CN113842962B - 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 - Google Patents
基于电润湿的浓度均一化微流控芯片及浓度均一化方法 Download PDFInfo
- Publication number
- CN113842962B CN113842962B CN202111217576.XA CN202111217576A CN113842962B CN 113842962 B CN113842962 B CN 113842962B CN 202111217576 A CN202111217576 A CN 202111217576A CN 113842962 B CN113842962 B CN 113842962B
- Authority
- CN
- China
- Prior art keywords
- area
- concentration
- micro
- homogenization
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000265 homogenisation Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000000523 sample Substances 0.000 claims abstract description 58
- 239000012470 diluted sample Substances 0.000 claims abstract description 39
- 239000012895 dilution Substances 0.000 claims abstract description 39
- 238000010790 dilution Methods 0.000 claims abstract description 39
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 238000005516 engineering process Methods 0.000 claims abstract description 21
- 238000012546 transfer Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 238000005070 sampling Methods 0.000 claims abstract description 15
- 238000011002 quantification Methods 0.000 claims abstract description 11
- 239000010413 mother solution Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 16
- 239000012452 mother liquor Substances 0.000 claims description 9
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000000835 electrochemical detection Methods 0.000 description 3
- 238000001917 fluorescence detection Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
- B01L3/502792—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本发明公开了一种基于电润湿的浓度均一化微流控芯片及浓度均一化方法,包括设有微通道的微流控芯片本体,微通道用于采用电润湿移液技术输送液体沿微通道移动,微流控芯片本体设有样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区;样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区通过微通道互通;1,将多个原始样本分别加入至各自的样本区;2,将试剂加入至试剂储存区;3,采用电润湿移液技术将试剂移动至稀释区,并将原始样本移动至稀释区,完成设定梯度稀释;4,操控稀释样本移动至浓度定量区进行检测,5,根据均一化选择原始样本为母液;6,通过精确取样区,分离出所需体积移动至均一化区完成浓度均一化。
Description
技术领域
本发明涉及基于电润湿的微流控芯片,尤其是涉及基于电润湿的浓度均一化微流控芯片及浓度均一化方法。
背景技术
多个样本混合检测(以下简称混样检测)具有节省时间、降低成本、提升效率等优势,是基因测序、医药合成、生物化学分析及诊断等领域常用的检测手段。混样检测前由于各样本起始浓度不一致,混合后会导致在同一混合体系中有些样本浓度过高,有些样本浓度过低,低浓度样本的信号容易被掩盖而丢失,高浓度样本容易超出检测范围,从而造成整体检测不准确。浓度均一化是一种将不同浓度的样本按照一定的比例混合,使各样本在同一混合体系中质量或浓度保持一致的混样方法,该方法可以有效解决上述问题。
浓度均一化工作流程主要包含浓度定量、计算比对、精确混样三个步骤:1)浓度定量:采用定量检测仪器,对不同的样本进行起始浓度检测;2)计算比对:根据浓度定量结果及均一化浓度需求值,计算不同样本所需体积;3)精确混样:依据计算结果,从每个样本中精确移取所需体积,然后进行混合。
上述现有的浓度均一化方法,通常基于定量检测仪器完成浓度检测,采用手工方法进行样本的移取及混合,存在自动化程度低、操作复杂等不足,严重降低了混样检测的效率。同时受限于移液工具的固有偏差及操作人员的熟练度,手工方法往往会导致移液体积偏差较大、准确度较低的情况。例如,采用传统移液器移液时经常会发生挂液或试剂残留。
微流控系统因具有样品消耗少、反应快、检测效率高、传热传质效果好、无交叉污染、易于和其他技术设备集成等优点,广泛应用于化学分析、生物医疗、食品卫生及环境监测等领域。在微流控系统中,电润湿 (英文Electrowetting,缩写EW)移液技术是一种对液滴进行电控表面张力变化的新型液滴操控方式,即通过改变液滴与绝缘基板之间电压来改变液滴在基板上的润湿性,即改变接触角,促使液滴发生形变、位移。电润湿移液技术突破了移液系统对传统机械臂、泵阀管路及复杂流道的依赖,通过数字化编程即可实现试剂的高灵活、高精准的操控。由此,如何采用微流控芯片,通过电润湿移液技术操控微流控芯片微通道中的样品进行浓度均一化,目前还未见诸有关报道。
发明内容
本发明目的在于提供一种基于电润湿的浓度均一化微流控芯片,本发明另一目的在于提供利用该微流控芯片进行浓度均一化的方法,达到解决当前手工移液受限于人员操作熟练度,以及移液器固有偏差而导致的移液偏差大、准确度和效率低的问题。
为实现上述目的,本发明采取下述技术方案:
本发明所述基于电润湿的浓度均一化微流控芯片,包括设置有微通道的微流控芯片本体,所述微通道用于采用电润湿移液技术输送其内的液体沿微通道移动,所述微流控芯片本体还设置有样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区;所述样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区通过微通道互通;其中:
样本区,用于储存原始样本;
试剂储存区,用于存储试剂,所述试剂用于按照设定的梯度稀释所述原始样本;
稀释区,用于将通过微通道进入本区的所述试剂和原始样本进行混匀制备成稀释样本;
浓度定量区,用于对通过微通道进入本区的所述稀释样本进行浓度测定;
精确取样区,用于按照设定的体积,获取原始样本或/和稀释样本;
均一化区,根据设定的浓度均一化所需的总体积和浓度,并根据检测或计算得到的原始样本和稀释样本的浓度,选择合适的原始样本或稀释样本作为母液,并计算浓度均一化所需的母液体积,采用电润湿移液技术移取设定体积的母液至本区,完成浓度均一化。
优选地,所述微流控芯片本体包括上、下间隔设置的上基板和下基板,所述上、下两基板之间形成液体移动的所述微通道;上基板结构自上至下依次为上绝缘基板、公共电极、上疏水层;下基板结构自下至上依次为下绝缘基板、驱动电极阵列、介质层、下疏水层。
本发明所述浓度均一化微流控芯片的浓度均一化方法,包括下述步骤:
步骤1,将多个原始样本分别加入至各自的样本区;
步骤2,将试剂加入至试剂储存区;
步骤3,采用电润湿移液技术,按照设定的体积将试剂分别移动至每个稀释区,并按照设定的体积通过所述微通道将各原始样本分别移动至各自的稀释区,混匀制备成稀释样本,并依次完成设定的梯度稀释;
步骤4,采用电润湿移液技术,分别依次操控各稀释区内的所述稀释样本,按照设定的体积移动至浓度定量区进行电化学或荧光检测,根据测试结果直接得到或计算出最终的稀释样本的浓度,并根据各稀释区的稀释样本的稀释倍数,计算出对应的稀释样本和原始样本的浓度;
步骤5,根据均一化所需的总体积及浓度,选择合适浓度的原始样本或稀释样本作为母液,并计算所需母液体积;
步骤6,采用电润湿移液技术,通过精确取样区,从各母液中精确分离出所需的体积,并移动至均一化区进行混匀,完成浓度均一化。
本发明方法操作简单、自动化程度高,减少了人为操作误差,且均一化过程在1小时内即可完成,节省了时间,大大提高了检测效率。采用电润湿移液技术实现精确移液,体积偏差小于3%,解决了传统移液因操作人员的熟练度或移液器的固有偏差引起的移液结果不准确问题。
附图说明
图1是本发明所述微流控芯片本体的结构示意图。
图2是本发明所述样本区、试剂储存区、稀释区、浓度定量区、精确取样区、均一化区和微通道的布置示意图。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。
如图1所示,本发明所述基于电润湿的浓度均一化微流控芯片,包括设置有微通道1的微流控芯片本体,微通道1用于采用电润湿移液技术输送其内的液滴2沿微通道 1移动。
微流控芯片本体包括上、下间隔设置的上基板和下基板,上、下两基板之间形成液滴2移动的微通道1;上基板结构自上至下依次为上绝缘基板3、公共电极4、上疏水层5;下基板结构自下至上依次为下绝缘基板6、驱动电极阵列7、介质层8、下疏水层9。
微流控芯片本体还设置有样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区;样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区通过微通道1互通;其中:
如图2所示,样本区,用于储存原始样本;本实施例设置四个样本区10.1、10.2、10.3、10.4;
试剂储存区11,用于存储试剂,试剂用于按照设定的梯度稀释原始样本;
稀释区,用于将通过微通道1进入本区的试剂和原始样本进行混匀制备成稀释样本;本实施例以二梯度稀释为例,每个样本区分别对应两个稀释区,即:第一稀释区12.1、第二稀释区12.2;当然,根据需要,也可选择三梯度稀释或更多的梯度稀释;
浓度定量区13,用于将通过微通道1进入本区的稀释样本,采用电化学或荧光检测方法进行浓度测定;
精确取样区14,用于按照设定的体积,获取原始样本或/和稀释样本;
均一化区15,根据设定的浓度均一化所需的总体积和浓度,并根据检测或计算得到的原始样本和稀释样本的浓度,选择合适的原始样本或稀释样本作为母液,并计算浓度均一化所需的母液体积,采用电润湿移液技术移取设定体积的母液至本区,完成浓度均一化。
本发明浓度均一化微流控芯片的浓度均一化方法,包括下述步骤:
步骤1,将四个原始样本分别预先加入到样本区10.1、10.2、10.3、10.4;
步骤2,将试剂预先加入至试剂储存区11;
步骤3,采用电润湿移液技术,操控各样本区10.1、10.2、10.3、10.4内的原始样本,按照设定的体积通过微通道1分别移动至各自的第一稀释区12.1,并按照设定的体积将试剂分别移动至第一稀释区12.1,混匀制备成第一稀释样本;然后,采用电润湿移液技术,按照设定的体积通过微通道1操控第一稀释样本移动至第二稀释区12.2,并按照设定的体积将试剂移动至第二稀释区12.2,混匀制备成第二稀释样本,完成各原始样本的二梯度稀释;
步骤4,采用电润湿移液技术,分别依次操控各第二稀释区12.2内的第二稀释样本,按照设定的体积移动至浓度定量区13进行电化学或荧光检测,根据测试结果直接得到或计算出第二稀释样本的浓度,并根据各第二稀释区的第二稀释样本的稀释倍数,计算出对应的第一稀释样本和原始样本的浓度;
步骤5,根据均一化所需的总体积及浓度,选择合适浓度的原始样本或稀释样本作为母液,并计算所需母液体积;
步骤6,采用电润湿移液技术,通过精确取样区14,从各母液中精确分离出所需的体积,并移动至均一化区15进行混匀,完成浓度均一化。
Claims (2)
1.一种基于电润湿的浓度均一化微流控芯片,包括设置有微通道的微流控芯片本体,所述微通道用于采用电润湿移液技术输送其内的液体沿微通道移动,其特征是,所述微流控芯片本体还设置有样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区;所述样本区、试剂储存区、稀释区、浓度定量区、精确取样区和均一化区通过微通道互通;其中:
样本区,用于储存原始样本;
试剂储存区,用于存储试剂,所述试剂用于按照设定的梯度稀释所述原始样本;
稀释区,用于将通过微通道进入本区的所述试剂和原始样本进行混匀制备成稀释样本;
浓度定量区,用于对通过微通道进入本区的所述稀释样本进行浓度测定;
精确取样区,用于按照设定的体积,获取原始样本或/和稀释样本;
均一化区,根据设定的浓度均一化所需的总体积和浓度,并根据检测或计算得到的原始样本和稀释样本的浓度,选择原始样本或稀释样本作为母液,并计算浓度均一化所需的母液体积,采用电润湿移液技术移取设定体积的母液至本区,完成浓度均一化;
所述微流控芯片本体包括上、下间隔设置的上基板和下基板,上、下两基板之间形成液体移动的所述微通道;上基板结构自上至下依次为上绝缘基板、公共电极、上疏水层;下基板结构自下至上依次为下绝缘基板、驱动电极阵列、介质层、下疏水层。
2.根据权利要求1所述浓度均一化微流控芯片的浓度均一化方法,其特征是,包括下述步骤:
步骤1,将多个原始样本分别加入至各自的样本区;
步骤2,将试剂加入至试剂储存区;
步骤3,采用电润湿移液技术,按照设定的体积将试剂分别移动至每个稀释区,并按照设定的体积通过所述微通道将各原始样本分别移动至各自的稀释区,混匀制备成稀释样本,并依次完成设定的梯度稀释;
步骤4,采用电润湿移液技术,分别依次操控各稀释区内的所述稀释样本,按照设定的体积移动至浓度定量区进行浓度检测,根据测试结果直接得到或计算出的稀释样本的浓度,并根据各稀释区的稀释样本的稀释倍数,计算出对应的稀释样本和原始样本的浓度;
步骤5,根据均一化所需的总体积及浓度,选择原始样本或稀释样本作为母液,并计算所需母液体积;
步骤6,采用电润湿移液技术,通过精确取样区,从各母液中精确分离出所需的体积,并移动至均一化区进行混匀,完成浓度均一化。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111217576.XA CN113842962B (zh) | 2021-10-19 | 2021-10-19 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
EP22882270.6A EP4420781A1 (en) | 2021-10-19 | 2022-05-09 | Electrowetting-based concentration homogenization microfluidic chip and concentration homogenization method |
PCT/CN2022/091636 WO2023065645A1 (zh) | 2021-10-19 | 2022-05-09 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111217576.XA CN113842962B (zh) | 2021-10-19 | 2021-10-19 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113842962A CN113842962A (zh) | 2021-12-28 |
CN113842962B true CN113842962B (zh) | 2023-02-17 |
Family
ID=78978973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111217576.XA Active CN113842962B (zh) | 2021-10-19 | 2021-10-19 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4420781A1 (zh) |
CN (1) | CN113842962B (zh) |
WO (1) | WO2023065645A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113842962B (zh) * | 2021-10-19 | 2023-02-17 | 安图实验仪器(郑州)有限公司 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091302A (ja) * | 2003-09-19 | 2005-04-07 | Toshiba Corp | 化学分析装置の分注方法及びそれに使用される希釈カップ |
CN101194155A (zh) * | 2005-04-09 | 2008-06-04 | 贝林格尔英格海姆米克罗帕茨有限责任公司 | 用于测试样品液的装置和方法 |
CN109321634A (zh) * | 2017-07-26 | 2019-02-12 | 上海之江生物科技股份有限公司 | 核酸均一化方法及其试剂盒和应用 |
CN112881729A (zh) * | 2021-01-15 | 2021-06-01 | 中山大学 | 一种药物浓度梯度产生和加样装置及其应用 |
CN113252632A (zh) * | 2021-06-25 | 2021-08-13 | 成都瀚辰光翼生物工程有限公司 | 样本浓度处理方法、装置、样本处理设备及可读存储介质 |
CN113275052A (zh) * | 2021-06-04 | 2021-08-20 | 北京京东方传感技术有限公司 | 微流控芯片 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4969060B2 (ja) * | 2005-06-08 | 2012-07-04 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
US9201042B2 (en) * | 2010-07-15 | 2015-12-01 | Indian Statistical Institute | Architectural layout for dilution with reduced wastage in digital microfluidic based lab-on-a-chip |
US10450598B2 (en) * | 2015-09-11 | 2019-10-22 | Illumina, Inc. | Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest |
CN109971833B (zh) * | 2017-12-28 | 2020-11-20 | 南京金斯瑞生物科技有限公司 | 快速均一化环状dna样本的方法 |
US20190329258A1 (en) * | 2018-04-25 | 2019-10-31 | Tecan Trading Ag | Cartridge and electrowetting sample processing system with delivery zone |
CN113842962B (zh) * | 2021-10-19 | 2023-02-17 | 安图实验仪器(郑州)有限公司 | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 |
-
2021
- 2021-10-19 CN CN202111217576.XA patent/CN113842962B/zh active Active
-
2022
- 2022-05-09 EP EP22882270.6A patent/EP4420781A1/en active Pending
- 2022-05-09 WO PCT/CN2022/091636 patent/WO2023065645A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091302A (ja) * | 2003-09-19 | 2005-04-07 | Toshiba Corp | 化学分析装置の分注方法及びそれに使用される希釈カップ |
CN101194155A (zh) * | 2005-04-09 | 2008-06-04 | 贝林格尔英格海姆米克罗帕茨有限责任公司 | 用于测试样品液的装置和方法 |
CN109321634A (zh) * | 2017-07-26 | 2019-02-12 | 上海之江生物科技股份有限公司 | 核酸均一化方法及其试剂盒和应用 |
CN112881729A (zh) * | 2021-01-15 | 2021-06-01 | 中山大学 | 一种药物浓度梯度产生和加样装置及其应用 |
CN113275052A (zh) * | 2021-06-04 | 2021-08-20 | 北京京东方传感技术有限公司 | 微流控芯片 |
CN113252632A (zh) * | 2021-06-25 | 2021-08-13 | 成都瀚辰光翼生物工程有限公司 | 样本浓度处理方法、装置、样本处理设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
WO2023065645A1 (zh) | 2023-04-27 |
CN113842962A (zh) | 2021-12-28 |
EP4420781A1 (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0098550B1 (en) | Method and apparatus for conducting flow analysis | |
US4276048A (en) | Miniature reaction container and a method and apparatus for introducing micro volumes of liquid to such a container | |
DE60214851T2 (de) | Mikrofluidische vorrichtung und verfahren für chemische versuche | |
WO2016078340A1 (zh) | 微量液体分配/混合装置、系统及方法 | |
WO2018099420A1 (zh) | 微滴式数字pcr芯片 | |
EP2311563A1 (en) | Processing units and methods for the processing of liquid samples | |
EP2952906A1 (en) | System for the analysis of liquid samples | |
KR20150090037A (ko) | 액체 샘플의 취급 | |
Dong et al. | Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique | |
EP3755992B1 (en) | Computer-implemented method and system for spectroscopic analysis of biological material | |
CN113842962B (zh) | 基于电润湿的浓度均一化微流控芯片及浓度均一化方法 | |
CN110835600A (zh) | 生物样品的数字聚合酶链式反应的微流体系统以及相应方法 | |
JP2013536951A (ja) | 全血混合の完全さを決定するための全血吸引の圧力モニタリング | |
EP3354342A1 (en) | Device and method for producing individually processed fluid samples | |
Meldrum | A biomechatronic fluid-sample-handling system for DNA processing | |
Bell | Integrated Microsystems in Clinical Chemistry | |
CN213102252U (zh) | 连续试剂移液加样装置 | |
CN111948409B (zh) | 一种微流控测试卡、测试卡组件、设备及控制方法 | |
Ma et al. | Droplet microfluidic chip for precise monitoring of dynamic solution changes | |
EP0412046B1 (en) | Method of measuring a component in a liquid | |
US20170227565A1 (en) | Method for operating an automated analysis machine | |
TWI839168B (zh) | 液體取樣裝置 | |
Jin et al. | Nanoliter-scale liquid metering and droplet generation based on a capillary array for high throughput screening | |
US7463982B2 (en) | Liquid class predictor for liquid handling of complex mixtures | |
CN113176401B (zh) | 生物芯片的基片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |