CN113857415A - Rivet installing device of automatic current starter assembling machine - Google Patents

Rivet installing device of automatic current starter assembling machine Download PDF

Info

Publication number
CN113857415A
CN113857415A CN202111116508.4A CN202111116508A CN113857415A CN 113857415 A CN113857415 A CN 113857415A CN 202111116508 A CN202111116508 A CN 202111116508A CN 113857415 A CN113857415 A CN 113857415A
Authority
CN
China
Prior art keywords
rivet
rotary disk
starter
cylinder
push plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111116508.4A
Other languages
Chinese (zh)
Other versions
CN113857415B (en
Inventor
赵晓东
赵云文
李俭
李燕
闫宸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Tianyin Electromechanical Co Ltd
Original Assignee
Changshu Tianyin Electromechanical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Tianyin Electromechanical Co Ltd filed Critical Changshu Tianyin Electromechanical Co Ltd
Priority to CN202111116508.4A priority Critical patent/CN113857415B/en
Publication of CN113857415A publication Critical patent/CN113857415A/en
Application granted granted Critical
Publication of CN113857415B publication Critical patent/CN113857415B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/30Particular elements, e.g. supports; Suspension equipment specially adapted for portable riveters
    • B21J15/32Devices for inserting or holding rivets in position with or without feeding arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/38Accessories for use in connection with riveting, e.g. pliers for upsetting; Hand tools for riveting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A rivet installing device of an automatic assembling machine of a current starter comprises a workbench, wherein a left rotary disk driving mechanism is arranged on one side of the workbench, which faces downwards, and a right rotary disk driving mechanism is arranged on one side of the workbench, which faces downwards; the left rotary disk starter base bearing mechanism is arranged around the edge part of one upward side of the left rotary disk; the right rotary disk starter base bearing mechanism is arranged at intervals around the edge part of one upward side of the right rotary disk; the rivet loading device comprises a rivet extraction release mechanism, the rivet extraction release mechanism comprises a first rivet mounting device and a second rivet mounting device, and the first rivet mounting device and the second rivet mounting device respectively comprise a rivet introduction block fixing frame, a rivet introduction block, a rivet push plate actuating action cylinder, a rivet clamp claw horizontal displacement action cylinder mounting support, a rivet clamp claw horizontal displacement action cylinder, a rivet clamp claw lifting action cylinder, a rivet clamp claw opening and closing action cylinder and a pair of rivet clamp claw. The advantages are that: the requirement of pressing and riveting the rivet at the subsequent station is met.

Description

Rivet installing device of automatic current starter assembling machine
Technical Field
The invention belongs to the technical field of automatic assembling machinery of a motor starter of a refrigeration compressor, and particularly relates to a rivet installing device of an automatic assembling machine of a current starter.
Background
Typical examples of the aforementioned electric current starter are a hammer type electric current starter applied to a refrigeration compressor, such as CN2733039Y (a totally enclosed hammer starter for a R600a working fluid refrigeration compressor) and CN202906801U (a hammer starter with improved sealing performance), and more typical examples are "structurally improved hammer type electric current starter" recommended by CN 206481237U.
As known in the art, the heavy hammer type current starter mainly comprises an excitation coil, an armature, a movable contact, a fixed contact and the like, wherein the coil is connected in series in a working winding of the motor during operation, and the fixed contact is connected in series in a starting winding of the motor. At the moment of switching on the power supply, the motor cannot rotate, the current flowing through the working winding is very large (usually reaching several times of rated current, such as 3 to 5 times), the current generates enough magnetic force through the coil to overcome gravity, attract the armature to move upwards, close the movable contact and the static contact, and then switch on the winding circuit to start the motor. When the rotating speed of the motor reaches the rated revolution, the current is reduced, and when the current flowing through the electromagnetic coil of the starter is reduced and the generated magnetic force is not enough to attract the armature, the armature falls under the action of gravity, so that the movable contact and the static contact are separated, and the purposes of cutting off a starting winding circuit and enabling the motor to enter a normal working state are achieved.
It can be basically determined by reading the above mentioned specification of "structurally modified heavy hammer type current starter" recommended by CN206481237U in combination with the common general knowledge: the base is provided with an NTC (negative temperature coefficient thermistor) connecting pin, a duplex inserting piece, a moving contact mechanism (comprising an armature), a coil, a first pin, a first static contact piece and a second static contact piece, the cover plate matched with the base is provided with an NTC (negative temperature coefficient thermistor), and the cover plate and the base are riveted with each other through at least one pair of rivets, and the functions, the respective positions, the mutual electrical connection relation and the like of the above parts are described in CN206481237U in great detail, so that the applicant does not describe the connecting pin.
The prior art has two types of assembly methods for the current starter: firstly, each worker completes the assembly of each part, namely all parts, in an independent mode all the time; secondly, a plurality of workers assemble all the parts in a beat type line production mode, namely a team cooperation mode, wherein each worker only needs to assemble one part, and although the speed or the efficiency of the latter is higher than that of the former, the common characteristic of the two modes is that the assembly is completed manually. The following disadvantages exist with manual assembly: firstly, the base and the cover plate of the current starter are molded by plastic machinery under the help of a mold, the molding efficiency is extremely high, and the manual assembly is relatively slow, so that the base and the cover plate are greatly mismatched; secondly, as labor resources are increasingly deficient and labor cost, namely labor wage cost, is continuously increased, the current starter is not beneficial to the cheapization of products, and even the due market advantage is lost; thirdly, because of manual assembly, not only the workers are in a high tension state, but also the workers are in an excessive fatigue state due to high labor intensity; and fourthly, because manual assembly is adopted, the possibility of wrong assembly is avoided, and the quality of assembly is different due to different experiences, responsibility, emotions, even physical and psychological conditions of workers, so that the quality of products is influenced, even scrapping is caused.
Among all the parts of the current starter, the NTC terminal pin and the duplex blade may be classified into a first type if they are classified by factors such as the general shape of the parts and the elasticity of the parts; the first pin, the first contact (i.e. the first static contact) and the second contact (i.e. the second static contact) are classified into a second category; the rivets are classified as the third type, so that if the automatic assembly machine with a reasonable structure is used for automatically assembling the first and third types of components after the automatic equipment in the front passage finishes assembling the first type and the moving contact mechanism, and finally the NTC is assembled, the technical problem can be solved without any problem.
The rivet is used for combining or connecting the cover and the starter base into a whole, and in the actual automatic assembly process, the rivet is firstly required to downwards pass through the starter base rivet hole which is preset on the starter base and corresponds to the rivet hole on the cover from the rivet hole which is preset on the cover, and then the rivet is punched by the rivet punching mechanism at the subsequent station, so that the aim of combining the cover and the starter base into an inseparable current starter component which can be put into practical use by the rivet is achieved. However, since the rivets present a particular shape with a small diameter and a relatively long length, they must be extracted reliably at the extraction station and released accurately at the release station by means of a constructively rational device, whereas no reference is disclosed in the previously published foreign and non-patent documents, against which the solution to be described below is based.
Disclosure of Invention
The object of the invention is to provide a rivet setting device for an automatic assembly machine for electric current starters, which facilitates reliable automatic removal of rivets to be set and accurate release of the automatically removed rivets to a cover and extension thereof below a starter base, so that the rivet setting requirements of the subsequent press-riveting step are met.
The task of the invention is accomplished by the following, a rivet installing device of a current starter automatic assembling machine, the current starter automatic assembling machine comprises a workbench, a left rotary disk driving mechanism is arranged on the downward side of the left end of the workbench, a right rotary disk driving mechanism is arranged on the downward side of the right end of the workbench, a left power output part of the left rotary disk driving mechanism extends to the upper part of the workbench and is fixedly connected with the central position of a left rotary disk positioned above the left end of the workbench, and a right power output part of the right rotary disk driving mechanism also extends to the upper part of the workbench and is fixedly connected with the central position of a right rotary disk positioned above the right end of the workbench; the left rotary disk starter base bearing mechanisms are arranged in a group and are arranged at intervals around the edge part of one upward side of the left rotary disk; the right rotary disk starter base bearing mechanisms are arranged in a group and are arranged at intervals around the edge part of one upward side of the right rotary disk; the rivet loading device comprises a rivet extracting and releasing mechanism, the rivet extracting and releasing mechanism comprises a first rivet installing device I and a second rivet installing device II, the structure and the action rhythm of the second rivet installing device II are the same as those of the first rivet installing device I, the first rivet installing device I comprises a rivet introducing block fixing frame, a rivet introducing block, a rivet push plate actuating acting cylinder, a rivet clamping claw horizontal displacement acting cylinder installing support, a rivet clamping claw horizontal displacement acting cylinder, a rivet clamping claw lifting acting cylinder, a rivet clamping claw opening and closing acting cylinder and a pair of rivet clamping claws, the lower end of the rivet introducing block fixing frame is fixed with the upper part of the rivet introducing block fixing frame seat, the lower part of the rivet introducing block fixing frame seat is fixed with the workbench, and the rivet introducing block faces towards one end of the rivet introducing block fixing frame and the upper end of the rivet introducing block fixing frame back to one side of the right rotary solid disc starter base bearing mechanism A rivet push plate sliding groove is formed and fixed, one end of the rivet leading-in block towards the rivet leading-in block fixing frame is divided into a rivet leading-in block fixing wall which is positioned at one side of the rivet push plate sliding groove and is used for fixing with the rivet leading-in block fixing frame and a rivet leading-in wall which is positioned at the other side of the rivet push plate sliding groove by the rivet push plate sliding groove, the rivet leading-in wall is provided with a rivet leading-in groove communicated with the rivet push plate sliding groove, a rivet push plate actuating cylinder is arranged at one side of the rivet leading-in block which one end far away from the rivet leading-in block fixing frame faces upwards, a rivet push plate actuating cylinder column of the rivet push plate actuating cylinder faces towards the rivet push plate sliding groove, the rivet push plate is arranged in the rivet push plate sliding groove in a sliding way, and one end face of the rivet push plate actuating cylinder facing towards the rivet push plate is connected with the rivet push plate actuating cylinder column, the lower part of the rivet clamping claw horizontal displacement acting cylinder mounting bracket is fixed with the workbench, the rivet clamping claw horizontal displacement acting cylinder and the upper part of the rivet clamping claw horizontal displacement acting cylinder mounting bracket face one side of the right rotary disc starter base bearing mechanism in a horizontal state, a rivet clamping claw horizontal displacement acting cylinder push plate collision stopper is respectively fixed on one end surface and the other end surface of the rivet clamping claw horizontal displacement acting cylinder, the rivet clamping claw lifting acting cylinder is fixed with the rivet clamping claw horizontal displacement acting cylinder push plate of the rivet clamping claw horizontal displacement acting cylinder through the rivet clamping claw lifting acting cylinder fixing seat, and a clamping claw horizontal displacement acting cylinder push plate collision head corresponding to the rivet clamping claw horizontal displacement acting cylinder push plate collision stopper is fixed at the middle part of the length direction of the upward side of the rivet clamping claw horizontal displacement acting cylinder push plate collision stopper, the rivet presss from both sides and puts claw lift effect jar push pedal and hits a stopper on the upper end terminal surface and the lower extreme terminal surface that claw lift effect jar were put to the rivet clamp respectively, the rivet presss from both sides puts the claw and opens and shuts the effect jar and fix on the rivet clamp that the shape is the L font of invering puts the claw fixing base, and this rivet clamp is put the claw fixing base setting and is put claw lift effect jar push pedal at the rivet clamp of putting claw lift effect jar, put claw lift effect jar push pedal and be fixed with a rivet clamp at the position that corresponds rivet clamp and put claw lift effect jar push pedal and hit a head, a pair of rivet clamp is put the claw and is put claw and rivet clamp and put claw lift effect jar and cooperate.
In a specific embodiment of the invention, the left rotating disk driving mechanism comprises a left rotating disk driving motor and a left rotating disk driving reduction box, the left rotating disk driving motor is in transmission fit with the left rotating disk driving reduction box and is fixed by the left rotating disk driving reduction box together with the left rotating disk driving motor and the downward side of the left end of the workbench, a left rotating disk driving reduction box power output shaft of the left rotating disk driving reduction box is used as the left power output part to extend above the workbench and is fixed with the center position of the left rotating disk, and the left rotating disk driving reduction box power output shaft is in rotation fit with the workbench through a left rotating disk driving reduction box power output shaft bearing.
In another specific embodiment of the invention, the right rotating disk driving mechanism comprises a right rotating disk driving motor and a right rotating disk driving reduction box, the right rotating disk driving motor is in transmission fit with the right rotating disk driving reduction box and is fixed by the right rotating disk driving reduction box together with the right rotating disk driving motor and the downward side of the right end of the workbench, a right rotating disk driving reduction box power output shaft of the right rotating disk driving reduction box as the right power output part extends to the upper part of the workbench and is fixed with the center position of the right rotating disk, and the right rotating disk driving reduction box power output shaft is in rotation fit with the workbench through a right rotating disk driving reduction box power output shaft bearing.
The technical scheme provided by the invention has the technical effects that: the rivet clamping device comprises a pair of rivet clamping and placing claws, a pair of left rotary disc starter base bearing mechanisms, a pair of right rotary disc starter base bearing mechanisms, a pair of rivet clamping and placing claws, a pair of right rotary disc starter base bearing mechanisms, a pair of cover plate starter base bearing mechanisms, a pair of rivet clamping and placing claws, a pair of cover plate starter base bearing mechanisms, a pair of rivet clamping and placing claw horizontal displacement acting cylinders, a pair of right rotary disc starter base bearing mechanisms, a pair of cover plate starter bases, a pair of cover plate rivet clamping and placing claw horizontal displacement acting cylinders, a pair of cover plate lifting acting cylinders, a pair of rivet clamping and a pair of cover plate lifting acting cylinders.
Drawings
Fig. 1 is a schematic view of the overall structure of the automatic assembling machine for current starters of the present invention.
Fig. 2 is a schematic diagram of a left and a right rotary disk driving mechanism for driving the left and the right rotary disks shown in fig. 1 to rotate, respectively.
Fig. 3 is a schematic view of a vibratory plate feeding apparatus for feeding the first pin, the first stationary contact, the second stationary contact, the case cover, the first rivet and the second rivet to the automatic assembling machine of current starter according to the present invention.
Fig. 4 is a schematic view of a left turn disc starter base carrier mechanism disposed on the left turn disc shown in fig. 1-3.
Fig. 5 is a schematic view of a right turn disc starter base carrier mechanism disposed on the right turn disc shown in fig. 1-3.
Fig. 6 is a structural view of the first pin mounting mechanism shown in fig. 1 and 3.
Fig. 7a is a structural view of the first static contact mounting mechanism shown in fig. 1 and 3.
Fig. 7b is a detailed assembly structure view of the first stationary contact carrier block elevating cylinder, the first stationary contact carrier block, and the first stationary contact barrier shown in fig. 7 a.
Fig. 8a is a structural view of the second stationary contact fitting mechanism shown in fig. 1 and 3.
Fig. 8b is a detailed assembly structure view of the lifting cylinder of the stationary contact piece upper block, and the stationary contact shield plate shown in fig. 8 a.
Fig. 9 is a detailed configuration diagram of the pin and blade missing detection mechanism shown in fig. 1 and 3.
Fig. 10 is a block diagram of the starter base transfer mechanism shown in fig. 1 and 3.
Fig. 11 is a structural view of the starter base shown in fig. 1 and 3 together with a pin and a static contact missing detection mechanism.
FIG. 12a is a structural view of the housing cover mounting mechanism shown in FIGS. 1 and 3.
FIG. 12b is a detailed view of the housing cover mounting base shown in FIG. 12 a.
Fig. 13 is a detailed structural view of a rivet extraction release mechanism of the riveting apparatus of the present invention shown in fig. 1 and 3.
Fig. 14 is a schematic view of a press work member located at an upper portion of a table in the structural system of the rivet press mechanism shown in fig. 1 and 3.
Fig. 15 is a schematic view of the working components of the structural system of the rivet punching mechanism shown in fig. 1 and 3, which are located at the lower portion of the table.
Fig. 16 is a structural view of the mounting-end work removing mechanism shown in fig. 1 and 3.
Fig. 17 is a structural diagram of the workpiece retention detection mechanism shown in fig. 1 and 3.
Fig. 18 is a schematic diagram of a current starter.
Detailed Description
In order to clearly understand the technical spirit and the advantages of the present invention, the applicant below describes in detail by way of example, but the description of the example is not intended to limit the technical scope of the present invention, and any equivalent changes made according to the present inventive concept, which are merely in form and not in material, should be considered as the technical scope of the present invention.
Referring to fig. 18, the applicant only shows a part of the components of the current starter in fig. 18, because the structure of the current starter belongs to the known technology, for example, refer to the patent documents mentioned in the above background art column by the applicant, and particularly refer to CN206481237U (structurally improved weighted current starter). Fig. 18 shows a current starter body 70 of the structural architecture of a current starter, the current starter body 70 comprising: a starter base 701, a coil bobbin 7011 (i.e., a coil holder) extending from the bottom of the starter base 701, a coil 702 disposed (wound) on the coil bobbin 7011, and a starter coil holder end 70111 extending from the lower portion of the coil bobbin 7011; a connection pin positioning plate 703a and a duplex plug-in sheet 703b, wherein the connection pin positioning plate 703a and the duplex plug-in sheet 703b are inserted and embedded on the starter base 701; a first pin 704, a first stationary contact i 705 and a second stationary contact ii 706, which first pin 704, first stationary contact i 705 and second stationary contact ii 706 are arranged on the starter base 701 according to the illustration of the leadthroughs of fig. 18, in particular according to the teaching of CN 206481237U; the cover 707, the first rivet i 708a and the second rivet ii 708b are shown, the cover 707 is cover-fitted to the starter base 701 after the movable contact mechanism, not shown, is mounted in the starter base 701, the cover 707 and the starter base 701 are riveted by the first rivet i 708a and the second rivet ii 708b, and a cover flange 7071 formed at the bottom of the cover 707 is fitted to a recessed channel corresponding to a position on the starter base 701. In the use state, one end (coil lead-out end) of the coil 702 is electrically connected (e.g., welded) to the first pin 704, and the other end (coil lead-out end) of the coil 702 is electrically connected (e.g., welded) to the duplex plug 703 b; in the use state, a negative temperature system thermistor (NTC) is disposed on the housing cover 707 or at another appropriate position, and the NTC is connected in series between the connection pin positioning plate 703a and the duplex plug 703 b. Also shown in fig. 18 are a first rivet hole i 7012 of a starter base and a second rivet hole ii 7013 of a starter base that are provided in the starter base 701; set up the first rivet hole I7072 of a shell cover and a second rivet hole II 7073 of shell cover on shell cover 707, the first rivet hole I7072 of shell cover is corresponding with the first rivet hole I7012 of starter base, and second rivet hole II 7073 of shell cover is corresponding with second rivet hole II 7013 of starter base. The two moving contacts of the moving contact mechanism described above and not shown in fig. 18 correspond to the stationary contacts on the first stationary contact i 705 and the second stationary contact ii 706, respectively (see CN206481237U for details).
After the wiring pin positioning plate 703a, the duplex insertion piece 703b and the movable contact mechanism are mounted in the previous process, the automatic assembling machine for the current starter provided by the invention automatically assembles the first pin 704, the first static contact piece I705, the second static contact piece II 706, the case cover 707, the first rivet I708 a and the second rivet II 708b, and the following description is directed to the automatic assembling of these components.
Referring to fig. 1 to 3, there is shown a table 10 belonging to the structural system of an automatic assembling machine for current starters, a left rotary disk drive mechanism 101 is provided on a side of the table 10 facing downward at a left end thereof, and a right rotary disk drive mechanism 102 is provided on a side of the table 10 facing downward at a right end thereof, a left power output part of the left rotary disk drive mechanism 101 is extended above the table 10 and fixedly connected to a central position of a left rotary disk 103 located above the left end of the table 10, and a right power output part of the right rotary disk drive mechanism 102 is also extended above the table 10 and fixedly connected to a central position of a right rotary disk 104 located above the right end of the table 10; a left turn disc starter base carrier 20 is shown, the left turn disc starter base carrier 20 being in a group (eight in this embodiment) in number and spaced around the edge portion of the upward facing side of the left turn disc 103; right turn disc starter base carriers 1, the number of which right turn disc starter base carriers 1 is one group (eight in this embodiment) and which are provided at intervals around the edge portion of the upward facing side of the right turn disc 104.
Also shown in fig. 1 and 3 are a starter base absence-detecting mechanism 30, a first pin mounting mechanism 2, a first static contact mounting mechanism 3, a second static contact mounting mechanism 4, a pin and tab absence-detecting mechanism 40 and a starter base transfer mechanism 5 which are structural systems of the automatic current starter assembling machine, the starter base absence-detecting mechanism 30, the first pin mounting mechanism 2, the first static contact mounting mechanism 3, the second static contact mounting mechanism 4, the pin and tab absence-detecting mechanism 40 and the starter base transfer mechanism 5 being arranged on the work table 10 in order around the peripheral portion of the left turn disc 103 at intervals in the clockwise direction and in a state of being vacated above the left turn disc starter base carrying mechanism 20, wherein the starter base transfer mechanism 5 corresponds to the left turn disc, the left turn disc starter base carrying mechanism 20, and the left turn disc starter base carrying mechanism 5 is arranged on the work table 10, Between the right turn discs 103, 104; a starter base together with the pin and static contact missing or missing detecting mechanism 50, a case cover mounting mechanism 6, a rivet pressing mechanism 8, a mounting end workpiece removing mechanism 9 and a workpiece stagnation or missing detecting mechanism 60 are shown, and the starter base together with the pin and static contact missing or missing detecting mechanism 50, the case cover mounting mechanism 6, the rivet pressing mechanism 8, the mounting end workpiece removing mechanism 9 and the workpiece stagnation or missing detecting mechanism 60 are arranged on the table 10 in order at intervals in the clockwise direction around the peripheral edge portion of the right turn plate 104 and in a state of being evacuated above the right turn plate starter base carrying mechanism 1.
Also shown in fig. 1 and 3 is a level platform 106 disposed immediately above the aforementioned table 10 and to the right of the aforementioned starter base absence detection mechanism 30 (also referred to as the front lane), where a service person or a dispatched worker is located at the level platform 106 to manually place the starter base 701, shown in fig. 18, to which the aforementioned first pin 704, first stationary contact i 705, second stationary contact ii 706, housing cover 707, first rivet i 708a and second rivet ii 708b are to be attached, onto the left turntable starter base carrier mechanism 20.
The applicant needs to state that: the starter base 701 may be picked up by an automated mechanism separately provided and transferred to the left turn disc starter base carrying mechanism 20, in which case a plurality of the apparatuses of the present invention may be checked by one worker to find out and eliminate the stoppage in time without having to assign a check-in person.
As shown in fig. 1 and 3, an electric controller 107 is provided on the table 10 at a position above and to the left. Further, as shown in fig. 3, a first pin conveying vibration plate 108a, a first stationary blade conveying vibration plate i 108b, a second stationary blade conveying vibration plate ii 108c, a cover conveying vibration plate 108d, a first rivet conveying vibration plate i 108e, and a second rivet conveying vibration plate ii 108f are provided in a clockwise arrangement around the periphery of the table 10.
Please refer to fig. 2, the left rotating disk driving mechanism 101 includes a left rotating disk driving motor 1011 and a left rotating disk driving reduction box 1012, the left rotating disk driving motor 1011 is in transmission fit with the left rotating disk driving reduction box 1012 and is fixed by the left rotating disk driving reduction box 1012 together with the left rotating disk driving motor 1011 and the downward side of the left end of the worktable 10, a left rotating disk driving reduction box power output shaft 10121 of the left rotating disk driving reduction box 1012 is used as the left power output part to extend above the worktable 10 and is fixed with the center position of the left rotating disk 103, and the left rotating disk driving reduction box power output shaft 10121 is in rotation fit with the worktable 10 through a left rotating disk driving reduction box power output shaft bearing 10122.
Continuing to refer to fig. 2, the right rotary disk driving mechanism 102 includes a right rotary disk driving motor 1021 and a right rotary disk driving reduction box 1022, the right rotary disk driving motor 1021 is in transmission fit with the right rotary disk driving reduction box 1022 and is fixed by the right rotary disk driving reduction box 1022 together with the right rotary disk driving motor 1021 and the downward side of the right end of the worktable 10, a right rotary disk driving reduction box power output shaft 10221 of the right rotary disk driving reduction box 1022 extends to the upper side of the worktable 10 as the right power output part and is fixed with the center position of the right rotary disk 104 through a screw, and the right rotary disk driving reduction box power output shaft 10221 is in rotation fit with the worktable 10 through a right rotary disk driving reduction box power output shaft bearing 10222.
The left and right rotary disk drive motors 1011, 1021 are electrically controlled by the electrical controller 107 (i.e., controlled by the electrical controller 107). When the left rotary disk driving motor 1011 works, the left rotary disk driving reduction box 1012 is driven by the left rotary disk driving motor, the left rotary disk driving reduction box 1012 reduces the speed and the left rotary disk driving reduction box power output shaft 10121 drives the left rotary disk 103 to rotate, and the left rotary disk driving motor 1011 works according to the process requirement rhythmicity, so that the rotation of the left rotary disk 103 has the rotation rhythmicity according to the process requirement. When the right rotary disk drive motor 1021 works, the right rotary disk drive reduction box 1022 is driven by the right rotary disk drive reduction box 1021, the right rotary disk 104 is driven to rotate by the right rotary disk drive reduction box 1022 and the power output shaft 10221 of the right rotary disk drive reduction box, and the right rotary disk 104 rotates rhythmically according to the process requirements because the right rotary disk drive motor 1021 works rhythmically. When the left and right rotary discs 103, 104 rotate, the aforementioned left rotary disc starter base carrier 20 and right rotary disc starter base carrier 1, which are respectively arranged thereon, move (rotate) accordingly.
Referring to fig. 4 in conjunction with fig. 1 to 3, the left-hand disk starter base bearing mechanism 20 includes a left-hand disk starter base bearing block fixing bottom plate 201, a left-hand disk starter base first bearing block i 202, and a left-hand disk starter base second bearing block ii 203, the left-hand disk starter base bearing block fixing bottom plate 201 is rectangular and has a left-hand disk starter base bearing block fixing bottom plate screw hole 2011 opened at each of four corners, the left-hand disk starter base bearing block fixing bottom plate 201 is fixed to the edge portion of the upward facing side of the left-hand disk 103 by a left-hand disk starter base bearing block fixing bottom plate screw 2012 at a position corresponding to the left-hand disk starter base bearing block fixing bottom plate screw hole 2011, and a starter coil base end portion for the coil bobbin 7011 of the above-mentioned starter base 701 is opened at the center position of the left-hand disk starter base bearing block fixing bottom plate 201 70111 the end of the starter coil base inserted into the recess 2013, the left turntable starter base first support block I202 and the left turntable starter base support block fixing base plate 201 are fixed toward one end of the edge of the left turntable 103, a left turntable starter base first support block baffle I2021 is fixed by screws at the position corresponding to the end faces of the left turntable starter base first support block I202, the upper end of the left turntable starter base first support block baffle I2021 is extended out of the upper surface of the left turntable starter base first support block I202, and a negative temperature coefficient thermistor terminal base support cavity 2022 and a left turntable starter base first support block fixing screw hole 2023 for fixing the left turntable starter base first support block I202 and the left turntable starter base support block fixing base plate I are formed in the upper part of the left turntable starter base first support block I202, a left rotary disk starter base first support block support cavity II 2024 is formed at the upper portion of the left rotary disk starter base first support block I202 and on the side facing the left rotary disk starter base second support block II 203, the left rotary disk starter base second support block II 203 is fixed to one end of the left rotary disk starter base support block fixing base plate 201 facing the center of the left rotary disk 103, a left rotary disk starter base second support block baffle II 2031 is fixed to each of the positions corresponding to the end faces of both ends of the left rotary disk starter base second support block II 203 by screws, a left rotary disk starter base second support block support cavity II 2032 is formed at the upper portion of the left rotary disk starter base second support block II 203 and on the side facing the left rotary disk starter base first support block I202 and in a position corresponding to the left rotary disk starter base first support block support cavity II 2024, a left rotary disc starter base second supporting block fixing screw hole 2033 for fixing the left rotary disc starter base second supporting block II 203 and the left rotary disc starter base supporting block fixing bottom plate 201 is arranged on the left rotary disc starter base second supporting block II 203; the starter base absence detecting means 30, the first pin mounting means 2, the first static contact mounting means 3, the second static contact mounting means 4, the pin and insert absence detecting means 40, and the starter base transfer means 5, which are arranged at intervals in the clockwise direction in this order around the peripheral edge portion of the left turn plate 103, correspond to the positions above the left turn plate starter base first support block i 202 and the left turn plate starter base second support block ii 203 in an empty state.
Referring to fig. 5 in combination with fig. 1 to 3, the right-hand rotary disk starter base bearing mechanism 1 includes a right-hand rotary disk starter base bearing block fixing bottom plate slide guide rod 11, a slide guide rod fixing plate 12, a press riveting top column base guide plate 13, a press riveting top column base guide post 14, a press riveting top column base 15, a press riveting top column 16, a right-hand rotary disk starter base bearing block fixing bottom plate 17, a right-hand rotary disk starter base first bearing block i 18 and a right-hand rotary disk starter base second bearing block ii 19, the slide guide rod fixing plate 12 corresponds to an edge portion of a downward side of the right-hand rotary disk 104, the number of the right-hand rotary disk starter base bearing block fixing bottom plate slide guide rods 11 is four, the four right-hand rotary disk starter base bearing block fixing bottom plate slide guide rods 11 respectively correspond to four corners of the slide guide rod fixing plate 12 and are fixed to an upward side of the slide guide rod fixing plate 12, a press riveting top column seat guide column plate pushing cylinder column abdicating hole 121 is opened at the central position of the sliding guide rod fixing plate 12, the sliding guide rod 11 of the fixed bottom plate sliding guide rod of the right rotary disk starter base supporting block is also matched with the fixed bottom plate sliding guide rod guide sleeve 111 in a sliding way, the fixed bottom plate sliding guide rod guide sleeve 111 is fixed with the right rotary disk 104, the sliding guide rod spring 112 is sleeved at the upper end of the sliding guide rod 11 of the fixed bottom plate sliding guide rod of the right rotary disk starter base supporting block, the lower end of the sliding guide rod spring 112 is supported on the upper surface of the fixed bottom plate sliding guide rod guide sleeve 111, the upper surface of the fixed bottom plate sliding guide rod guide sleeve 111 is level (namely on the same plane) with the upper surface of the right rotary disk 104, the upper end of the sliding guide rod spring 112 is supported on the downward side of the fixed bottom plate 17 of the right rotary disk starter base supporting block, the number of the press riveting top column seat guide columns 14 is four, the middle part of the press riveting top column base guide post 14 is in sliding fit with a press riveting top column base guide post sleeve 141, the lower end of the press riveting top column base guide post 14 is fixed with one side of a press riveting top column base guide post plate 13 facing upwards, the upper end of the press riveting top column base guide post 14 is fixed with a press riveting top column base 15, the press riveting top column base guide post plate 13 corresponds to the upper part of a cylinder post abdicating hole 121 for the pushing action of the press riveting top column base guide post plate, the press riveting top column base 15 is positioned below a right rotary disc starter base fixing bottom plate 17, the press riveting top column 16 is provided with a pair of press riveting top column bases which are longitudinally parallel to each other and is fixed with the press riveting top column base 15 in a state perpendicular to the upper surface of the press riveting top column base 15, the right rotary disc starter base supporting block fixing bottom plate 17 is fixed with the press riveting top fixing bottom plate sliding guide rod 113 at the top of the right rotary disc starter base sliding guide rod 11 through a supporting block fixing bottom plate screw 171 and a supporting block sliding guide rod 113 at the top of the right rotary disc starter base sliding guide rod 11 A rivet pressing top column guide sleeve 172 is provided on the right rotary disk starter base support block fixing base plate 17 at a position corresponding to the rivet pressing top column 16, the upper end of the rivet pressing top column 16 is slidably fitted to the rivet pressing top column guide sleeve 172, a starter coil holder end-penetrating abdicating hole 173 is provided at the center position of the right rotary disk starter base support block fixing base plate 17, a right rotary disk starter base first support block i 18 is fixed to one end of the right rotary disk starter base support block fixing base plate 17 facing the edge of the right rotary disk 104, a right rotary disk starter base first support block baffle 181 i is fixed to a position corresponding to both end faces of the right rotary disk starter base first support block i 18 by a screw, the upper end of the right rotary disk starter base first support block baffle 181 protrudes from the upper surface of the right rotary disk starter base first support block i 18, a negative temperature coefficient thermistor terminal support cavity 182 and a punch head relief cavity 183 are formed in the upper portion of the right rotary disk starter base first support block I18, a right rotary disk starter base first support block support cavity I184 is formed in the upper portion of the right rotary disk starter base first support block I18 and on the side facing the right rotary disk starter base second support block II 19, a rivet stud relief cavity having a semicircular cross-sectional shape is formed in the right rotary disk starter base first support block support cavity I184 and in a position corresponding to one of the above two rivet stud guide sleeves 172, the right rotary disk starter base second support block II 19 is fixed to the end of the right rotary disk starter base support block fixing base plate 17 facing the center of the right rotary disk 104, and a rivet stud relief cavity is formed in the upper portion of the right rotary disk starter base second support block II and facing the right rotary disk starter base first support block I19 A second supporting block supporting cavity II 191 of the right rotary disc starter base is formed on one side of the supporting block I18, the position of the second supporting block supporting cavity II 191 of the right rotary disc starter base corresponds to the first supporting block supporting cavity I184 of the right rotary disc starter base, a punch abdicating notch 192 is formed in the middle of the second supporting block II 19 of the right rotary disc starter base in the length direction, and a riveting jacking column abdicating cavity 193 with the same cross-sectional shape as the abdicating cavity of the riveting jacking column is formed on the second supporting block supporting cavity II 191 of the right rotary disc starter base and in the position corresponding to the other riveting jacking column guide sliding sleeve in the two riveting jacking column guide sliding sleeves 172.
Also shown in fig. 5 is the current starter body 70. taking the position shown in fig. 5 as an example, the end of the current starter body 70 facing the right turntable starter base first support block i 18 on the right turntable starter base support block mounting base 17 is supported on the right turntable starter base first support block support cavity i 184, while the end of the current starter body 70 facing the right turntable starter base second support block ii 19 is supported on the right turntable starter base second support block support cavity ii 191. In addition, as can be seen from the schematic of FIG. 5, the aforementioned current starter body 70 has completed the automated assembly process.
Referring to fig. 6 in conjunction with fig. 1 and 3, the starter base absence detection mechanism 30 includes a starter base absence detection sensor fixing post 301, a starter base absence detection sensor fixing base 302, and a starter base absence detection sensor 303, the starter base absence detection sensor fixing post 301 corresponds to the left turntable starter base carrying mechanism 20, a bottom of the starter base absence detection sensor fixing post 301 is fixed to the worktable 10, and an upper end thereof extends upward in a direction away from the worktable 10, the starter base absence detection sensor fixing base 302 is fixed to an upper end of the starter base absence detection sensor fixing post 301 by a fixing base fixing screw 3021 in a state of being free from an edge portion of the upward side of the left turntable 103, a starter base absence detection sensor 303 is fixed to an end of the starter base absence detection sensor holder 302 facing the left turn plate 103 and corresponds to a side upper side of the left turn plate starter base carrier 20 facing an end of the work table 10, and the starter base absence detection sensor 303 is electrically connected to the electric controller 107 through a wire in a use state.
In the operating state, when the starter base absence detection sensor 303 (preferably, a photoelectric sensor, the same shall apply hereinafter) does not detect the first pin 104 of the structural system of the current starter main body 70, the starter base absence detection sensor 303 detects a signal and feeds the signal back to the electric controller 107, and the electric controller 107 sends a signal to the left turn disc drive mechanism 101 to stop the operation of the left turn disc drive motor 1011, and vice versa.
With continued reference to fig. 6 and with reference to fig. 1 and 3, the first prong mounting mechanism 2 includes a starter first prong-introducing rail-fitting bracket 21, a starter first prong-jaw horizontal displacement cylinder bracket 22, a starter first prong-jaw horizontal displacement cylinder 23, a starter first prong-jaw up-and-down displacement cylinder 24, a starter first prong-jaw rotation cylinder holder 25, a starter first prong-jaw rotation cylinder 26, a starter first prong-jaw opening-and-closing cylinder 27, and a pair of starter first prong jaws 28, the starter first prong-introducing rail-fitting bracket 21 corresponds to an end of the left-turn disc starter base support mechanism 20 facing the work table 10, a lower portion of the starter first prong-introducing rail-fitting bracket 21 is fixed to a side of the starter first prong-introducing rail-fitting bracket holder 211 facing the left-turn disc 103 in an up-and-down alignment manner, the bottom of the starter first prong introducing guide rail fitting holder 211 is fixed to the table 10 by a screw, a starter first prong receiving block 212 is fixed to the upper portion of the starter first prong introducing guide rail fitting holder 21 on the side facing away from the left turn plate 103 by a starter first prong receiving block screw 2121, a starter first prong step chamber 2122 is formed between the upper surface of the starter first prong receiving block 212 and the upper surface of the starter first prong introducing guide rail fitting holder 21, the lower end of the starter first prong clamp horizontal displacement cylinder holder 22 is fixed to the table 10 while the upper end thereof extends in a direction away from the table 10, the starter first prong clamp horizontal displacement cylinder 23 is fixed to the upper end of the starter first prong clamp horizontal displacement cylinder holder 22 in a horizontally-lying state toward the side of the left turn plate 103, a starter first pin jaw horizontal displacement acting cylinder push plate first stopper I231 is provided on one end face of the starter first pin jaw horizontal displacement acting cylinder 23, and a starter first pin jaw horizontal displacement acting cylinder push plate second stopper II 232 is provided on the other end face, the starter first pin jaw up-down displacement acting cylinder 24 is fixed to the starter first pin jaw horizontal displacement acting cylinder push plate 233 of the starter first pin jaw horizontal displacement acting cylinder 23 by a starter first pin jaw up-down displacement acting cylinder fixing plate 244, a starter first pin jaw up-down displacement acting cylinder stack plate upper stopper 241 is fixed to an upper end face of the starter first pin jaw up-down displacement acting cylinder 24, and a starter first pin jaw up-down displacement acting cylinder push plate lower stopper 242 is fixed to a lower end face of the starter first pin jaw up-down displacement acting cylinder 24, a starter first pin jaw horizontal displacement acting cylinder push plate displacement limit degree striker 2331 fixed to the lower portion of the starter first pin jaw horizontal displacement acting cylinder push plate 233, the starter first pin jaw horizontal displacement acting cylinder push plate displacement limit degree striker 2331 corresponding to between the starter first pin jaw horizontal displacement acting cylinder push plate first stopper i 231 and the starter first pin jaw horizontal displacement acting cylinder push plate second stopper ii 232, the upper end of the starter first pin jaw rotation acting cylinder fixing frame 25 fixed to the bottom of the starter first pin jaw up-down displacement acting cylinder push plate 243 of the starter first pin jaw up-down displacement acting cylinder 24, an starter first pin jaw up-down displacement acting cylinder push plate displacement limit degree striker 2431 fixed to the side portion of the starter first pin jaw up-down displacement acting cylinder push plate 243, a starter first prong clamp rotation cylinder 26 is fixed in a horizontally-disposed state to a lower end of the side of the starter first prong clamp rotation cylinder holder 25 facing the left turn plate 103, a starter first prong clamp rotation cylinder first stopper i 261 is fixed to an end surface of the starter first prong clamp rotation cylinder 26, a starter first prong clamp rotation cylinder second stopper ii 262 is fixed to the other end surface, the starter first prong clamp opening/closing cylinder 27 is connected to the starter first prong clamp rotation cylinder 26 in a horizontally cantilevered state by a rotation cylinder base 271, and is rotated by 90 ° in a clockwise or counterclockwise alternating manner by the starter first prong clamp rotation cylinder 26, wherein a rotation action cylinder base rotation pole corresponding to the starter first prong clamp rotation cylinder first stopper 261 i is fixed to one end of the rotation action cylinder base 271 A first stopper I2711, and a second stopper II 2712 for stopping the rotation of the rotation cylinder base at a position corresponding to the second stopper II 262 of the first pin claw rotation cylinder of the starter is fixed to the other end of the rotation cylinder base 271, and a pair of first pin claws 28 are connected to one end of the opening and closing cylinder 27 of the first pin claw of the starter toward the upper part of the first pin drawing rail fitting bracket 21 of the starter in a state corresponding to each other.
As shown in fig. 6, the pair of starter first prong jaws 28, when displaced to the region of the left turn disc 103, correspond to above between the left turn disc starter base first support block i 202 and the left turn disc starter base second support block ii 203, i.e., above the starter base 701 shown in fig. 6.
In the present embodiment, the above-mentioned starter first prong clamp horizontal displacement acting cylinder 23, starter first prong clamp vertical displacement acting cylinder 24, starter first prong clamp rotation acting cylinder 26, and starter first prong clamp opening and closing acting cylinder 27 are all air cylinders and are electrically connected to the aforementioned electric controller 107. Since the concepts of the acting cylinders in the related mechanisms to be also referred to one by one below are referred to as cylinders, the description will not be repeated. In this embodiment, the aforementioned first stopper i 231 of the push plate of the first pin-jaw horizontal displacement action cylinder of the starter, the second stopper ii 232 of the push plate of the first pin-jaw horizontal displacement action cylinder of the starter, the upper stopper 241 of the stack plate of the first pin-jaw vertical displacement action cylinder of the starter, the lower stopper 242 of the push plate of the first pin-jaw vertical displacement action cylinder of the starter, the first stopper i 261 of the first pin-jaw rotation action cylinder of the starter, and the second stopper ii 262 of the first pin-jaw rotation action cylinder of the starter all substantially play a role in responding to signals, for example, when the first stopper i 231 of the push plate of the first pin-jaw horizontal displacement action cylinder of the starter collides with the stopper 2331 of the push plate of the first pin-jaw horizontal displacement action cylinder of the starter, a signal is fed back to the electric controller 107, indicating that the first stopper i 233 of the push plate of the first pin-jaw horizontal displacement action cylinder of the starter horizontally displaces the push plate of the first pin-jaw to the first pin-jaw horizontal displacement action cylinder of the starter The degree of the directional displacement of the limiting block I231 reaches the limit, namely the limiting block I can not be displaced any more, and on the contrary, the working mechanism of other similar components is the same as that of the previous example, so that the applicant does not repeatedly describe the working mechanism.
Also shown in fig. 6 is a first prong feed guide 108g belonging to the structural system of the aforementioned first prong feed vibration plate 108a, and the first prong 704 is fed by the first prong feed vibration plate 108a to the aforementioned actuator first prong stepped cavity 2122 via the first prong feed guide 108g and automatic mounting is carried out by the aforementioned first prong mounting mechanism 2.
The first prong mounting mechanism 2 is such that the mounting of the first prong 704 is completed, and, under the operation of the actuator first prong clamp horizontal displacement operating cylinder 23, the starter first pin jaw up-and-down displacement operating cylinder 24, the starter first pin jaw rotation operating cylinder holder 25, the starter first pin jaw rotation operating cylinder 26, the starter first pin jaw opening-and-closing operating cylinder 27 and the pair of starter first pin jaws 28 correspond to the upper side of the aforementioned starter first pin receiving block 212 by the movement of the starter first pin jaw horizontal displacement operating cylinder push plate 233, a pair of starter first prong jaws 28 are caused to descend upon operation of the starter first prong jaw up-down displacement actuation cylinder 24, the starter first prong clamp 28 is caused to clamp the first prong 704 between the clamp jaw opening 281 between the pair of starter first prong clamps 28 by operation of the starter first prong clamp opening cylinder 27. The starter first pin jaw up-down displacement cylinder push plate 243 is then moved upward by the operation of the starter first pin jaw up-down displacement cylinder 24 to bring the pair of starter first pin jaws 28 in a clamped state to the first pin 704 upward correspondingly, and then the pair of starter first pin jaws 28 together with the first pin 704 in the clamped state is moved to the position corresponding to the upper side of the starter base 701 by the operation of the starter first pin jaw horizontal displacement cylinder 23. Next, the operation of the starter first prong clamp rotation cylinder 26 rotates the starter first prong clamp opening/closing cylinder 27 together with the pair of starter first prong clamps 28 that clamp the first prongs 704 by 90 ° counterclockwise so that the first prongs 704 correspond to the starter base 701. The actuator first prong clamp up and down displacement cylinder 24 is then operated to move the pair of actuator first prong clamps 28 down with the first prong 704 to insert the first prong 704 into position on the actuator base 701 as illustrated in FIG. 18. Then, the starter first pin clamp 28 is repelled by the operation of the starter first pin clamp opening and closing cylinder 27, the first pin 704 is released, and the mounting of the first pin 704 is completed, and then, the next first pin 704 to be mounted, which is sent from the first pin feed rail 108g, is gripped by the starter first pin clamp 28 at the position of the starter first pin stepped cavity 2122 in the reverse operation, and so on.
Referring to fig. 7a and 7b in combination with fig. 1 and 3, the first static contact mounting mechanism 3 includes a first static contact carrier block lifting/lowering cylinder holder 31, a first static contact carrier block lifting/lowering cylinder 32, a first static contact carrier block 33, a first static contact baffle 34, a first static contact jaw horizontal displacement cylinder holder 35, a first static contact jaw horizontal displacement cylinder 36, a first static contact jaw up/down displacement cylinder 37, a first static contact jaw opening/closing cylinder 38, and a pair of first static contact jaw blocks 39, the lower end of the first static contact carrier block lifting/lowering cylinder holder 31 is fixed to the first static contact carrier block lifting/lowering cylinder holder 311 toward the left rotary plate 103 with the upper and lower ends thereof adjusted upward and downward, and the bottom of the first static contact carrier block lifting/lowering cylinder holder 311 is fixed to the table 10, the first static contact bearing block lifting cylinder 32 and the first static contact bearing block lifting cylinder fixing seat 31 are fixed at the upper end of the side opposite to the left rotary disk 103, the first static contact bearing block lifting cylinder column 321 of the first static contact bearing block lifting cylinder 32 faces upwards, the bottom of the first static contact bearing block 33 is fixed with the first static contact bearing block supporting seat 331, the downward side of the middle part of the first static contact bearing block supporting seat 331 is fixed with the tail end (i.e. the upper end in the figure state) of the first static contact bearing block lifting cylinder column 321, two bearing block guide columns 3311 are respectively fixed at two ends of the downward side of the first static contact bearing block supporting seat 331, the bearing block guide columns 3311 are in sliding fit with the cylinder body of the first static contact bearing block lifting cylinder 32, a first static contact horizontal end part relief step cavity 332 and a first contact bending static contact bending An end abdicating cavity 333, a first static contact detecting sensor fixing plate 334 fixed on the end surface of one end of the first static contact bearing block 33 back to the first static contact clamping jaw horizontal displacement action cylinder fixing frame 35, a static contact clamping jaw abdicating cavity 335 extended above the first static contact bending end abdicating cavity 333, the upper end of the first static contact detecting sensor fixing plate 334 extending out of the upper surface of the first static contact bearing block 33, a first static contact baffle 34 fixed with the first static contact bearing block 33 toward one side of the left rotary disk 103 and also fixed with the first static contact bearing block bearing seat 331, a static contact clamping jaw abdicating notch 341 opened on the upper part of the first static contact baffle 34, the lower end of the first static contact clamping jaw horizontal displacement action cylinder fixing frame 35 fixed with the workbench 10 and the upper end extending upwards, a first static contact clamping jaw horizontal displacement action cylinder 36 in horizontal position with the first static contact clamping jaw horizontal displacement action cylinder fixing frame 35 A first static contact jaw horizontal displacement acting cylinder push plate movement limit position first collision block I361 is fixed on one end surface of the first static contact jaw horizontal displacement acting cylinder 36, a first static contact jaw horizontal displacement acting cylinder push plate movement limit position second collision block II 362 is fixed on the other end surface of the first static contact jaw horizontal displacement acting cylinder 36, the first static contact jaw up-down displacement acting cylinder 37 is fixed with the first static contact jaw horizontal displacement acting cylinder push plate 363 of the first static contact jaw horizontal displacement acting cylinder 36 through a first static contact jaw up-down displacement acting cylinder fixing plate 371, a first static contact jaw horizontal displacement acting push plate cylinder limit displacement degree collision block 3631 is fixed at the middle position of the lower part of the first static contact jaw horizontal displacement acting cylinder push plate 363 in the length direction, the first static contact jaw horizontal displacement acting cylinder push plate limit displacement degree collision block 3631 is positioned between the first collision block I361 at the first static contact jaw horizontal displacement acting cylinder push plate moving limit position and the second collision block II 362 at the first static contact jaw horizontal displacement acting cylinder push plate moving limit position, the first static contact jaw opening and closing acting cylinder 38 is fixed with the first static contact jaw up and down displacement acting cylinder push plate 372 of the first static contact jaw up and down displacement acting cylinder 37 through the first static contact jaw opening and closing acting cylinder fixing plate 381, a first static contact jaw up and down displacement acting cylinder push plate up and down stroke limit position limit collision block 373 is fixed on one side of the first static contact jaw up and down displacement acting cylinder push plate 372 push plate and a second static contact jaw up and down stroke limit position limit collision block 373 corresponding to a pair of the first static contact jaw up and down displacement acting cylinder push plate up and down stroke limit position limit collision block 373 on the side of the first static contact jaw up and down displacement acting cylinder push plate A static contact piece clamping jaw up-down displacement acting cylinder push plate ultimate displacement degree collision block 3721, a pair of first static contact piece clamping jaw blocks 39 are connected with a first static contact piece clamping jaw opening and closing acting cylinder 38, a pair of first stationary contact claws 391 are fixed to the bottoms of the pair of first stationary contact claw blocks 39, the pair of first stationary contact clamping jaws 391 correspond to the stationary contact clamping jaw abdication cavity 335 and the stationary contact clamping jaw abdication gap 341, a first static contact horizontal end pressure claw block 382 is fixed on one side of the first static contact jaw opening and closing cylinder 38 back to the first static contact jaw opening and closing cylinder fixing plate 381, a first static contact piece horizontal end pressing claw 3821 extends at the lower part of the first static contact piece horizontal end pressing claw block 382, the first stationary contact horizontal end pressing claw 3821 extends downward to the lower portion of the first stationary contact jaw opening and closing cylinder 38 and corresponds to the aforementioned pair of first stationary contact jaws 391.
In an actual use state, a first stationary contact detecting sensor (not shown) is provided (i.e., fixed) at a position corresponding to the fixing plate hole 3341 at the upper end of the first stationary contact detecting sensor fixing plate 334, and the presence or absence of the first stationary contact i 705 on the first stationary contact carrier block 33 is detected by the first stationary contact detecting sensor, and if not, a signal is fed back to the electric controller 107 by the first stationary contact detecting sensor, so that the left rotary plate 103 does not rotate, and vice versa.
Fig. 7a also shows a first stationary-contact conveying guide i 108h of the structural coefficient of the aforementioned first stationary-contact conveying vibration disk i 108b, and the first stationary contact i 705 fed by the first stationary-contact conveying vibration disk i 108b is sent by the first stationary-contact conveying guide i 108h to the aforementioned first stationary-contact carrier block 33 to be extracted by the first stationary contact mounting mechanism 3 and mounted on the starter base 701.
Continuing with fig. 7a and 7b, the applicant described the assembly process of the first static contact i 705, and the operation of the first static contact jaw horizontal displacement acting cylinder 36, the first static contact jaw horizontal displacement acting cylinder push plate 363 drives the first static contact jaw up-and-down displacement acting cylinder 37, the first static contact jaw opening-and-closing acting cylinder 38, and the pair of first static contact jaw pieces 39 to move above the first static contact carrier piece 33, and the first static contact i 705 conveyed by the first static contact conveying guide i 108h is already on the first static contact carrier piece 33 at this time. Then, the first stationary contact jaw vertical displacement cylinder 37 is operated, and the first stationary contact jaw opening/closing cylinder 38 and the pair of first stationary contact jaw blocks 39 are moved downward by the first stationary contact jaw vertical displacement cylinder push plate 372. Then, the pair of first stationary contact jaw blocks 39 are folded toward each other at the positions of the stationary contact jaw abdicating cavity 335 and the stationary contact jaw abdicating notch 341, respectively, by the operation of the first stationary contact jaw opening and closing cylinder 38, so that the first stationary contact i 705 is gripped by the pair of first stationary contact jaws 391, and in order to ensure that the first stationary contact i 705 in the gripped state exhibits a good gripping effect, the first stationary contact horizontal end pressure claw 3821 of the first stationary contact horizontal end pressure claw block 382 at this time abuts on the horizontal end of the first stationary contact i 705 (i.e., the end facing the first stationary contact detecting sensor fixing plate 334). Then, the first stationary contact jaw up-and-down displacement action cylinder 37 is operated in the reverse process described above until the pair of first stationary contact jaw pieces 39 together with the first stationary contact i 705 in the state of being gripped by the pair of first stationary contact jaws 391 are lifted upward. Then, the first stationary contact jaw horizontal displacement cylinder 36 is operated in the reverse direction, and the first stationary contact jaw horizontal displacement cylinder push plate 363 is operated until the pair of first stationary contact jaw blocks 39 are brought into correspondence with the starter base 701. Then, the first stationary contact jaw up-down displacement acting cylinder push plate 372 is driven to go down by the operation of the first stationary contact jaw up-down displacement acting cylinder 37, and the pair of first stationary contact jaw blocks 39 goes down together with the first stationary contact i 705 in a state of being clamped by the pair of first stationary contact jaws 391 and corresponds to the first stationary contact mounting position on the starter base 701. Then, the first stationary contact jaw opening and closing cylinder 38 is operated to repel (open) the pair of first stationary contact jaw pieces 39 to release the previously held first stationary contact i 705. Then, the above-mentioned reverse operation process is performed to make the pair of first stationary contact clamping claw blocks 39 correspond to the upper side of the first stationary contact carrying block 33 again. This action is repeated alternately.
Referring to fig. 8a and 8b in combination with fig. 1 and 3, the second static contact fitting mechanism 4 includes a static contact piece upper and lower block lifting cylinder holder 41, a static contact piece upper and lower block lifting cylinder 42, a static contact piece upper block 43, a static contact retainer plate 44, a static contact gripping claw horizontal displacement cylinder holder 45, a static contact gripping claw horizontal displacement cylinder 46, a static contact gripping claw up and down displacement cylinder 47, a static contact gripping claw opening and closing cylinder 48, and a pair of static contact gripping claws 49, a lower end of the static contact piece upper block lifting cylinder holder 41 is vertically adjustably fixed to a side of the static contact piece upper block lifting cylinder holder support 411 facing toward the left rotary plate 103, a bottom of the static contact piece upper block lifting cylinder holder support 411 is fixed to the table 10, the static contact piece upper block lifting cylinder 42 and the static contact piece upper block lifting cylinder holder 41 are fixed to an upper end of a side facing away from the left rotary plate 103, and the static contact piece upper material block lifting cylinder column 421 of the static contact piece upper material block lifting cylinder 42 is upward, the static contact piece upper material block 43 is fixed with the static contact piece upper material block supporting seat 431 at the bottom of the static contact piece upper material block 43 at the position corresponding to the upper material block fixing screw hole 432 arranged at both ends of the static contact piece upper material block 43 by a material block fixing screw, the downward side of the middle part of the static contact piece upper material block supporting seat 431 is fixed with the tail end (i.e. the upward end part) of the static contact piece upper material block lifting cylinder column 421, the two ends of the downward side of the static contact piece upper material block supporting seat 431 are respectively fixed with an upper material block supporting seat guide pillar 4311, the upper material block supporting seat guide pillar 4311 is in sliding fit with the cylinder body of the static contact piece upper material block lifting cylinder 42, the upper part of the static contact piece upper material block 43 is formed with a concave cavity 433 for supporting the horizontal end part of the static contact piece, a static contact pin abdicating cavity 434 and a static contact piece bending pin abdicating cavity 435 at intervals, and a stationary contact detecting sensor fixing plate 436 is fixed to an end surface of the stationary contact piece upper block 43 opposite to the end of the stationary contact gripping claw horizontal displacement cylinder fixing frame 45, the upper end of the stationary contact detecting sensor fixing plate 436 protrudes out of the upper surface of the stationary contact piece upper block 43, the stationary contact pin abdicating chamber 434 is located between the stationary contact horizontal end supporting concave chamber 433 and the stationary contact bending pin abdicating chamber 435, the position of the stationary contact horizontal end supporting concave chamber 433 on the stationary contact piece upper block 43 is located between the upper end of the stationary contact detecting sensor fixing plate 436 and the stationary contact pin abdicating chamber 434, the stationary contact shield plate 44 is fixed to the side of the stationary contact piece upper block 43 toward the left turn disc 103 by screws at positions corresponding to a screw hole of the stationary contact shield plate 441 and a screw hole 437 of the stationary contact piece upper block 43, the lower end of the fixed frame 45 of the static contact gripping claw horizontal displacement acting cylinder is fixed to the aforementioned table 10, and the upper end extends upward, the fixed frame 46 of the static contact gripping claw horizontal displacement acting cylinder is fixed in a horizontally lying state to the upper end of the side of the fixed frame 45 of the static contact gripping claw horizontal displacement acting cylinder facing the left rotary plate 103, a first collision block I461 at the movement limit position of the push plate of the fixed clip gripping claw horizontal displacement acting cylinder is fixed to one end surface of the fixed frame 46 of the static contact gripping claw horizontal displacement acting cylinder, a second collision block II at the movement limit position of the push plate of the fixed clip gripping claw horizontal displacement acting cylinder is fixed to the other end surface of the fixed frame 46 of the fixed frame 47 of the fixed frame is fixed to the push plate 463 of the fixed frame 46 of the fixed frame via the fixed plate 471 of the fixed frame of the static contact gripping claw horizontal displacement acting cylinder 46, a static contact gripping claw horizontal displacement acting cylinder push plate extreme displacement degree striking block 4631 is fixed at the lower middle position in the length direction of the static contact gripping claw horizontal displacement acting cylinder push plate 463, the static contact gripping claw horizontal displacement acting cylinder push plate extreme displacement degree striking block 4631 is positioned between the first striking block I461 at the moving extreme position of the static contact gripping claw horizontal displacement acting cylinder push plate and the second striking block II 462 at the moving extreme position of the static contact gripping claw horizontal displacement acting cylinder push plate, the static contact gripping claw opening and closing acting cylinder 48 is fixed with the static contact gripping claw up and down displacement acting cylinder push plate 472 of the static contact gripping claw up and down displacement acting cylinder 47 through a static contact gripping claw opening and closing acting cylinder fixing plate 481, a static contact gripping claw up and down displacement acting cylinder up and down stroke limiting block 473 is fixed on the upper end surface and the lower end surface of the static contact gripping claw up and down displacement acting cylinder push plate 47, a static contact gripping claw up-down displacement action cylinder push plate limit displacement degree collision block 4721 is extended from a position corresponding to a limit position limit collision block 473 of a pair of static contact gripping claw up-down displacement action cylinder push plate up-down stroke on one side of the static contact gripping claw up-down displacement action cylinder push plate 472, a pair of static contact gripping claw up-down displacement action cylinder push plate 49 is connected to a static contact gripping claw opening-closing action cylinder 48, a pair of static contact gripping claws 491 is fixed to the bottom of the pair of static contact gripping claw blocks 49, the pair of static contact gripping claws 491 is corresponding to both ends of the static contact gripping claw abdicating cavity 435, a static contact horizontal end pressing block is fixed to a side of the static contact gripping claw opening-closing action cylinder 48 opposite to the static contact gripping claw opening-closing action cylinder fixing plate 481, a static contact horizontal end pressing foot 4821 is extended from a lower part of the static contact gripping claw opening-closing action cylinder 48, and the static contact horizontal end pressing foot 4821 is extended downward to a lower part of the static contact gripping claw opening-closing action cylinder 48 and is connected to the pair of the static contact gripping claw opening-closing action cylinder push plate 48 The static contact gripping claws 491 correspond.
In an actual state, a second static contact detecting sensor for detecting the presence or absence of the second static contact ii 706 on the static contact piece material block 43 is attached to a position corresponding to the detecting sensor attaching hole 4361 on the static contact detecting sensor attaching plate 436, and if not, information is fed back from the second static contact detecting sensor to the electric controller 107, and the left rotary disk 103 does not move, otherwise, the same applies.
Fig. 8a also shows a second stationary contact transport guide ii 108i belonging to the structure of the aforementioned second stationary contact transport vibration disk ii 108c, from which second stationary contact transport guide ii 108i the second stationary contact ii 706 passed by the second stationary contact transport vibration disk ii 108c is fed to the aforementioned stationary contact upper block 43.
In order to facilitate the second static contact piece ii 706 to be gripped by the static contact piece gripping claws 491 of the pair of static contact piece gripping claw blocks 49, after the second static contact piece ii 706 reaches the static contact piece material block 43, the static contact piece material block lifting cylinder 42 operates, and the static contact piece material block lifting cylinder 421 extends upward to the outside of the cylinder body, so as to push the static contact piece material block support base 431 and the static contact piece material block 43 carrying the second static contact piece ii 706 to lift upward, so as to grip the pair of static contact piece gripping claws 491. After the pair of the static contact gripping claws 491 grips the second static contact ii 706, the static contact upper material block lifting cylinder 42 works in reverse direction, and the static contact upper material block lifting cylinder column 421 moves downward to drive the static contact upper material block supporting seat 431 and the static contact upper material block 43 to move downward (i.e., reset). Since the working principle of the aforementioned static contact gripping claw horizontal displacement acting cylinder 46, the static contact gripping claw up-and-down displacement acting cylinder 47, the static contact gripping claw opening-closing acting cylinder 48, and the pair of static contact gripping claw blocks 49, which are directly and indirectly arranged with the static contact gripping claw horizontal displacement acting cylinder fixing frame 45 as a carrier, of the structural system of the second static contact assembling mechanism 4 is substantially the same as that of the aforementioned first static contact mounting mechanism 3, the applicant is not repeated.
Referring to fig. 9 in combination with fig. 1 and 3, the pin and insert missing detection mechanism 40 includes a pin and insert detecting sensor lift cylinder mounting bracket 401, a pin and insert detecting sensor lift cylinder 402, a pin and insert detecting sensor mounting bracket 403 and a pin and insert detecting sensor 404, wherein the lower portion of the pin and insert detecting sensor lift cylinder mounting bracket 401 is fixed to the side of the pin and insert detecting sensor lift cylinder mounting bracket fixing base 4011 facing the left rotary plate 103, the pin and insert detecting sensor lift cylinder mounting bracket fixing base 4011 is fixed to the table 10, the pin and insert detecting sensor lift cylinder 402 and the pin and insert detecting sensor lift cylinder mounting bracket 401 are fixed to the upper portion of the side of the left rotary plate 103, and a pin and insert detecting sensor lift cylinder fixing base 401402 is fixed to the upper end surface and the lower end surface of the pin and insert detecting sensor lift cylinder 402 respectively A sensor lift cylinder ram bump limit block 4021, a pin and insert sensing sensor mount 403 having an L-shaped configuration, the pin and insert sensing sensor mount 403 and the pin and insert sensing sensor lift cylinder 402 having their pins fixed to the side of the insert sensing sensor lift cylinder ram 4022 facing the left rotary disk 103 and corresponding in an empty state above the left rotary disk starter base support mechanism 20, a pin and insert sensing sensor lift cylinder ram bump 40221 extending on the side of the pin and insert sensing sensor lift cylinder ram 4022 and at a position corresponding to the pin and insert sensing sensor lift cylinder ram bump limit block 4021, a pin and insert sensing sensor 404 disposed on the pin and insert sensing sensor mount 403 and corresponding in an empty state above the left rotary disk starter base support mechanism 20, in the use state, the pin and the insertion sheet detection sensor 404 are electrically connected to the electric controller 107 by a wire.
After the second static contact ii 706 is mounted by the second static contact mounting mechanism 4, the starter base 701 has the first pin 704, the first static contact i 705, and the second static contact ii 706 mounted by the present invention, and thus the pin and insert missing detection mechanism 40 of the present invention detects the missing of the above-mentioned parts in order to avoid missing the above-mentioned parts when entering the next process, specifically: the pin and insert sensing sensor lift cylinder 402 operates to move the pin and insert sensing sensor lift cylinder push plate 4022 together with the pin and insert sensing sensor mount 403 down to allow the pin and insert sensing sensor 404 to sense the presence or absence of the three aforementioned components on the starter base 701, namely, the first pin 704, the first static contact i 705, and the second static contact ii 706. It can be ascertained without any doubt from the illustration of fig. 9 that the aforementioned pins and the blade sensing sensor 404 have three and are all electrically connected to the electrical controller 107. The three pin and blade detection sensors 404 may be understood as a first pin absence detection sensor, a first static blade detection sensor and a second static blade detection sensor, and if any one or more of the components are absent, the pin and blade detection sensor 404 feeds a signal back to the electric controller 107, and the left rotary disk 103 does not rotate (may be referred to as being in a stop state, the same example as described above).
Referring to fig. 10 in combination with fig. 1 and 3, the starter base transfer mechanism 5 includes an evacuation frame 51, a horizontal displacement cylinder 52 for horizontally displacing the starter base jaws to be riveted on the cover, an up-and-down displacement cylinder 53 for vertically displacing the starter base jaws to be riveted on the cover, an opening-and-closing cylinder 54 for opening and closing the starter base jaws to be riveted on the cover, a pair of base jaws 55 for riveting the cover and a pair of auxiliary claws 56, the evacuation frame 51 being provided on the table 10 at a position corresponding to between the left rotary plate 103 and the right rotary plate 104, the evacuation frame 51 including a first support column of evacuation plate i 511, a second support column of evacuation plate ii 512 and an evacuation plate 513, the first support column of evacuation plate i 511 being fixed to the table 10 in a longitudinal state at a position corresponding to between one side of the left rotary plate 103 and the right rotary plate 104, the second support column of evacuation plate ii 512 being fixed to the table 10 in a longitudinal state at a position corresponding to between the other side of the left rotary plate 103 and the right rotary plate 104, and the first support column I511 of the vacation board corresponds to the second support column II 512 of the vacation board, one end of the vacation board 513 is fixed with the top of the first support column I511 of the vacation board, the other end of the vacation board 513 is fixed with the top of the second support column II 512 of the vacation board, a vacation board extension seat 5131 extends from one side of the vacation board 513 and is positioned at the central position of the length direction of the vacation board 513, and the first support column I511 of the vacation board, the second support column II 512 of the vacation board and the vacation board 513 are jointly fixed to form the portal frame 51 into the shape of a portal frame, a horizontal displacement acting cylinder 52 of a base clamping jaw of a casing cover to be riveted is fixed with one side of the middle part of the vacation board 513 facing downwards in the length direction in a horizontal state and is also fixed with one side of the vacation board extension seat 5131 facing downwards at the same time, a cover is fixed on one end face and the other end face of the horizontal displacement acting cylinder 52 of the base clamping jaw of the casing to be riveted is fixed with a horizontal displacement acting cylinder 52 of the casing and a cover to be riveted A base jaw horizontal displacement acting cylinder push plate ram stopper 521, a case cover to be riveted starter base jaw up-down displacement acting cylinder 53 fixed with an inverted L-shaped case cover to be riveted starter base jaw up-down displacement acting cylinder fixing base 531, the case cover to be riveted starter base jaw up-down displacement acting cylinder fixing base 531 fixed with a case cover to be riveted starter base jaw horizontal displacement acting cylinder push plate 522 of a case cover to be riveted starter base jaw horizontal displacement acting cylinder 52 fixed with a downward side, a case cover to be riveted starter base jaw horizontal displacement acting cylinder push plate ram 5221 for matching with the case cover to be riveted starter base jaw horizontal displacement acting cylinder push plate ram stopper 521 fixed with one side of the case cover to be riveted starter base jaw horizontal displacement acting cylinder push plate 522, a case cover to be riveted starter base jaw opening-closing cylinder 54 fixed with a case cover to be riveted starter base jaw opening-closing cylinder fixing base 541, the housing cover to be riveted with the starter base jaw opening and closing cylinder fixing base 541 is fixed with the housing cover to be riveted with the starter base jaw vertical displacement acting cylinder push plate 532 of the housing cover to be riveted with the starter base jaw vertical displacement acting cylinder 53, a housing cover to be riveted with the starter base jaw vertical displacement acting cylinder push plate striker stopper 533 is fixed on the upper end surface and the lower end surface of the housing cover to be riveted with the starter base jaw vertical displacement acting cylinder 53, a housing cover to be riveted with the starter base jaw vertical displacement acting cylinder push plate striker 5321 is fixed on one side of the housing cover to be riveted with the starter base jaw vertical displacement acting cylinder push plate striker stopper 533 and at the position corresponding to the housing cover to be riveted with the starter base jaw vertical displacement acting cylinder push plate striker stopper 533, a pair of housing cover to be riveted 55 correspond to each other and are connected with the housing cover to be riveted with the starter jaw base opening and closing cylinder 54, the upper ends of the pair of auxiliary claws 56 are fixed to the case cover to-be-riveted starter base jaw opening and closing cylinder 54, while the lower ends of the pair of auxiliary claws 56 extend below the case cover to-be-riveted starter base jaw opening and closing cylinder 54 and correspond to the pair of case cover to-be-riveted starter base jaws 55.
As shown in fig. 10, in the present embodiment, the flight plate first support column i 511 and the flight plate second support column ii 512 each have a pair parallel to each other in the longitudinal direction, but may be one each, or a plate-like body may be used. The flight 513 is substantially T-shaped.
After the first pin 704, the first stationary contact i 705, and the second stationary contact ii 706 are mounted on the starter base 701 on the left turn disc 103, the starter base 701 is transferred by the starter base transfer mechanism 5 from the left turn disc starter base support mechanism 20 on the left turn disc 103 to the right turn disc starter base support mechanism 1 on the right turn disc 104, and the automatic mounting process for the cover 707, the first rivet i 708a, and the second rivet ii 708b is performed.
In the following, the applicant describes the working of the starter base transfer mechanism 5, as can be seen first from the schematic of fig. 10: since the positions of the left and right rotary disk starter base bearing mechanisms 20 and 1 respectively located on the left and right rotary disks 103 and 104 are corresponding to each other, the horizontal displacement acting cylinder 52 for the housing cover to-be-riveted starter base jaws is operated to displace the pushing plate 522 of the horizontal displacement acting cylinder for the housing cover to-be-riveted starter base jaws toward the left rotary disk 103, so that the pair of housing cover to-be-riveted starter base jaws 55 are positioned above the starter base 701, and then the vertical displacement acting cylinder 53 for the housing cover to-be-riveted starter base jaws is operated to move the pushing plate 532 of the vertical displacement acting cylinder for the housing cover to-be-riveted starter base jaws downward, and at this time, the pair of housing cover to-be-riveted starter base jaws 55 are positioned at both sides of the starter base 701 (shown in fig. 10). Then, the opening and closing cylinder 54 for the starter base to be riveted on the case cover is operated to close the pair of starter base to be riveted jaws 55 toward each other to clamp the corresponding both sides of the starter base 701 and to be retained by the pair of auxiliary holding claws 56 in a position-restricting manner. Next, the up-and-down displacement cylinder 53 for the housing cover to-be-riveted starter base jaw is operated in the reverse direction, and the pair of housing cover to-be-riveted starter base jaws 55 are displaced upward together with the starter base 701 in the reverse direction, and the starter base 701 is separated from the left turn disc starter base support mechanism 20. Next, the horizontal displacement cylinder 52 for the starter base to be cover-riveted is operated in the reverse direction to the above, and the starter base 701 held between the pair of the cover-to-be-riveted starter base jaws 55 is brought above the right rotary disk starter base support mechanism 1 on the right rotary disk 104. Subsequently, the up-and-down displacement cylinder 53 for the starter base jaw to be caulked operates in the reverse direction to the above, and the starter base 701 is settled on the right turntable starter base support mechanism 1 by the downward movement of the push plate 532 of the up-and-down displacement cylinder for the starter base jaw to be caulked. Then, the opening and closing cylinder 54 for the housing cover to be riveted with the starter base jaws operates to repel the pair of housing cover to be riveted with the starter base jaws 55, that is, to release the clamp of the starter base 701, that is, to release the starter base 701. Then, the up-down displacement cylinder 53 of the housing cover to-be-riveted starter base jaw is operated to displace the opening-closing cylinder 54 of the housing cover to-be-riveted starter base jaw together with the pair of housing cover to-be-riveted starter base jaws 55 upward, and the pair of housing cover to-be-riveted starter base jaws 55 are caused to clamp and transfer the next starter base 701 to the right turntable starter base carrying mechanism 1 in correspondence with the upper side of the left turntable starter base carrying mechanism 20 in accordance with the above operation process, and thus, the operation is repeated.
Referring to fig. 11 in combination with fig. 1 and 3, the starter base, the pin and static contact missing detection mechanism 50 includes a vertical fixing post 501, a starter base missing detection sensor fixing seat 502, a starter base missing detection sensor 503, a pin insert complete detection sensor fixing plate 504 and a pin insert complete detection sensor 505, the vertical fixing post 501 corresponds to the right turntable starter base bearing mechanism 1, the lower end of the vertical fixing post 501 is fixed to the worktable 10, the upper end extends upward in a direction away from the worktable 10, the starter base missing detection sensor fixing seat 502 is fixed on the vertical fixing post 501, the starter base missing detection sensor 503 is fixed on the starter base missing detection sensor fixing seat 502 and is opposite to the side of the right turntable starter base bearing mechanism 1 opposite to the center of the right turntable 104 Correspondingly, the sensor fixing plate 504 for detecting whether the pin insert is complete is fixedly sleeved on the longitudinal fixing upright 501 at a position corresponding to the upper part of the sensor fixing base 502 for detecting whether the starter base is missing, and the sensor 505 for detecting whether the pin insert is complete is fixed at one end of the sensor fixing plate 504 facing the right rotary disk 104 and corresponding to the upper part of the starter base bearing mechanism 1 of the right rotary disk, namely, corresponding to the upper part of the starter base 701. In the use state, the starter base missing detection sensor 503 and the pin inserting piece complete detection sensor 505 are electrically connected to the electric controller 107 through lines.
Since the starter base together with the pin and static contact absence/absence detecting mechanism 50 is located in front of the case cover mounting mechanism 6, detection is performed by the starter base together with the pin and static contact absence/absence detecting mechanism 50 with a diagnostic effect in order to avoid the absence of the first pin 704, the first static contact i 705, and/or the second static contact ii 706. From the schematic of fig. 11 and the above description in connection with the applicant, it is known that: the number of the pin and insert detecting sensors 505 is three, which are used to detect the first pin 704, the first static contact i 705 and the second static contact ii 706, and the starter base missing detecting sensor 503 is mainly responsible for detecting whether the starter base 701 is on the right turntable starter base bearing mechanism 1. When the missing state is detected, the pin insertion piece complete detection sensor 505 and the starter base missing detection sensor 503 feed back signals to the electric controller 107, and the right rotary disk 104 does not rotate. The sensors mentioned here and above as well as below are all photoelectric sensors, but they can also be far infrared sensors or other equivalent sensing components, as long as the requirements for obtaining signals in a non-contact manner are met.
Referring to fig. 12a and 12b in combination with fig. 1 and 3, the housing cover mounting mechanism 6 includes a housing cover receiving base fixing bracket 61, a housing cover receiving mechanism 62, a housing cover jaw horizontal displacement action cylinder fixing bracket 63, a housing cover jaw horizontal displacement action cylinder 64, a housing cover jaw vertical displacement action cylinder 65, a housing cover jaw opening and closing action cylinder 66, a pair of housing cover opening and closing jaw blocks 67 and a housing cover urging plate 68, the lower end of the housing cover receiving base fixing bracket 61 is fixed to the housing cover receiving base fixing bracket 611 toward the right turn plate 104, the bottom of the housing cover receiving base fixing bracket 611 is fixed to the table 10, the housing cover receiving mechanism 62 is disposed at the upper end of the housing cover receiving base fixing bracket 61, the housing cover receiving mechanism 62 includes a housing cover receiving base support plate 621, a housing cover receiving base 622 and a housing cover receiving base end plate 623, the housing cover receiving base support plate 621 is disposed in a horizontal state to the upper end of the housing cover receiving base fixing bracket 61 opposite to the right turn plate One side of the base bearing mechanism 1 of the turntable starter is fixed, a shell cover receiving seat 622 is arranged on a shell cover receiving seat supporting plate 621, the bottom of the shell cover receiving seat 622 is fixed with the shell cover receiving seat supporting plate 621 through shell cover receiving seat fixing screws, a first shell cover receiving seat side surface I6221 of the shell cover receiving seat 622 and a second shell cover receiving seat side surface II 6222 of the shell cover receiving seat 622 extend out of the upper surface of the shell cover receiving seat 622, a first shell cover receiving seat side surface clamping jaw yielding cavity I62211 is arranged in the middle of the first shell cover receiving seat side surface I6221, a second shell cover receiving seat side surface clamping jaw yielding cavity II 62221 is arranged in the middle of the second shell cover receiving seat side surface II 6222, a pair of shell cover receiving seat side surface clamping jaw yielding cavities I62211 and a second shell cover receiving seat side surface clamping jaw yielding cavity II 62221 correspond to each other, and a pair of shell cover receiving seat side surface II 62221 is arranged in the upper surface of the shell cover receiving seat 622 and is positioned between the upper parts of the first shell cover receiving seat side surface I6221 and the second shell cover receiving seat side surface II 6222 A cover flange recess 6223 into which a cover flange 7071 shown in FIG. 18 is inserted, a cover-detecting sensor fixing plate 6224 fixed to the second cover-receiving-seat side II 6222 of the cover-receiving seat 622 in an inclined state, an upper end of the cover-detecting sensor fixing plate 6224 extending out of the upper surface of the cover-receiving seat 622, a cover-receiving-seat end plate 623 fixed to the cover-receiving seat 622 by a screw toward one end surface of the right-turn-disc-starter-base supporting mechanism 1, a cover-claw horizontal-displacement-acting-cylinder fixing bracket 63 fixed at a lower end thereof to the table 10 and extending upward in a direction away from the table 10, a cover-claw horizontal-displacement-acting cylinder 64 fixed to the upper end of the cover-claw horizontal-displacement-acting-cylinder fixing bracket 63 in a horizontally-lying state toward the right-turn disc 104, and a cover-claw horizontal-displacement-acting cylinder 64 fixed to one end surface and the other end surface of the cover-claw horizontal-displacement-acting cylinder 64, respectively A limiting block 641 for the bump head of the displacement acting cylinder, a cap-cover-jaw up-and-down displacement acting cylinder 65 is fixed with a cap-cover-jaw horizontal displacement acting cylinder push pedal 642 of a cap-cover-jaw horizontal displacement acting cylinder 64 through a cap-cover-jaw up-and-down displacement acting cylinder fixing plate 651, a cap-cover-jaw horizontal displacement acting cylinder push pedal bump 6421 is fixed in the middle of the length direction of the upward side of the cap-cover-jaw horizontal displacement acting cylinder push pedal 642, the cap-cover-jaw horizontal displacement acting cylinder push pedal bump 6421 corresponds to the limiting block 641 for the bump head of the cap-cover-jaw horizontal displacement acting cylinder push pedal, a cap-jaw up-and-down displacement acting cylinder push pedal bump limiting block 652 is respectively fixed on the upper surface and the lower surface of the cap-cover-jaw up-and-down displacement acting cylinder 65, a cap-jaw opening-and-closing acting cylinder 66 is fixed with a cap-jaw up-and-down displacement acting cylinder push pedal 653 of the cap-jaw up-and-down displacement acting cylinder 65 through a cap-opening-closing cylinder fixing base 661, a cover-jaw vertical-displacement-acting-cylinder push-plate ram 6531 is fixed to one side of the cover-jaw vertical-displacement-acting-cylinder push-plate 653 and at a position corresponding to the cover-jaw vertical-displacement-acting-cylinder push-plate ram stopper 652, a pair of cover-opening-closing-jaw blocks 67 are connected to the cover-jaw opening-closing-acting cylinder 66, a cover-cover jaw 671 is extended from each of lower end portions of the pair of cover-opening-closing-jaw blocks 67, the pair of cover-cover jaws 671 correspond to the cover-receptacle first-side-jaw abdicating chamber i 62211 and the cover-receptacle second-side-jaw abdicating chamber ii 62221, an upper end of the cover-cover pressing-holding plate 68 is fixed to a side of the cover-jaw opening-closing-acting cylinder 66 opposite to the right turn plate 104, and a lower end of the cover pressing-holding plate 68 extends to a lower side of the cover-jaw opening-closing-acting cylinder 66 and corresponds to the cover-opening-closing-opening-jaw block 67.
In the use state, a cover detection sensor (not shown) electrically connected to the electric controller 107 is provided at a position corresponding to the cover detection sensor fixing hole 62241 provided at the upper end of the cover detection sensor fixing plate 6224, and when the cover 707 is detected, a signal is fed back to the electric controller 107, and the right turn plate 104 is not rotated.
Fig. 12a also shows a cover-conveying guide rail 108j belonging to the structure of the cover-conveying vibratory pan 108d, and the cover 707 conveyed (i.e., input) by the cover-conveying vibratory pan 108d is conveyed via the cover-conveying guide rail 108j between the first side face i 6221 of the cover-receiving seat 622 and the opposite side of the second side face ii 6222 of the cover-receiving seat, so that the cover 707 is automatically mounted on the starter base 701 by the relevant parts of the structure of the cover-mounting mechanism 6.
In the following detailed description of the process of mounting the housing cover 707 by the housing cover mounting mechanism 6, after the housing cover conveying rail 108j conveys the housing cover 707 to the housing cover receiving seat 622 (schematically shown in fig. 12 a), assuming that the pair of housing cover open-close jaw blocks 67 is located above the housing cover receiving seat 622, the housing cover jaw vertical displacement action cylinder 65 is operated to drive the housing cover jaw vertical displacement action cylinder push plate 653, together with the housing cover jaw open-close action cylinder fixing seat 661, the housing cover jaw open-close action cylinder 66, the pair of housing cover open-close jaw blocks 67 and the housing cover pressing plate 68, to move downward, so that the pair of housing cover open-close jaw blocks 67 respectively correspond to the housing cover receiving seat first side face jaw yielding chamber i 62211 and the housing cover receiving seat second side face jaw yielding chamber ii 62221. Next, the cover-jaw opening/closing cylinder 66 is operated to displace the pair of cover-opening/closing jaw blocks 67 toward each other, thereby clamping the cover 707 by the cover jaws 671. Next, the housing cover jaw vertical displacement cylinder 65 is operated in the reverse direction, and the housing cover jaw vertical displacement cylinder push plate 653 is displaced upward, so that the pair of housing cover open-close jaw blocks 67 and the housing cover 707 clamped by the housing cover jaws 671 are lifted upward in the reverse direction. Next, the housing cover jaw horizontal displacement cylinder 64 is operated to displace the housing cover jaw horizontal displacement cylinder pushing plate 642 together with the housing cover jaw vertical displacement cylinder 65, the housing cover jaw opening/closing cylinder 66, the pair of housing cover opening/closing jaw blocks 67 (together with the housing cover 707), and the housing cover urging plate 68 in the direction of the starter base 701 on the right turntable starter base support mechanism 1 and to displace the housing cover in the clamped state to just correspond to the upper side of the starter base 701. Then, the housing cover jaw up-and-down displacement cylinder 65 moves down, and the housing cover jaw opening-closing cylinder 66 operates to repel the pair of housing cover opening-closing jaw blocks 67, so that the housing cover 707 is automatically released to the starter base 701. The housing cover 707 is attached to the starter base 701 by repeating the same process as described above.
Referring to FIG. 13 in combination with FIGS. 1 and 3, there is shown a rivet extraction and release mechanism 7 of the structural system of the riveting apparatus of the present invention, the rivet extraction and release mechanism 7 being located between the aforementioned housing cover mounting mechanism 6 and rivet punching mechanism 8, and the rivet extraction and release mechanism 7 comprising a first rivet setting device I71 and a second rivet setting device II 72. since the second rivet setting device II 72 has the same structure and rhythm as the first rivet setting device I71, Applicant will hereinafter describe only the first rivet setting device I71, the first rivet setting device I71 comprising a rivet introduction block fixing frame 711, a rivet introduction block 712, a rivet push plate 713, a rivet push plate actuating cylinder 714, a rivet clamping jaw horizontal displacement acting cylinder mounting frame 715, a rivet clamping jaw horizontal displacement acting cylinder 716, a rivet clamping jaw lifting acting cylinder 717, a rivet clamping jaw horizontal displacement acting cylinder mounting frame 713, A rivet-retaining-jaw-opening-closing cylinder 718 and a pair of rivet retaining jaws 719, a lower end of a rivet-introducing block fixing frame 711 being fixed to an upper portion of a rivet-introducing block fixing frame base whose lower portion is fixed to the aforementioned work table 10, an end of the rivet-introducing block 712 facing toward the aforementioned rivet-introducing block fixing frame 711 being fixed to a side of an upper end of the rivet-introducing block fixing frame 711 facing away from the aforementioned right rotary disk starter base carrying mechanism 1 by a fixing screw and constituting a rivet push plate sliding groove 7121, the rivet-introducing block 712 facing toward the rivet-introducing block fixing frame 711 being partitioned by the rivet push plate sliding groove 7121 into a rivet-introducing block fixing wall 7122 located on one side of the rivet push plate sliding groove 7121 for fixing with the rivet-introducing block fixing frame 711 and a rivet-introducing wall 7123 located on the other side of the rivet push plate sliding groove 7121, a rivet-introducing groove 71231 communicating with the rivet sliding groove 7121 being opened in the rivet push plate 7123, a rivet push plate actuating cylinder 714 is provided on the side of the rivet introducing block 712 which is directed upward from the one end of the rivet introducing block fixing frame 711 and a rivet push plate actuating cylinder post 7141 of the rivet push plate actuating cylinder 714 is directed toward the aforementioned rivet push plate sliding groove 7121, a rivet push plate 713 is slidably provided in the rivet push plate sliding groove 7121 and an end face of the rivet push plate 713 directed toward the rivet push plate actuating cylinder 714 is connected to the aforementioned rivet push plate actuating cylinder post 7141, a lower portion of a rivet retaining jaw horizontal displacement action cylinder mounting bracket 715 is fixed to the aforementioned work table 10, a rivet retaining jaw horizontal displacement action cylinder 716 is horizontally disposed to collide against a rivet push plate head stopper 7161 fixed to each of one end face and the other end face of the rivet retaining jaw horizontal displacement action cylinder mounting bracket 715 on the side of the aforementioned right rotary disk starter base bearing mechanism 1, a rivet clip placing claw lifting action cylinder 717 is fixed with a rivet clip placing claw horizontal displacement action cylinder push plate 7162 of a rivet clip placing claw horizontal displacement action cylinder 716 through a rivet clip placing claw lifting action cylinder fixing base 7171, a rivet clip placing claw horizontal displacement action cylinder push plate collision 71621 corresponding to the rivet clip placing claw horizontal displacement action cylinder push plate collision stopper 7161 is fixed at the middle part of the length direction of the upward side of the rivet clip placing claw horizontal displacement action cylinder push plate 7162, a rivet clip placing claw lifting action cylinder push plate collision stopper 7172 is fixed on the upper end face and the lower end face of the rivet clip placing claw lifting action cylinder 717, a rivet clip placing claw opening and closing action cylinder push plate 718 is fixed on a rivet clip placing claw fixing base 7181 in an inverted L shape, and the rivet clip placing claw fixing base 7181 is arranged on the rivet clip placing claw lifting action cylinder 7173 of the rivet clip placing claw lifting action cylinder 717, a rivet clamping claw lifting action cylinder push plate collision 71731 is fixed on the rivet clamping claw lifting action cylinder push plate 7173 at a position corresponding to the rivet clamping claw lifting action cylinder push plate collision stopper 7172, and a pair of rivet clamping claws 719 and a rivet clamping claw opening and closing action cylinder 718 are matched.
Fig. 13 also shows a first rivet conveying guide rail i 108k belonging to the structural system of the first rivet conveying vibratory pan i 108e and a second rivet conveying guide rail ii 108L belonging to the structural system of the second rivet conveying vibratory pan ii 108f, and the first rivet i 708a fed out from the first rivet conveying vibratory pan i 108e by the first rivet conveying guide rail i 108k is fed to the rivet pusher sliding groove 7121 through the rivet introducing groove 71231, and the feeding process of the second rivet ii 708b is the same as that described above, and therefore, the description thereof will not be repeated. Still taking the first rivet i 708a as an example, after the first rivet i 708a enters the rivet push plate sliding groove 7121, the rivet push plate 713 is pushed by the rivet push plate actuating cylinder post 7141 under the action of the rivet push plate actuating cylinder 714, the first rivet i 708a is pushed by the rivet push plate 713 to move, so that the position of the first rivet i 708a in the rivet push plate sliding groove 7121 is staggered from the position of the rivet introducing groove 71231, and after the pushing action of the first rivet i 708a is completed, the rivet push plate actuating cylinder 714 operates reversely (i.e., resets). In this state, and assuming that the pair of rivet holding claws 719 correspond to the first rivet i 708a, the rivet holding claw lifting/lowering cylinder 717 operates to displace the rivet holding claw lifting/lowering cylinder push plate 7173 downward, and the rivet holding claw fixing base 7181, the rivet holding claw opening/closing cylinder 718, and the pair of rivet holding claws 719 are driven downward, so that the pair of rivet holding claws 719 correspond to the upper end portion of the first rivet i 708a, that is, both sides of the base portion. Next, the rivet holding/releasing-claw opening/closing cylinder 718 is operated to close the pair of rivet holding/releasing claws 719 toward each other, that is, to displace them toward each other, thereby holding the upper end portion, that is, the base portion, of the first rivet i 708 a. Next, the rivet-clamping-jaw horizontal-displacement-acting cylinder 716 is operated to displace the rivet-clamping-jaw horizontal-displacement-acting cylinder pushing plate 7162 in the direction toward the starter base 701, and the rivet-clamping-jaw lifting/lowering acting cylinder 717, the rivet-clamping-jaw opening/closing acting cylinder 718, and the pair of rivet-clamping jaws 719 sandwiching the first rivet i 708a are driven by the rivet-clamping-jaw horizontal-displacement-acting cylinder pushing plate 7162 to correspond to the upper side of the case cover 707, and the first rivet i 708a at this time is aligned to the position just above the first rivet hole i 7072 of the case cover. Then, the rivet clip is put claw lift and is used cylinder 717 reverse work and make the rivet clip put claw lift and use cylinder push pedal 7173 displacement down, drive the rivet clip and put claw fixing base 7181, the rivet clip is put the claw and is opened and shut and use the cylinder 718, a pair of rivet clip is put the claw 719 and is descended, make first rivet I708 a insert the first rivet hole I7072 of shell cover, and the lower extreme of first rivet I708 a still inserts the first rivet hole I7012 of aforesaid starter base, and still lean out the below of the first rivet hole I7012 of starter base. Next, the rivet holding/releasing cylinder 718 is operated to repel the pair of rivet holding/releasing claws 719 to release the holding of the upper end, i.e., the base, of the first rivet i 708 a. The rivet holding/releasing-jaw lifting/lowering cylinder 717 is operated in reverse, the pair of rivet holding/releasing jaws 719 which have released the first rivet i 708a are displaced upward in the reverse process, and the reverse operation of the rivet holding/releasing-jaw horizontal displacement cylinder 716 is performed until the pair of rivet holding/releasing jaws 719 are again brought into correspondence with the first rivet i 708a to be gripped again in the rivet pusher plate sliding groove 7121, and the above process is repeated. Since the structure and the operation rhythm of the second rivet setting device II 72 are completely the same as those of the first rivet setting device I71, the applicant does not give any more description about the process of setting the second rivet II 708b by the second rivet setting device II 72.
Referring to fig. 14 and 15 in combination with fig. 1 and 3, the rivet punching mechanism 8 includes a punch head actuating cylinder fixing plate 81, a punch head actuating cylinder fixing plate bracket 82, a punch head actuating cylinder 83, a punch head up-down displacement sliding base 84, a punch head up-down displacement sliding base guide rail plate 85, a punch head 86, a clinching stud base guide pillar plate pushing cylinder 87, and a clinching stud base guide pillar plate top plate 88, the end of the punch head actuating cylinder fixing plate 81 remote from the right rotary disk starter base carrier 1 corresponds to the upper side of the work table 10 in an empty state and is fixed to the top of the punch head actuating cylinder fixing plate bracket 82, and the bottom of the punch head actuating cylinder fixing plate bracket 82 is fixed to the work table 10 by a bracket base plate 821, a back plate 822 is fixed to the punch head actuating cylinder fixing plate bracket 82 on the side facing the right rotary disk 104, the ram head actuating cylinder fixing plate 81 is fixed to the upper end of the back plate 822, the lower end of the back plate 822 is fixed to the stand base plate 821, one end of the ram head actuating cylinder fixing plate 81 facing the right rotary disk starter base carrier 1 corresponds to the upper side of the right rotary disk starter base carrier 1, the ram head actuating cylinder 83 is fixed to the upper side of one end of the ram head actuating cylinder fixing plate 81 facing the right rotary disk starter base carrier 1, the ram head actuating cylinder column 831 of the ram head actuating cylinder 83 extends to the lower side of the ram head actuating cylinder fixing plate 81 and is connected to the ram head up-down moving slide block 84 having a y-shape, and a slide block 841 is fixed to one side of the ram head up-down moving slide block 84 facing the back plate 822, the slide block 841 is slidably fitted to the guide rail plate slide block guides 851 on both sides of the ram head up-down moving slide block guide rail plate 85, the punch head up-down displacement sliding seat guide rail plate 85 is fixed with the back plate 822, the punch head 86 is fixed on the punch head up-down displacement sliding seat 84 at a position corresponding to the upper part of the right rotary disk starter base bearing mechanism 1, a first rivet punching claw I861 a and a second rivet punching claw II 861b extend below the punch head 86, a push cylinder of a push rivet top column seat guide plate 87 is arranged below the workbench 10 in a longitudinal cantilever state at a position (shown in fig. 15) corresponding to a push cylinder column abdicating hole 105 formed on the workbench 10, a push cylinder fixing rod 1 is fixed at each of four corners of one side of the push cylinder seat 871 of the push cylinder of the push rivet top column seat guide plate 87, the upper end of the push cylinder fixing rod 8711 is fixed with one side of the workbench 10 facing downwards through a screw fixing rod, and the push cylinder abdicating cylinder 872 of the push cylinder guide plate 87 and the push cylinder abdicating cylinder 872 are fixed with the workbench 10 through the screw fixing rod 871 The aperture 105 corresponds to the bottom of the right turn disc starter base carrier 1 and the clinch stud retainer stud plate top disc 88 is secured to the top of the jacking cylinder stud 872.
After the first rivet setting device i 71 and the second rivet setting device ii 72 of the structural system of the rivet extraction release mechanism 7 have completed the setting of the first rivet i 708a and the second rivet ii 708b, the first rivet i 708a and the second rivet ii 708b are punched by the rivet punching mechanism 8 of the present invention, and the cover 707 and the starter base 701 are riveted together. The process of press setting the first rivet i 708a and the second rivet ii 708b is described below by the applicant.
Under the rotation of the right rotary disk 104, the right rotary disk starter base bearing mechanism 1 together with the starter base 701 on which the mounting of the cover 707, the first rivet i 708a and the second rivet ii 708b is completed corresponds to the lower part of the ram head 86, at this time, the ram head actuating cylinder 83 operates, the ram head actuating cylinder column 831 descends to drive the ram head up-and-down displacement slide block 84 to descend correspondingly along the guide rail plate slide guide 851 of the ram head up-and-down displacement slide block guide 85 through the slide block 841, along with the downward displacement of the ram head up-and-down displacement slide block 84, the punch head 86 is driven by the punch head to move downward together with the first rivet punch claw i 861a and the second rivet punch claw ii 861b in a state corresponding to the first rivet i 708a and the second rivet ii 708b, respectively, and applies a downward pressing force to the first rivet i 708a and the second rivet ii 708 b. Meanwhile, the pushing cylinder 87 of the top-riveting pillar base guide plate operates, the pushing cylinder 872 extends upward, that is, the pushing cylinder protrudes outward toward the cylinder body, the top-riveting pillar base guide plate 13 of the structural system of the right rotary disk starter base-supporting mechanism 1 is pushed upward by the top plate 88 of the top-riveting pillar base guide plate fixed to the upper end (that is, the end) of the pushing cylinder 872, the top-riveting pillar base guide plate 13 pushes the top-riveting pillar base 15 upward through the top-riveting pillar base guide 14, and the bottom of the first rivet i 708a and the bottom of the second rivet ii 708b are simultaneously pushed by the pair of top-riveting pillars 16 located on the top-riveting pillar base 15, so that the first rivet i 861a and the second rivet ii 861b are simultaneously riveted by the cooperation of the first rivet i 708a and the second rivet ii 708b with the pair of top-riveting pillars 16.
Referring to fig. 16 in combination with fig. 1 and 3, the installation-terminating-workpiece removing mechanism 9 includes an installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder fixing bracket 91, an installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder 92, an installation-terminating-workpiece removing-jaw vertical-displacement acting cylinder 93, an installation-terminating-workpiece removing-jaw opening-closing acting cylinder 94, a pair of installation-terminating-workpiece removing jaws 95 and an installation-terminating-workpiece lead-out groove 96, a lower portion of the installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder fixing bracket 91 is fixed to the work table 10, the installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder 92 is fixed to an upper portion of the installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder fixing bracket 91 in a horizontal-lying state, and a push-plate pushing-removing-jaw horizontal-displacement acting cylinder head stopper 921 is fixed to one end surface and the other end surface of the installation-terminating-workpiece removing-jaw horizontal-displacement acting cylinder 92, the mounting end workpiece taking-off clamping jaw up-and-down displacement acting cylinder 93 is fixed with a mounting end workpiece taking-off clamping jaw up-and-down displacement acting cylinder fixing plate 931 and a mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder push plate 922 of the mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder 92 through a mounting end workpiece taking-off clamping jaw up-and-down displacement acting cylinder fixing plate 931, a mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder push plate push head 9221 is fixed at the lower part of the mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder push plate 922 and is positioned at the length direction central position, a mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder push plate push head limiting block 932 is corresponding to the mounting end workpiece taking-off clamping jaw horizontal displacement acting cylinder push plate push head limiting block 921, a mounting end workpiece taking-off clamping jaw up-and-down displacement acting cylinder push plate head limiting block 932 is fixed on the upper end surface and the lower end surface of the mounting end workpiece taking-off clamping jaw up-and opening-and closing cylinder 94 through mounting end workpiece taking-off clamping jaw opening and closing cylinder fixing base 941 and mounting end workpiece taking-up A mounting end workpiece take-off jaw up-down displacement action cylinder push plate 933 away from the jaw up-down displacement action cylinder 93 is fixed, a mounting end workpiece take-off jaw up-down displacement action cylinder push plate 933 is fixed on one side of the mounting end workpiece take-off jaw up-down displacement action cylinder push plate 933 and a mounting end workpiece take-off jaw up-down displacement action cylinder push plate striker 9331 is fixed at a position corresponding to a mounting end workpiece take-off jaw striker stopper 932, a pair of mounting end workpiece take-off jaws 95 is connected with a mounting end workpiece take-off jaw opening-closing action cylinder 94 and alternately corresponds to the right rotary disk starter base carrying mechanism 1 and a mounting end workpiece lead-out groove 96, the mounting end workpiece lead-out groove 96 is fixed with the workbench 10 at a position corresponding to the right rotary disk starter base carrying mechanism 1 in a state of inclining from one end of the right rotary disk 104 toward a direction away from the right rotary disk 104, and the mounting-end work lead-out groove 96 projects out of the edge of the table 10 in a downwardly inclined state away from the end of the right turn plate 104.
Also shown in fig. 16 is a support column 961 for fixedly mounting the finish work lead-out slot 96, the bottom of the support column 961 being fixed to the table 10. As shown in fig. 16, one side of the mounting end workpiece lead-out groove 96 facing the right turn plate 104 is fixed to the support column 961, and the other side is fixed to the mounting end workpiece removing jaw horizontal displacement cylinder fixing bracket 91.
When the mounting end workpiece needs to be removed from the right rotary disc starter base bearing mechanism 1 after the first rivet I708 a and the second rivet II 708b are riveted, the mounting end workpiece is removed from the clamping jaw horizontal displacement acting cylinder 92 to work, so that the mounting end workpiece is removed from the clamping jaw horizontal displacement acting cylinder push plate 922 to drive the mounting end workpiece to be removed from the clamping jaw vertical displacement acting cylinder 93, the mounting end workpiece is removed from the clamping jaw opening and closing acting cylinder 94, and the pair of mounting end workpiece removing clamping jaws 95 move from a station where the mounting end workpiece guide-out grooves 96 are formed to a position above the starter base 701 corresponding to the right rotary disc starter base bearing mechanism 1. Next, the mounting end workpiece removing jaw vertical displacement action cylinder 93 operates to make the mounting end workpiece removing jaw vertical displacement action cylinder push plate 933 drive the mounting end workpiece removing jaw opening and closing action cylinder 94 and the pair of mounting end workpiece removing jaws 95 to move downward. At this time, the lower portions of the pair of installation terminating workpiece removing claws 95 correspond to both sides of the starter base 701. Then, the mounting end work removing jaw opening and closing cylinder 94 is operated to move the pair of mounting end work removing jaws 95 toward each other and clamp the starter base 701. Then, the mounting end work removing jaw up-and-down displacement cylinder 93 is operated in reverse, and the pair of mounting end work removing jaws 95 are lifted up together with the starter base 701 in a clamped state in the reverse process. Then, the mounting end workpiece removing jaw horizontal displacement acting cylinder 92 is operated in the opposite direction to the above until the pair of mounting end workpiece removing jaws 95 with the starter base 701 (which is substantially the finished current starter) clamped thereby correspond to the mounting end workpiece lead-out groove 96. Then, the mounting end workpiece removing jaw opening and closing cylinder 94 operates to repel the pair of mounting end workpiece removing jaws 95, and the starter base 701, i.e., the finished current starter, is released to and led out from the mounting end workpiece lead-out groove 96.
Referring to fig. 17 in conjunction with fig. 1 and 3, the workpiece retention/non-detection mechanism 60 includes a workpiece retention/non-detection sensor fixing post 601, a workpiece retention/non-detection sensor fixing post 602, and a workpiece retention/non-detection sensor 603, the workpiece retention/non-detection sensor fixing post 601 corresponds to the right turntable starter base support mechanism 1, the bottom of the workpiece retention/non-detection sensor fixing post 601 is fixed to the worktable 10, the upper end of the workpiece retention/non-detection sensor fixing post extends upward in a direction away from the worktable 10, the workpiece retention/non-detection sensor fixing post 602 is fixed to the upper end of the workpiece retention/non-detection sensor fixing post 601 by screws in a state of being free from the edge portion of the right turntable 104 on the upward side, and the workpiece retention/non-detection sensor 603 is fixed to the end of the workpiece retention/non-detection sensor fixing post 602 facing the right turntable 104 and is supported by the right turntable starter base support mechanism The mechanism 1 corresponds to the upper side of one end of the table 10, and the workpiece retention detection sensor 603 is electrically connected to the electric controller 107 through a wire in a use state.
If there is a case where the aforementioned mounting-end workpiece removing mechanism 9 does not remove the mounted starter base 701 (substantially, the finished current starter), when the position of the workpiece staying or not detecting sensor 603 is detected and fed back to the electric controller 107 under the drive of the right turn plate 104, the right turn plate 104 stops rotating, and vice versa.
In conclusion, the technical scheme provided by the invention overcomes the defects in the prior art, successfully completes the invention task and truly realizes the technical effects of the applicant in the technical effect column.

Claims (3)

1. A rivet installing device of an automatic current starter assembling machine comprises a workbench (10), wherein a left rotary disk driving mechanism (101) is arranged on one side, facing downwards, of the left end of the workbench (10), a right rotary disk driving mechanism (102) is arranged on one side, facing downwards, of the right end of the workbench (10), a left power output part of the left rotary disk driving mechanism (101) extends to the upper part of the workbench (10) and is fixedly connected with the central position of a left rotary disk (103) positioned above the left end of the workbench (10), and a right power output part of the right rotary disk driving mechanism (102) also extends to the upper part of the workbench (10) and is fixedly connected with the central position of a right rotary disk (104) positioned above the right end of the workbench (10); the left rotary disk starter base bearing mechanisms (20), the number of the left rotary disk starter base bearing mechanisms (20) is one group, and the left rotary disk starter base bearing mechanisms are arranged at intervals around the edge part of one upward side of the left rotary disk (103); the right rotary disk starter base bearing mechanisms (1) are arranged in a group, and are arranged at intervals around the edge part of one upward side of the right rotary disk (104); the riveting device is characterized by comprising a rivet extraction release mechanism (7), wherein the rivet extraction release mechanism (7) comprises a first rivet mounting device I (71) and a second rivet mounting device II (72), the structure and the action rhythm of the second rivet mounting device II (72) are the same as those of the first rivet mounting device I (71), the first rivet mounting device I (71) comprises a rivet introducing block fixing frame (711), a rivet introducing block (712), a rivet push plate (713), a rivet push plate actuating action cylinder (714), a rivet clamping jaw horizontal displacement action cylinder mounting bracket (715), a rivet clamping jaw horizontal displacement action cylinder (716), a rivet clamping jaw lifting action cylinder (717), a rivet clamping jaw opening and closing action cylinder (718) and a pair of rivet clamping jaws (719), and the lower end of the rivet introducing block fixing frame (711 is fixed with the upper part of the rivet introducing block fixing frame seat, the lower part of the rivet leading-in block fixing seat is fixed with the workbench (10), one end of the rivet leading-in block (712) facing to the rivet leading-in block fixing seat (711) and one side of the upper end of the rivet leading-in block fixing seat (711) back to the right rotary disk starter base bearing mechanism (1) are fixed and form a rivet push plate sliding groove (7121), one end of the rivet leading-in block (712) facing to the rivet leading-in block fixing seat (711) is divided into a rivet leading-in block fixing wall (7122) positioned on one side of the rivet push plate sliding groove (7121) and used for fixing with the rivet leading-in block fixing seat (711) and a rivet leading-in wall (7123) positioned on the other side of the rivet push plate sliding groove (7121) by the rivet leading-in block sliding groove (7121), a rivet leading-in groove (71231) communicated with the rivet push plate sliding groove (7121) is arranged on the rivet leading-in wall (7123), a rivet push plate actuating cylinder (714) is arranged at the side of the rivet introducing block (712) which is far away from the rivet introducing block fixing frame (711) and the rivet push plate actuating cylinder post (7141) of the rivet push plate actuating cylinder (714) faces the rivet push plate sliding groove (7121), a rivet push plate (713) is slidingly arranged in the rivet push plate sliding groove (7121) and the end surface of the rivet push plate (713) which faces the rivet push plate actuating cylinder (714) is connected with the rivet push plate actuating cylinder post (7141), the lower part of the rivet clamping jaw horizontal displacement acting cylinder mounting bracket (715) is fixed with the workbench (10), the rivet clamping jaw horizontal displacement acting cylinder (716) is horizontally arranged with the upper part of the rivet clamping jaw horizontal displacement acting cylinder mounting bracket (715) towards the side of the right rotary disk starter base bearing mechanism (1), a rivet clamp claw horizontal displacement action cylinder push plate head collision limiting block (7161) is respectively fixed on one end face and the other end face of the rivet clamp claw horizontal displacement action cylinder (716), the rivet clamp claw placing lifting action cylinder (717) is fixed with the rivet clamp claw placing horizontal displacement action cylinder push plate (7162) of the rivet clamp claw placing horizontal displacement action cylinder (716) through a rivet clamp claw placing lifting action cylinder fixing seat (7171), a rivet clamp claw placing horizontal displacement action cylinder push plate head collision (71621) corresponding to the rivet clamp claw placing horizontal displacement action cylinder push plate head collision limiting block (7161) is fixed at the middle part of the length direction of one side of the rivet clamp claw placing horizontal displacement action cylinder push plate (7162) facing upwards, a rivet clamp claw placing horizontal displacement action cylinder push plate head collision limiting block (7172) is respectively fixed on the upper end face and the lower end face of the rivet clamp claw placing lifting action cylinder push plate (717), the rivet clamp is put claw and is opened and shut and act on jar (718) and fix on the rivet clamp that the shape is the L font of invering puts claw fixing base (7181), and this rivet clamp is put claw fixing base (7181) and is set up on the rivet clamp of putting claw lift effect jar (717) puts claw lift effect jar push pedal (7173), put claw lift effect jar push pedal (71731) and be fixed with a rivet clamp at the position that corresponds rivet clamp and put claw lift effect jar push pedal and hit head stopper (7172) and hit head (71731) on this rivet clamp, a pair of rivet clamps are put claw (719) and rivet clamp and are put claw and open and shut and act on jar (718) and cooperate.
2. The rivet installing device of the automatic assembling machine of the current starter according to claim 1, characterized in that the left rotary disk driving mechanism (101) comprises a left rotary disk driving motor (1011) and a left rotary disk driving reduction gearbox (1012), the left rotary disk driving motor (1011) is in transmission fit with the left rotary disk driving reduction gearbox (1012) and the left rotary disk driving motor (1011) are fixed with the downward side of the left end of the worktable (10), the left rotary disk driving reduction gearbox power output shaft (10121) of the left rotary disk driving reduction gearbox (1012) as the left power output part extends to the upper part of the worktable (10) and is fixed with the center position of the left rotary disk (103), and the power output shaft (10121) of the left rotary disk drive reduction gearbox is in running fit with the workbench (10) through a bearing (10122) of the power output shaft of the left rotary disk drive reduction gearbox.
3. The rivet installing device of the automatic assembling machine of the current starter according to claim 1, characterized in that the right rotary disk driving mechanism (102) comprises a right rotary disk driving motor (1021) and a right rotary disk driving reduction gearbox (1022), the right rotary disk driving motor (1021) is in transmission fit with the right rotary disk driving reduction gearbox (1022) and the right rotary disk driving reduction gearbox (1022) together with the right rotary disk driving motor (1021) is fixed to the downward side of the right end of the worktable (10), the right rotary disk driving reduction gearbox power output shaft (10221) of the right rotary disk driving reduction gearbox (1022) as the right power output part extends to the upper side of the worktable (10) and is fixed with the center position of the right rotary disk (104), and the power output shaft (10221) of the right rotary disk drive reduction gearbox is in running fit with the workbench (10) through a power output shaft bearing (10222) of the right rotary disk drive reduction gearbox.
CN202111116508.4A 2021-09-23 2021-09-23 Rivet loading device of automatic current starter assembly machine Active CN113857415B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111116508.4A CN113857415B (en) 2021-09-23 2021-09-23 Rivet loading device of automatic current starter assembly machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111116508.4A CN113857415B (en) 2021-09-23 2021-09-23 Rivet loading device of automatic current starter assembly machine

Publications (2)

Publication Number Publication Date
CN113857415A true CN113857415A (en) 2021-12-31
CN113857415B CN113857415B (en) 2023-10-20

Family

ID=78993475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111116508.4A Active CN113857415B (en) 2021-09-23 2021-09-23 Rivet loading device of automatic current starter assembly machine

Country Status (1)

Country Link
CN (1) CN113857415B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535491A (en) * 2022-01-24 2022-05-27 苏州瀚川智能科技股份有限公司 Unblock riveting frock
CN114535958A (en) * 2022-03-10 2022-05-27 宁波方正汽车模具股份有限公司 Rivet feeding and assembling device and using method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050178816A1 (en) * 2004-02-17 2005-08-18 Robin Stevenson Friction stir rivet drive system and stir riveting methods
JP2014176866A (en) * 2013-03-14 2014-09-25 Toray Eng Co Ltd Rivet insertion device
CN106624795A (en) * 2017-02-27 2017-05-10 常熟市天银机电股份有限公司 Automatic refrigerating compressor motor protector assembling device with rivet installation function
CN206474899U (en) * 2017-02-27 2017-09-08 常熟市天银机电股份有限公司 Protector for motor of refrigerating compressor assembles device
CN206527517U (en) * 2017-02-27 2017-09-29 常熟市天银机电股份有限公司 The protector Automated assembly device of release function is extracted with protector pedestal
CN108687295A (en) * 2018-05-23 2018-10-23 创美工艺(常熟)有限公司 Rivet automatic installation apparatus
CN110154057A (en) * 2019-06-14 2019-08-23 中国计量大学 It can be realized the vibration damping end effector and displacement processing method for drilling of displacement processing
CN110788476A (en) * 2019-12-17 2020-02-14 常熟大众机器人研究院有限公司 Workpiece clamping jaw opening and closing execution device of automatic workpiece transferring manipulator
CN111702120A (en) * 2020-07-16 2020-09-25 苏州市冯氏智能科技有限公司 Four-station full-automatic riveting system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050178816A1 (en) * 2004-02-17 2005-08-18 Robin Stevenson Friction stir rivet drive system and stir riveting methods
JP2014176866A (en) * 2013-03-14 2014-09-25 Toray Eng Co Ltd Rivet insertion device
CN106624795A (en) * 2017-02-27 2017-05-10 常熟市天银机电股份有限公司 Automatic refrigerating compressor motor protector assembling device with rivet installation function
CN206474899U (en) * 2017-02-27 2017-09-08 常熟市天银机电股份有限公司 Protector for motor of refrigerating compressor assembles device
CN206527517U (en) * 2017-02-27 2017-09-29 常熟市天银机电股份有限公司 The protector Automated assembly device of release function is extracted with protector pedestal
CN108687295A (en) * 2018-05-23 2018-10-23 创美工艺(常熟)有限公司 Rivet automatic installation apparatus
CN110154057A (en) * 2019-06-14 2019-08-23 中国计量大学 It can be realized the vibration damping end effector and displacement processing method for drilling of displacement processing
CN110788476A (en) * 2019-12-17 2020-02-14 常熟大众机器人研究院有限公司 Workpiece clamping jaw opening and closing execution device of automatic workpiece transferring manipulator
CN111702120A (en) * 2020-07-16 2020-09-25 苏州市冯氏智能科技有限公司 Four-station full-automatic riveting system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖舫;丁海波;: "基于振动盘的铆钉自动送料机构设计", 机械工程师, no. 10 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535491A (en) * 2022-01-24 2022-05-27 苏州瀚川智能科技股份有限公司 Unblock riveting frock
CN114535491B (en) * 2022-01-24 2024-05-17 苏州瀚川智能科技股份有限公司 Unlocking riveting tool
CN114535958A (en) * 2022-03-10 2022-05-27 宁波方正汽车模具股份有限公司 Rivet feeding and assembling device and using method thereof
CN114535958B (en) * 2022-03-10 2023-08-15 宁波方正汽车模具股份有限公司 Rivet feeding and assembling device and using method thereof

Also Published As

Publication number Publication date
CN113857415B (en) 2023-10-20

Similar Documents

Publication Publication Date Title
CN113857415A (en) Rivet installing device of automatic current starter assembling machine
CN111250984B (en) Multi-mechanism terminal assembling machine
CN108788716A (en) Rain shaving electrical machine automatic assembly production line
CN108817954B (en) Automatic starter assembling device with PTC mounting function
CN113714785B (en) Automatic shell cover mounting mechanism of current starter mounting device
CN113765307A (en) Motor shell riveting center shaft and automatic rotor assembling equipment
CN216027861U (en) Rivet installing device of automatic current starter assembling machine
CN215942051U (en) Automatic static contact mounting device of starter assembling machine
CN216027862U (en) Automatic installation mechanism for pins of automatic assembly device of current starter
CN113770702B (en) Automatic static pin assembling mechanism of starter assembling machine
CN216029213U (en) Automatic static pin assembling mechanism of starter assembling machine
CN215880672U (en) Automatic shell cover mounting mechanism of current starter assembling device
CN216027863U (en) Rivet riveting structure of automatic assembly device of current starter
CN215942068U (en) Rotary disc starter base bearing structure of automatic current starter assembling device
CN113714786B (en) Automatic static contact mounting device of starter assembly machine
CN113770718B (en) Rotary disc starter base bearing mechanism of automatic current starter assembling device
CN215942012U (en) Mounting end workpiece moving device of automatic current starter assembling machine
CN113714802B (en) Mounting end workpiece removing device of automatic current starter assembling machine
CN113714803B (en) Starter base transfer mechanism of automatic current starter assembly device
CN215942067U (en) Starter base transfer mechanism of automatic current starter assembly device
CN215846822U (en) Automatic assembling device for current starter
CN212115092U (en) Motor shell riveting center shaft and automatic rotor assembling equipment
CN113770719B (en) Automatic assembly device of current starter
CN113664510B (en) Pin mounting mechanism of automatic assembly device of current starter
CN113714455A (en) Rivet riveting structure of automatic assembly device of current starter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant