배지
NAA 0.5mg/L
키네틴 2mg/L
PPT 3mg/L
MS
기본배지
배양기간 4~5주 2~3일 2~3일 5주 2~4주 1~2주
항생제
조건
없음 세포탁심
250mg/L
세포탁심
250mg/L
세포탁심
250mg/L
일정 크기로 성장한 개체들은 배양병에서 꺼내서 뿌리를 물로 잘 씻어 준 후 수도용 상토로 채워진 포트에 이식하여 온실에서 생육하였다. 이런 방법을 통하여 확보된 벼 형질전환체는 pGlb:BAC-PAC (134개체) 및 pGlb:stBAC-PAC (260개체) 였다(도 2).
실시예 7〉 써던블랏 분석에 의한 유전자 도입 및 카피수 확인 분석
형질전환된 벼 식물체 잎 조직을 채취한 후 게놈 DNA를 분리 정제하고 DNA 용출액은 자외선 흡광도 분석기를 이용하여 A260/A280을 측정하여 정량하였다. 형질전환체 내에 유전자의 삽입을 확인하기 위해 분리한 게놈 DNA 를 각 라인 당 20 ㎍씩 EcoRI 제한효소로 절단하여 아가로즈 젤에 전기영동 한 후, 32P로 표지된 1.3kb 크기의 Mar 유전자를 프로브로 이용하여 써던블랏 분석을 수행하였다. 이 때, 운반체의 양말단에 위치하는 Mar 유전자 프로브 시 두 개의 Mar 시그널 밴드(공통적으로 보이는 left board에 위치하는 1.3kb Mar 시그널 밴드와 삽입 위치에 따라 미지의 벼 게놈 DNA의 EcoRI 부위에서 절단되어 다른 크기로 생성된 right board에 위치하는 Mar 시그널 밴드를 포함)가 보일 때 원 카피 유전자 삽입을 확인하는 방법이고 더불어 도입 유전자의 재배열(rearrangement)이 발생 유무도 확인할 수 있는 방법이다.
그 결과, 1카피에서 최대 10카피에 이르는 확실한 유전자 도입을 확인하였다(도 3).
실시예 8〉 아스탁산틴 케토 -카로티노이드 생성에 의한 쌀 배유색 관찰
상기 벼 형질전환을 통하여 확보된 BAC-PAC 및 stBAC-PAC 도입 벼 재분화 식물체의 T1 세대 종자와 pGlb:PAC도입에 의해 베타카로틴이 생성된 벼(KR 10-0905219)의 T5세대 종자의 도정미의 배유색을 비교하였다. 이 때 성숙 건조 종자로 수확된 각 라인당 종자를 현미기(TR-200 Electromotion rice husker, Kett 제품)를 이용해 종피를 제거한 후 백미기(Pearlest polisher, Kett 제품)를 이용해 호분층이 제거(1분 동안)된 도정미끼리 비교하였다. 그 결과, 기존 베타카로틴 생성 쌀(PAC rice, 특허 등록 제 10-0905219)의 황금색 배유에서 추가 유전자 2종 발현에 의해 적색을 띄는 아스탁산틴 등 케토-카로티노이드 생성 결과로 세계 최초로 핑크색 쌀을 확인하였다(도 4).
실시예 9〉 아스탁산틴 케토 -카로티노이드 물질 생성 분석
형질전환 벼에서 수확된 T2 세대 쌀 1g으로부터 Plant Biotechnology Journal(2010) 8, 928-938에 명시된 방법에 따라 카로티노이드 성분을 추출하여 HPLC 분석한 결과, 기 개발된 베타카로틴 생성 쌀(PAC rice, T6 세대)에 추가적으로 2개의 유전자가 더 도입된 쌀(BAC-PAC 또는 stBAC-PAC ice)에서 기 개발된 베타카로틴 생성 쌀 보다 베타카로틴 성분이 줄어들고 대신 일반 쌀 뿐만 아니라 대부분의 식물에서는 거의 생성되지 않는 적색의 기능성 카로티노이드인 2종의 케토카로티노이드(아스탁산틴과 칸탁산틴)의 생성을 확인하였다(도 5). 이 때 대조군으로 사용된 쌀 종자는 현미기(TR-200 Electromotion rice husker, kett 제품)를 이용해 종피만 제거한 현미를 사용하여 소량의 카로티노이드 성분이 검출되었으나, 일반쌀을 백미기(pearleast polisher, kett 제품)를 이용해 호분층을 제거(1분 동안)한 도정미의 경우 하얀색을 띄었으며, 물질 분석 결과 어떤 종류의 카로티노이드도 검출되지 않은데 반해, 형질전환체의 핑크색 도정미에서는 케토-카로티노이드 성분이 검출되었다(표 2).
(단위: ug/g dry weight)
성분
시료
라이코펜 알파-카로틴 베타-카로틴 루테인 지아산틴 안써라산틴 칸타산틴 아스탁산틴 전체 카로티노이드
Control(화영)도정미 0 0 0 0 0 0 0 0 0
Control(화영) 0 0 0.14 0.16 0.15 0.08 0 0 0.52
Control(낙동) 0 0 0.18 0.13 0.15 0.08 0 0 0.53
PAC4-2-1-2-1-1 0 0.14 0.51 0.27 0.20 0.08 0 0 1.20
PAC4-2-1-2-1-2 0 0.16 0.60 0.28 0.20 0.08 0 0 1.31
BAC-PAC 2-1 0.17 0.09 0.13 0.14 0.19 0.10 0.00 0.05 0.87
BAC-PAC 2-1 0.17 0.10 0.13 0.15 0.18 0.10 0.00 0.05 0.88
BAC-PAC 7-2 0.17 0.10 0.16 0.13 0.21 0.10 0.00 0.04 0.92
BAC-PAC 7-4 0.14 0.10 0.16 0.14 0.20 0.10 0.00 0.02 0.87
BAC-PAC 8-2 0.13 0.09 0.14 0.13 0.19 0.10 0.00 0.04 0.83
BAC-PAC 8-4 0.20 0.10 0.18 0.15 0.19 0.10 0.01 0.03 0.97
BAC-PAC 15-2 0.13 0.10 0.17 0.14 0.17 0.10 0.00 0.01 0.82
BAC-PAC 15-9 0.12 0.10 0.16 0.14 0.17 0.10 0.00 0.01 0.81
BAC-PAC 16-1 0.18 0.09 0.15 0.16 0.20 0.11 0.00 0.08 0.98
BAC-PAC 16-4 0.14 0.09 0.14 0.15 0.20 0.11 0.00 0.06 0.89
BAC-PAC 18-1 0.13 0.10 0.15 0.14 0.19 0.10 0.00 0.03 0.84
BAC-PAC 18-2 0.14 0.09 0.15 0.16 0.22 0.10 0.01 0.06 0.94
BAC-PAC 20-3 0.18 0.10 0.16 0.15 0.21 0.11 0.01 0.05 0.96
BAC-PAC 20-11 0.13 0.09 0.14 0.18 0.20 0.11 0.00 0.05 0.91
BAC-PAC 26-2 0.15 0.09 0.14 0.12 0.17 0.10 0.00 0.04 0.82
BAC-PAC 26-4 0.12 0.09 0.14 0.12 0.17 0.10 0.00 0.03 0.78
BAC-PAC 35-10 0.15 0.10 0.17 0.17 0.15 0.11 0.00 0.03 0.88
BAC-PAC 35-11 0.14 0.12 0.21 0.24 0.17 0.10 0.00 0.01 1.00
stBAC-PAC 142-5-9 0.16 0.09 0.12 0.11 0.16 0.10 0.00 0.06 0.81
stBAC-PAC 142-5-14 0.21 0.09 0.12 0.13 0.16 0.10 0.00 0.05 0.87
stBAC-PAC 146-6-7 0.16 0.09 0.12 0.11 0.16 0.10 0.00 0.06 0.82
stBAC-PAC 146-6-11 0.17 0.09 0.12 0.13 0.17 0.10 0.00 0.07 0.85
stBAC-PAC 152-3 0.24 0.09 0.12 0.10 0.14 0.09 0.00 0.02 0.80
stBAC-PAC 152-12 0.23 0.09 0.12 0.10 0.15 0.09 0.00 0.03 0.81
stBAC-PAC 153-1 0.19 0.09 0.12 0.09 0.15 0.10 0.00 0.03 0.76
stBAC-PAC 153-2 0.17 0.09 0.11 0.10 0.14 0.09 0.00 0.02 0.73
stBAC-PAC 154-5 0.16 0.10 0.12 0.09 0.15 0.09 0.00 0.01 0.72
stBAC-PAC 154-6 0.19 0.09 0.11 0.09 0.15 0.09 0.00 0.03 0.77
stBAC-PAC 157-1 0.19 0.09 0.12 0.09 0.14 0.09 0.00 0.01 0.73
stBAC-PAC 157-7 0.15 0.09 0.11 0.09 0.14 0.09 0.00 0.01 0.68
stBAC-PAC 158-2 0.31 0.09 0.14 0.10 0.15 0.09 0.00 0.02 0.91
stBAC-PAC 158-4 0.21 0.09 0.11 0.10 0.15 0.09 0.00 0.01 0.77
stBAC-PAC 165-7 0.25 0.09 0.12 0.12 0.15 0.10 0.00 0.03 0.86
stBAC-PAC 165-9 0.15 0.09 0.11 0.09 0.14 0.09 0.00 0.01 0.68
stBAC-PAC 170-1 0.16 0.09 0.11 0.09 0.14 0.09 0.00 0.01 0.70
stBAC-PAC 170-10 0.17 0.09 0.11 0.09 0.13 0.09 0.00 0.00 0.69
stBAC-PAC 203-9 0.26 0.10 0.13 0.10 0.15 0.10 0.00 0.02 0.85
stBAC-PAC 203-12 0.27 0.10 0.12 0.11 0.15 0.09 0.00 0.02 0.85
stBAC-PAC 208-9 0.32 0.10 0.11 0.08 0.12 0.09 0.00 0.02 0.85
stBAC-PAC 208-10 0.26 0.09 0.11 0.08 0.12 0.10 0.00 0.02 0.79
stBAC-PAC 209-11 0.25 0.10 0.11 0.10 0.12 0.10 0.00 0.03 0.81
stBAC-PAC 209-14 0.24 0.10 0.11 0.09 0.12 0.10 0.00 0.03 0.78
stBAC-PAC 210-3 0.24 0.10 0.13 0.11 0.13 0.10 0.00 0.04 0.84
stBAC-PAC 210-9 0.20 0.09 0.11 0.10 0.12 0.09 0.00 0.03 0.75
<110> REPUBLIIC OF KOREA <120> Polynucleotide for biosynthesis of astaxanthinand transformed plant using the same <130> P110748 <160> 8 <170> KopatentIn 2.0 <210> 1 <211> 2157 <212> DNA <213> Artificial Sequence <220> <223> BAC <400> 1 atggctgctg aaatttcaat ctccgctagc tcccgtgcca tttgtctcca gcgcaacccc 60 tttcctgctc caaaatactt tgcaactgcc ctgccacttc tcttcttctc tcctttaact 120 tgtaatctcg acgcaatttt gcggtctcgg agaaagccta ggttggctgc ttgctttgtg 180 ctgaaggatg acaaattgta tactgcacaa agtggaaaac aaagcgatac tgaagcaata 240 ggtgatgaga ttgaagtaga gactaatgag gagaagagtt tagctgtcag gctggccgaa 300 aaatttgcga ggaagaagtc agagaggttt acttatcttg tagctgcggt aatgtccagt 360 ttggggatta cttctatggc ggttatttca gtttattaca gattttcgtg gcaaatggag 420 ggtggagaaa tgcctttttc tgaaatgttt tgtacattcg ctctcgcctt tggcgctgct 480 ataggaatgg agtactgggc gagatgggcg catagagcac tatggcatgc ttctttgtgg 540 catatgcacg agtcacacca tagaccaaga gaaggacctt tcgagctgaa cgatattttt 600 gccataatca atgctgttcc agctatagct cttctttcat tcggtttcaa ccataaaggc 660 ctcatccctg gactatgttt cggcgctgga ttagggatta cagtatttgg gatggcctac 720 atgttcgttc acgatggatt agttcacaag agattccccg tgggacccat tgccaacgta 780 ccttattttc agagagtagc cgcagcacat cagcttcatc actcggacaa atttgatggg 840 gtcccatatg gcttgttcct aggacctaag gaattggaag aagtaggggt acttgaagag 900 ttggaaaagg aagtcaaccg aagaattaaa agtttgaaga gattagaatt cctgcagctc 960 ctcaacttcg acctcctcaa gctcgccggc gacgtcgaga gcaacgacgg cccgggcatg 1020 gccccctccg tgatggcgtc gtcggccacc accgtcgctc ccttccaggg gctcaagtcc 1080 accgccggca tgcccgtcgc ccgccgctcc ggcaactcca gcttcggcaa cgtcagcaat 1140 ggcggcagga tcaggtgcat gcaggccatg cagctagcag cgacagtaat gttggagcag 1200 cttaccggaa gcgctgaggc actcaaggag aaggagaagg aggttgcagg cagctctgac 1260 gtgttgcgta catgggcgac ccagtactcg cttccgtcag aagagtcaga cgcggcccgc 1320 ccgggactga agaatgccta caagccacca ccttccgaca caaagggcat cacgatggcg 1380 ctagctgtca tcggctcttg ggccgcagtg ttcctccacg ccatttttca aatcaagctt 1440 ccgacctcct tggaccagct gcactggctg cccgtgtcag atgccacagc tcagttggtt 1500 ggcggtagca gcagtctgat gcacatcgtc gtcgtattct ttgtcctgga gttcctgtac 1560 acaggccttt ttatcaccac gcatgatgct atgcatggca ccatcgccat gagaaacagg 1620 cagcttaatg acttcttggg cagagtatgc atctccttgt atgcctggtt tgattacaac 1680 atgctgcacc gcaagcattg ggagcaccac aatcacactg gtgaggtggg caaggaccct 1740 gacttccaca ggggaaaccc cggcattgtg ccctggtttg ccagcttcat gtccagctac 1800 atgtcgatgt ggcagtttgc gcgcctcgca tggtggacgg tggtcatgca gctgctgggt 1860 gcgccgatgg cgaacctgct ggtgttcatg gcggccgcgc ccatcctgtc cgccttccgc 1920 ttgttctact ttggcacgta catgccccac aagcctgagc ctagcgctgc gtcaggctcc 1980 ccaccagtcg tcatgaactg gtggaagtcg cgcactagcc aggcgtccga cctggtcagc 2040 tttctgacct gctaccactt cgacctgcac tgggagcacc accgctggcc cttcgccccc 2100 tggtgggagc tgcccaactg ccgccgtctg tctggccgag gtctggttcc tgcctag 2157 <210> 2 <211> 2151 <212> DNA <213> Artificial Sequence <220> <223> stBAC <400> 2 atggctgccg agatcagcat ctcagcaagc tccagagcca tctgcctgca gaggaaccca 60 tttcccgcgc cgaagtactt cgcaaccgct cctccactgc tcttcttcag tccgctaacg 120 tgcaacctcg acgcaatcct ccgaagccgt aggaagccac gtcttgcggc ttgcttcgtg 180 ctcaaggacg acaagctcta caccgcgcaa tcagggaagc agagtgacac cgaagcaatc 240 ggggatgaga tcgaggtcga gactaacgag gagaagtccc tggctgtgag gttggccgag 300 aagttcgcca ggaagaagag cgaacgcttc acctaccttg tagctgccgt catgagcagt 360 cttggcatca cctccatggc tgtcatctcc gtctactacc gcttctcgtg gcaaatggag 420 ggaggggaaa tgccgttcag cgagatgttc tgcacctttg ccttggcctt tggagcagct 480 atcggcatgg agtactgggc cagatgggca catagggcac tctggcatgc ttcgctctgg 540 cacatgcacg agtctcacca cagaccaagg gaaggaccgt tcgagctgaa cgacatcttc 600 gccatcatca acgcggtacc tgcgatagcc ttgctctcgt tcgggttcaa ccacaagggc 660 ctcatacctg gtctctgctt tggcgctgga ttgggcatca ccgtgtttgg catggcctac 720 atgttcgtgc acgatggctt ggtccacaag cggtttccgg tgggtccgat agccaacgtc 780 ccgtacttcc agagggttgc tgcagcgcat cagcttcacc acagcgacaa gttcgacgga 840 gtaccatacg gactgttcct gggtccaaag gagctggaag aagttggagt gctggaagag 900 ctcgaaaagg aggtcaaccg caggatcaag agcctgctta ggctcctgca gctcctcaac 960 ttcgacctcc tcaagctcgc cggcgacgtc gagagcaacg acggcccggg catggccccc 1020 tccgtgatgg cgtcgtcggc caccaccgtc gctcccttcc aggggctcaa gtccaccgcc 1080 ggcatgcccg tcgcccgccg ctccggcaac tccagcttcg gcaacgtcag caatggcggc 1140 aggatcaggt gcatgcaggc catgcaactt gccgcgactg tgatgctgga gcaactcact 1200 gggagcgcgg aagccctcaa ggagaaggag aaggaggtgg caggtagctc cgacgttctc 1260 aggacttggg ccacacagta cagcttgccc tcggaggaaa gcgatgcagc tcgtcccggg 1320 ttgaagaacg cctacaaacc ccctccatcc gacacgaagg gcatcaccat ggcactcgca 1380 gtgattggct cttgggctgc ggtcttcttg cacgcgatct tccagatcaa gctaccgaca 1440 tccctagacc agctccattg gctacctgtg tcggatgcaa cagcgcaact cgtcggaggg 1500 tcatcctcgc tgatgcacat cgtggtggtg ttcttcgtcc tggagttcct ctacactggc 1560 ctcttcatca ccacgcatga cgccatgcat ggcacgatcg ccatgaggaa ccgacagctg 1620 aacgacttcc ttgggagagt gtgcatcagc ctctatgcct ggttcgacta caacatgctg 1680 caccgaaagc actgggaaca ccacaaccac acaggcgagg taggcaaaga cccggacttc 1740 caccgtggta accctggtat cgtgccctgg ttcgcctcgt tcatgtcatc gtacatgagc 1800 atgtggcagt tcgctcgatt agcgtggtgg acagtggtga tgcagctcct tggtgctccg 1860 atggcaaacc tgctcgtgtt catggctgcc gctccgattc tgagcgcttt caggctgttc 1920 tacttcggga cgtacatgcc ccataagcct gaacctagtg cagcttccgg atctcctcca 1980 gtggtgatga actggtggaa gtcacgcacg tcacaagcaa gcgaccttgt ctccttcctc 2040 acgtgctacc actttgacct gcactgggaa catcaccgct ggccatttgc gccgtggtgg 2100 gaactcccca actgtaggcg tttgtcaggc agaggtctcg tgccagcctg a 2151 <210> 3 <211> 2952 <212> DNA <213> Artificial Sequence <220> <223> PAC <400> 3 atgtctgttg ccttgttatg ggttgtttct ccttgtgacg tctcaaacgg gacaggattc 60 ttggtatccg ttcgtgaggg aaaccggatt tttgattcgt cggggcgtag gaatttggcg 120 tgcaatgaga gaatcaagag aggaggtgga aaacaaaggt ggagttttgg ttcttacttg 180 ggaggagcac aaactggaag tggacggaaa ttttctgtac gttctgctat cgtggctact 240 ccggctggag aaatgacgat gtcatcagaa cggatggtat atgatgtggt tttgaggcag 300 gcagccttgg tgaagagaca gctgagatcg accgatgagt tagatgtgaa gaaggatata 360 cctattccgg ggactttggg cttgttgagt gaagcatatg ataggtgtag tgaagtatgt 420 gcagagtacg caaagacgtt ttacttagga acgatgctaa tgactccgga gagaagaaag 480 gctatctggg caatatacgt atggtgcagg agaacagacg aacttgttga tggtccgaat 540 gcatcacaca ttactccggc ggccttagat aggtgggaag acaggctaga agatgttttc 600 agtggacggc catttgacat gctcgatgct gctttgtccg acacagtttc caaatttcca 660 gttgatattc agccattcag agatatgatt gaaggaatgc gtatggactt gaggaagtca 720 agatacagaa actttgacga actataccta tattgttatt acgttgctgg tacggttggg 780 ttgatgagtg ttccaattat gggcatcgca cctgaatcaa aggcaacaac ggagagcgta 840 tataatgctg ctttggcttt ggggatcgca aatcagctga ccaacatact tagagatgtt 900 ggagaagatg ccagaagagg aagagtctat ttgcctcaag atgaattagc acaggcaggt 960 ctatccgacg aagacatatt tgctggaaga gtgaccgata aatggagaat cttcatgaag 1020 aaacaaattc agagggcaag aaagttcttt gacgaggcag agaaaggagt gaccgaattg 1080 agcgcagcta gtagatggcc tgtgttggca tctctgctgt tgtaccgcag gatactggac 1140 gagatcgaag ccaatgacta caacaacttc acaaagagag cttatgtgag caaaccaaag 1200 aagttgattg cattacctat tgcatatgca aaatctcttg tgccttctac aagaacactg 1260 cagctcctca acttcgacct cctcaagctc gccggcgacg tcgagagcaa cgacggcccg 1320 ggcatggccc cctccgtgat ggcgtcgtcg gccaccaccg tcgctccctt ccaggggctc 1380 aagtccaccg ccggcatgcc cgtcgcccgc cgctccggca actccagctt cggcaacgtc 1440 agcaatggcg gcaggatcag gtgcatgcag gccatggaac caactacggt aattggtgca 1500 ggcttcggtg gcctggcact ggcaattcgt ctacaagctg cggggatccc cgtcttactg 1560 cttgaacaac gtgataaacc cggcggtcgg gcttatgtct acgaggatca ggggtttacc 1620 tttgatgcag gcccgacggt tatcaccgat cccagtgcca ttgaagaact gtttgcactg 1680 gcaggaaaac agttaaaaga gtatgtcgaa ctgctgccgg ttacgccgtt ttaccgcctg 1740 tgttgggagt cagggaaggt ctttaattac gataacgatc aaacccggct cgaagcgcag 1800 attcagcagt ttaatccccg cgatgtcgaa ggttatcgtc agtttctgga ctattcacgc 1860 gcggtgttta aagaaggcta tctaaagctc ggtactgtcc cttttttatc gttcagagac 1920 atgcttcgcg ccgcacctca actggcgaaa ctgcaggcat ggagaagcgt ttacagtaag 1980 gttgccagtt acatcgaaga tgaacatctg cgccaggcgt tttctttcca ctcgctgttg 2040 gtgggcggca atcccttcgc cacctcatcc atttatacgt tgatacacgc gctggagcgt 2100 gagtggggcg tctggtttcc gcgtggcggc accggcgcat tagttcaggg gatgataaag 2160 ctgtttcagg atctgggtgg cgaagtcgtg ttaaacgcca gagtcagcca tatggaaacg 2220 acaggaaaca agattgaagc cgtgcattta gaggacggtc gcaggttcct gacgcaagcc 2280 gtcgcgtcaa atgcagatgt ggttcatacc tatcgcgacc tgttaagcca gcaccctgcc 2340 gcggttaagc agtccaacaa actgcagact aagcgcatga gtaactctct gtttgtgctc 2400 tattttggtt tgaatcacca tcatgatcag ctcgcgcatc acacggtttg tttcggcccg 2460 cgttaccgcg agctgattga cgaaattttt aatcatgatg gcctcgcaga ggacttctca 2520 ctttatctgc acgcgccctg tgtcacggat tcgtcactgg cgcctgaagg ttgcggcagt 2580 tactatgtgt tggcgccggt gccgcattta ggcaccgcga acctcgactg gacggttgag 2640 gggccaaaac tacgcgaccg tatttttgcg taccttgagc agcattacat gcctggctta 2700 cggagtcagc tggtcacgca ccggatgttt acgccgtttg attttcgcga ccagcttaat 2760 gcctatcatg gctcagcctt ttctgtggag cccgttctta cccagagcgc ctggtttcgg 2820 ccgcataacc gcgataaaac cattactaat ctctacctgg tcggcgcagg cacgcatccc 2880 ggcgcaggca ttcctggcgt catcggctcg gcaaaagcga cagcaggttt gatgctggag 2940 gatctgattt ga 2952 <210> 4 <211> 2952 <212> DNA <213> Artificial Sequence <220> <223> stPAC <400> 4 atgtctgttg ccttgttatg ggttgtttct ccttgtgacg tctcaaacgg gacaggattc 60 ttggtatccg ttcgtgaggg aaaccggatt tttgattcgt cggggcgtag gaatttggcg 120 tgcaatgaga gaatcaagag aggaggtgga aaacaaaggt ggagttttgg ttcttacttg 180 ggaggagcac aaactggaag tggacggaaa ttttctgtac gttctgctat cgtggctact 240 ccggctggag aaatgacgat gtcatcagaa cggatggtat atgatgtggt tttgaggcag 300 gcagccttgg tgaagagaca gctgagatcg accgatgagt tagatgtgaa gaaggatata 360 cctattccgg ggactttggg cttgttgagt gaagcatatg ataggtgtag tgaagtatgt 420 gcagagtacg caaagacgtt ttacttagga acgatgctaa tgactccgga gagaagaaag 480 gctatctggg caatatacgt atggtgcagg agaacagacg aacttgttga tggtccgaat 540 gcatcacaca ttactccggc ggccttagat aggtgggaag acaggctaga agatgttttc 600 agtggacggc catttgacat gctcgatgct gctttgtccg acacagtttc caaatttcca 660 gttgatattc agccattcag agatatgatt gaaggaatgc gtatggactt gaggaagtca 720 agatacagaa actttgacga actataccta tattgttatt acgttgctgg tacggttggg 780 ttgatgagtg ttccaattat gggcatcgca cctgaatcaa aggcaacaac ggagagcgta 840 tataatgctg ctttggcttt ggggatcgca aatcagctga ccaacatact tagagatgtt 900 ggagaagatg ccagaagagg aagagtctat ttgcctcaag atgaattagc acaggcaggt 960 ctatccgacg aagacatatt tgctggaaga gtgaccgata aatggagaat cttcatgaag 1020 aaacaaattc agagggcaag aaagttcttt gacgaggcag agaaaggagt gaccgaattg 1080 agcgcagcta gtagatggcc tgtgttggca tctctgctgt tgtaccgcag gatactggac 1140 gagatcgaag ccaatgacta caacaacttc acaaagagag cttatgtgag caaaccaaag 1200 aagttgattg cattacctat tgcatatgca aaatctcttg tgccttctac aagaacactg 1260 cagctcctca acttcgacct cctcaagctc gccggcgacg tcgagagcaa cgacggcccg 1320 ggcatggccc cctccgtgat ggcgtcgtcg gccaccaccg tcgctccctt ccaggggctc 1380 aagtccaccg ccggcatgcc cgtcgcccgc cgctccggca actccagctt cggcaacgtc 1440 agcaatggcg gcaggatcag gtgcatgcag gccatggaac caactacggt aattggtgca 1500 ggcttcggtg gcctggcact ggcaattcgt ctacaagctg cggggatccc cgtcttactg 1560 cttgaacaac gtgataaacc cggcggtcgg gcttatgtct acgaggatca ggggtttacc 1620 tttgatgcag gcccgacggt tatcaccgat cccagtgcca ttgaagaact gtttgcactg 1680 gcaggaaaac agttaaaaga gtatgtcgaa ctgctgccgg ttacgccgtt ttaccgcctg 1740 tgttgggagt cagggaaggt ctttaattac gataacgatc aaacccggct cgaagcgcag 1800 attcagcagt ttaatccccg cgatgtcgaa ggttatcgtc agtttctgga ctattcacgc 1860 gcggtgttta aagaaggcta tctaaagctc ggtactgtcc cttttttatc gttcagagac 1920 atgcttcgcg ccgcacctca actggcgaaa ctgcaggcat ggagaagcgt ttacagtaag 1980 gttgccagtt acatcgaaga tgaacatctg cgccaggcgt tttctttcca ctcgctgttg 2040 gtgggcggca atcccttcgc cacctcatcc atttatacgt tgatacacgc gctggagcgt 2100 gagtggggcg tctggtttcc gcgtggcggc accggcgcat tagttcaggg gatgataaag 2160 ctgtttcagg atctgggtgg cgaagtcgtg ttaaacgcca gagtcagcca tatggaaacg 2220 acaggaaaca agattgaagc cgtgcattta gaggacggtc gcaggttcct gacgcaagcc 2280 gtcgcgtcaa atgcagatgt ggttcatacc tatcgcgacc tgttaagcca gcaccctgcc 2340 gcggttaagc agtccaacaa actgcagact aagcgcatga gtaactctct gtttgtgctc 2400 tattttggtt tgaatcacca tcatgatcag ctcgcgcatc acacggtttg tttcggcccg 2460 cgttaccgcg agctgattga cgaaattttt aatcatgatg gcctcgcaga ggacttctca 2520 ctttatctgc acgcgccctg tgtcacggat tcgtcactgg cgcctgaagg ttgcggcagt 2580 tactatgtgt tggcgccggt gccgcattta ggcaccgcga acctcgactg gacggttgag 2640 gggccaaaac tacgcgaccg tatttttgcg taccttgagc agcattacat gcctggctta 2700 cggagtcagc tggtcacgca ccggatgttt acgccgtttg attttcgcga ccagcttaat 2760 gcctatcatg gctcagcctt ttctgtggag cccgttctta cccagagcgc ctggtttcgg 2820 ccgcataacc gcgataaaac cattactaat ctctacctgg tcggcgcagg cacgcatccc 2880 ggcgcaggca ttcctggcgt catcggctcg gcaaaagcga cagcaggttt gatgctggag 2940 gatctgattt ga 2952 <210> 5 <211> 948 <212> DNA <213> Capsicum annuum <400> 5 atggctgctg aaatttcaat ctccgctagc tcccgtgcca tttgtctcca gcgcaacccc 60 tttcctgctc caaaatactt tgcaactgcc ccgccacttc tcttcttctc tcctttaact 120 tgtaatctcg acgcaatttt gcggtctcgg agaaagccta ggttggctgc ttgctttgtg 180 ctgaaggatg acaaattgta tactgcacaa agtggaaaac aaagcgatac tgaagcaata 240 ggtgatgaga ttgaagtaga gactaatgag gagaagagtt tagctgtcag gctggccgaa 300 aaatttgcga ggaagaagtc agagaggttt acttatcttg tagctgcggt aatgtccagt 360 ttggggatta cttctatggc ggttatttca gtttattaca gattttcgtg gcaaatggag 420 ggtggagaaa tgcctttttc tgaaatgttt tgtacattcg ctctcgcctt tggcgctgct 480 ataggaatgg agtactgggc gagatgggcg catagagcac tatggcatgc ttctttgtgg 540 catatgcacg agtcacacca tagaccaaga gaaggacctt tcgagctgaa cgatattttt 600 gccataatca atgctgttcc agctatagct cttctttcat tcggtttcaa ccataaaggc 660 ctcatccctg gactatgttt cggcgctgga ttagggatta cagtatttgg gatggcctac 720 atgttcgttc acgatggatt agttcacaag agattccccg tgggacccat tgccaacgta 780 ccttattttc agagagtagc tgcagcacat cagcttcatc actcggacaa atttgatggg 840 gtcccatatg gcttgttcct aggacctaag gaattggaag aagtaggggt acttgaagag 900 ttggaaaagg aagtcaaccg aagaattaaa agtttgttga gattatga 948 <210> 6 <211> 990 <212> DNA <213> Haematococcus pluvialis <400> 6 atgcagctag cagcgacagt aatgttggag cagcttaccg gaagcgctga ggcactcaag 60 gagaaggaga aggaggttgc aggcagctct gacgtgttgc gtacatgggc gacccagtac 120 tcgcttccgt cagaagagtc agacgcggcc cgcccgggac tgaagaatgc ctacaagcca 180 ccaccttccg acacaaaggg catcacgatg gcgctagctg tcatcggctc ttgggccgca 240 gtgttcctcc acgccatttt tcaaatcaag cttccgacct ccttggacca gctgcactgg 300 ctgcccgtgt cagatgccac agctcagttg gttggcggta gcagcagtct gatgcacatc 360 gtcgtcgtat tctttgtcct ggagttcctg tacacaggcc tttttatcac cacgcatgat 420 gctatgcatg gcaccatcgc catgagaaac aggcagctta atgacttctt gggcagagta 480 tgcatctcct tgtatgcctg gtttgattac aacatgctgc accgcaagca ttgggagcac 540 cacaatcaca ctggtgaggt gggcaaggac cctgacttcc acaggggaaa ccccggcatt 600 gtgccctggt ttgccagctt catgtccagc tacatgtcga tgtggcagtt tgcgcgcctc 660 gcatggtgga cggtggtcat gcagctgctg ggtgcgccga tggcgaacct gctggtgttc 720 atggcggccg cgcccatcct gtccgccttc cgcttgttct actttggcac gtacatgccc 780 cacaagcctg agcctagcgc tgcgtcaggc tccccaccag tcgtcatgaa ctggtggaag 840 tcgcgcacta gccaggcgtc cgacctggtc agctttctga cctgctacca cttcgacctg 900 cactgggagc accaccgctg gcccttcgcc ccctggtggg agctgcccaa ctgccgccgt 960 ctgtctggcc gaggtctggt tcctgcctag 990 <210> 7 <211> 948 <212> DNA <213> Artificial Sequence <220> <223> stBch <400> 7 atggctgccg agatcagcat ctcagcaagc tccagagcca tctgcctgca gaggaaccca 60 tttcccgcgc cgaagtactt cgcaaccgct cctccactgc tcttcttcag tccgctaacg 120 tgcaacctcg acgcaatcct ccgaagccgt aggaagccac gtcttgcggc ttgcttcgtg 180 ctcaaggacg acaagctcta caccgcgcaa tcagggaagc agagtgacac cgaagcaatc 240 ggggatgaga tcgaggtcga gactaacgag gagaagtccc tggctgtgag gttggccgag 300 aagttcgcca ggaagaagag cgaacgcttc acctaccttg tagctgccgt catgagcagt 360 cttggcatca cctccatggc tgtcatctcc gtctactacc gcttctcgtg gcaaatggag 420 ggaggggaaa tgccgttcag cgagatgttc tgcacctttg ccttggcctt tggagcagct 480 atcggcatgg agtactgggc cagatgggca catagggcac tctggcatgc ttcgctctgg 540 cacatgcacg agtctcacca cagaccaagg gaaggaccgt tcgagctgaa cgacatcttc 600 gccatcatca acgcggtacc tgcgatagcc ttgctctcgt tcgggttcaa ccacaagggc 660 ctcatacctg gtctctgctt tggcgctgga ttgggcatca ccgtgtttgg catggcctac 720 atgttcgtgc acgatggctt ggtccacaag cggtttccgg tgggtccgat agccaacgtc 780 ccgtacttcc agagggttgc tgcagcgcat cagcttcacc acagcgacaa gttcgacgga 840 gtaccatacg gactgttcct gggtccaaag gagctggaag aagttggagt gctggaagag 900 ctcgaaaagg aggtcaaccg caggatcaag agcctgctta ggctctga 948 <210> 8 <211> 990 <212> DNA <213> Artificial Sequence <220> <223> stBkt <400> 8 atgcaacttg ccgcgactgt gatgctggag caactcactg ggagcgcgga agccctcaag 60 gagaaggaga aggaggtggc aggtagctcc gacgttctca ggacttgggc cacacagtac 120 agcttgccct cggaggaaag cgatgcagct cgtcccgggt tgaagaacgc ctacaaaccc 180 cctccatccg acacgaaggg catcaccatg gcactcgcag tgattggctc ttgggctgcg 240 gtcttcttgc acgcgatctt ccagatcaag ctaccgacat ccctagacca gctccattgg 300 ctacctgtgt cggatgcaac agcgcaactc gtcggagggt catcctcgct gatgcacatc 360 gtggtggtgt tcttcgtcct ggagttcctc tacactggcc tcttcatcac cacgcatgac 420 gccatgcatg gcacgatcgc catgaggaac cgacagctga acgacttcct tgggagagtg 480 tgcatcagcc tctatgcctg gttcgactac aacatgctgc accgaaagca ctgggaacac 540 cacaaccaca caggcgaggt aggcaaagac ccggacttcc accgtggtaa ccctggtatc 600 gtgccctggt tcgcctcgtt catgtcatcg tacatgagca tgtggcagtt cgctcgatta 660 gcgtggtgga cagtggtgat gcagctcctt ggtgctccga tggcaaacct gctcgtgttc 720 atggctgccg ctccgattct gagcgctttc aggctgttct acttcgggac gtacatgccc 780 cataagcctg aacctagtgc agcttccgga tctcctccag tggtgatgaa ctggtggaag 840 tcacgcacgt cacaagcaag cgaccttgtc tccttcctca cgtgctacca ctttgacctg 900 cactgggaac atcaccgctg gccatttgcg ccgtggtggg aactccccaa ctgtaggcgt 960 ttgtcaggca gaggtctcgt gccagcctga 990

Claims (9)

  1. 서열번호 1 또는 2의 핵산서열로 이루어진 폴리뉴클레오티드.
  2. 제1항의 폴리뉴클레오티드를 포함하는 재조합 벡터.
  3. 제2항에 있어서,
    상기 재조합 벡터는 서열번호 3 또는 4의 핵산서열로 이루어진 폴리뉴클레오티드를 추가로 포함하는 재조합 벡터.
  4. 제3항에 있어서,
    상기 벡터는 도 1에 기재된 개열 지도를 가지는 pGlb:BAC, pGlb:stBAC, pGlb:BAC-PAC 또는 pGlb:stBAC-PAC벡터인 재조합 벡터
  5. 제2항 내지 제4항 중 어느 한 항의 벡터로 형질전환된 형질전환 세포.
  6. 제5항에 있어서, 상기 형질전환 세포는 아그로박테리움속 미생물 또는 식물세포인 형질전환 세포.
  7. 제2항 내지 제4항 중 어느 한 항의 벡터가 도입된 형질전환 식물.
  8. 제7항에 있어서, 상기 형질전환 식물은 벼, 옥수수 또는 보리인 형질전환 식물.
  9. 제1항의 폴리뉴클레오티드가 도입된 형질전환 쌀.
KR1020110097049A 2011-09-26 2011-09-26 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물 KR101229885B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110097049A KR101229885B1 (ko) 2011-09-26 2011-09-26 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110097049A KR101229885B1 (ko) 2011-09-26 2011-09-26 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물

Publications (1)

Publication Number Publication Date
KR101229885B1 true KR101229885B1 (ko) 2013-02-08

Family

ID=47898895

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110097049A KR101229885B1 (ko) 2011-09-26 2011-09-26 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물

Country Status (1)

Country Link
KR (1) KR101229885B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108165576A (zh) * 2017-12-31 2018-06-15 青岛袁米农业科技有限公司 一种改良水稻籽抗氧化能力的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905219B1 (ko) 2007-08-30 2009-07-01 대한민국 자가 절단 2a배열을 포함하는 베타카로틴 생합성용 융합폴리뉴클레오티드 및 이를 이용한 형질전환 식물체
KR20100032474A (ko) * 2008-09-18 2010-03-26 한국생명공학연구원 아스타잔틴을 생합성하는 형질전환 식물체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905219B1 (ko) 2007-08-30 2009-07-01 대한민국 자가 절단 2a배열을 포함하는 베타카로틴 생합성용 융합폴리뉴클레오티드 및 이를 이용한 형질전환 식물체
KR20100032474A (ko) * 2008-09-18 2010-03-26 한국생명공학연구원 아스타잔틴을 생합성하는 형질전환 식물체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1(PLANT BIOTECHNOLOGY,2009) *
논문2(PNAS, 2008) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108165576A (zh) * 2017-12-31 2018-06-15 青岛袁米农业科技有限公司 一种改良水稻籽抗氧化能力的方法

Similar Documents

Publication Publication Date Title
RU2611188C2 (ru) Штаммы agrobacterium, модифицированные для увеличения частоты трансформации растений
EP1709179B1 (en) Transgenic plants with reduced level of saturated fatty acid and methods for making them
US8557585B2 (en) Fusion polynucleotide for biosynthesis of beta-carotene using bicistronic gene expression and method for producing beta-carotene using the same
US20080276331A1 (en) Enhancement of Beta-Carotene Content in Plants
Jayashree et al. Over-expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.)
Sankari et al. Identifying a carotenoid cleavage dioxygenase 4a gene and its efficient agrobacterium-mediated genetic transformation in Bixa orellana L.
JP4727043B2 (ja) 植物の農学的価値および栄養学的価値を改善するための方法
Ling et al. Cloning and functional analysis of lycopene ɛ-cyclase (IbLCYe) gene from sweetpotato, Ipomoea batatas (L.) Lam.
Enriquez et al. Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value
Zaborowska et al. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application.
KR100905219B1 (ko) 자가 절단 2a배열을 포함하는 베타카로틴 생합성용 융합폴리뉴클레오티드 및 이를 이용한 형질전환 식물체
KR101259682B1 (ko) 미세조류 유래 베타카로틴 케톨레이제(ketolase)유전자 및 이를 이용한 케토형 카로티노이드 생산과 동시에 베타카로틴 증산하는 형질전환 식물체 제조 방법
KR101229885B1 (ko) 아스탁산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물
Jang et al. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene
KR20180046379A (ko) 식물체 내 폴리시스트로닉 발현 유도 운반체
KR101229887B1 (ko) 베타카로틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물
KR101424123B1 (ko) 캡산틴을 생성하는 형질전환 컬러쌀 및 이의 제조방법
KR101303802B1 (ko) 지아산틴 생합성용 폴리뉴클레오티드 및 이를 이용한 형질전환 식물
KR100987013B1 (ko) 내재 라이보좀 진입 부위 배열을 포함하는 베타카로틴생합성 유도 다중 발현 재조합 유전자 피아이씨, 이를포함하는 발현 벡터 및 그 형질전환 세포
KR100756889B1 (ko) 아그로박테리움 라이조제네스를 이용한 선별 마커가 결손된형질전환 감자 모상근
Liu et al. Production of species-specific anthocyanins through an inducible system in plant hairy roots
CN114149993B (zh) 一种调控植物可溶性糖含量的lncRNA及其应用
Wei et al. Efficient Agrobacterium tumefaciens (Smith & Towns.) Conn-mediated transformation of Lilium ‘Sorbonne’with genes encoding anthocyanin regulators
KR20160059104A (ko) 벼 유래의 종자무기성분함량을 증진시키는 OsNAS3 유전자가 과발현된 항생제 마커프리 형질전환 벼
KR100529005B1 (ko) 찰콘 신쎄이즈 안티센스 유전자를 발현하는 형질전환 나리식물체 및 그의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant